{ "cells": [ { "cell_type": "markdown", "id": "3f230d52-dca7-4ce4-98cc-6267fc04893d", "metadata": { "editable": true, "papermill": { "duration": 0.007075, "end_time": "2024-12-02T20:45:03.720301", "exception": false, "start_time": "2024-12-02T20:45:03.713226", "status": "completed" }, "slideshow": { "slide_type": "" }, "tags": [] }, "source": [ "# Normalized Mean Square Error\n", "\n", "This notebook computes the normalized mean square error of atmospheric surface pressure.\n", "It is compared to ERA5 observations, as well as the CESM2 large ensemble and CMIP6 model output." ] }, { "cell_type": "code", "execution_count": 1, "id": "2292c691-9bd9-44d2-8a3f-cb90dbe2e383", "metadata": { "editable": true, "execution": { "iopub.execute_input": "2024-12-02T20:45:03.731329Z", "iopub.status.busy": "2024-12-02T20:45:03.730666Z", "iopub.status.idle": "2024-12-02T20:45:04.476867Z", "shell.execute_reply": "2024-12-02T20:45:04.476168Z" }, "papermill": { "duration": 0.752208, "end_time": "2024-12-02T20:45:04.478384", "exception": false, "start_time": "2024-12-02T20:45:03.726176", "status": "completed" }, "slideshow": { "slide_type": "" }, "tags": [ "hide-input" ] }, "outputs": [], "source": [ "import glob\n", "\n", "import matplotlib.pyplot as plt\n", "import numpy as np\n", "import xarray as xr\n", "\n", "from nmse_utils import nmse\n", "from averaging_utils import seasonal_climatology_weighted" ] }, { "cell_type": "markdown", "id": "9d67416c-a2d4-403b-85f4-647aa0a816eb", "metadata": { "editable": true, "papermill": { "duration": 0.003406, "end_time": "2024-12-02T20:45:04.486221", "exception": false, "start_time": "2024-12-02T20:45:04.482815", "status": "completed" }, "slideshow": { "slide_type": "" }, "tags": [] }, "source": [ "## Parameters\n", "\n", "These variables are set in `config.yml`" ] }, { "cell_type": "code", "execution_count": 2, "id": "b7486e94-e493-4369-9767-90eb15c0ac3a", "metadata": { "editable": true, "execution": { "iopub.execute_input": "2024-12-02T20:45:04.494257Z", "iopub.status.busy": "2024-12-02T20:45:04.493884Z", "iopub.status.idle": "2024-12-02T20:45:04.497192Z", "shell.execute_reply": "2024-12-02T20:45:04.496800Z" }, "papermill": { "duration": 0.008241, "end_time": "2024-12-02T20:45:04.497941", "exception": false, "start_time": "2024-12-02T20:45:04.489700", "status": "completed" }, "slideshow": { "slide_type": "" }, "tags": [ "parameters", "hide-input" ] }, "outputs": [], "source": [ "CESM_output_dir = \"\"\n", "case_name = \"\"\n", "start_date = \"\"\n", "end_date = \"\"\n", "base_case_output_dir = None\n", "base_case_name = None\n", "base_start_date = None\n", "base_end_date = None\n", "validation_path = \"\"\n", "regridded_output = False\n", "base_regridded_output = None" ] }, { "cell_type": "code", "execution_count": 3, "id": "c7628b86", "metadata": { "execution": { "iopub.execute_input": "2024-12-02T20:45:04.507623Z", "iopub.status.busy": "2024-12-02T20:45:04.507253Z", "iopub.status.idle": "2024-12-02T20:45:04.510632Z", "shell.execute_reply": "2024-12-02T20:45:04.510239Z" }, "papermill": { "duration": 0.00828, "end_time": "2024-12-02T20:45:04.511424", "exception": false, "start_time": "2024-12-02T20:45:04.503144", "status": "completed" }, "tags": [ "injected-parameters" ] }, "outputs": [], "source": [ "# Parameters\n", "case_name = \"b.e30_beta02.BLT1850.ne30_t232.104\"\n", "base_case_name = \"b.e23_alpha17f.BLT1850.ne30_t232.092\"\n", "CESM_output_dir = \"/glade/campaign/cesm/development/cross-wg/diagnostic_framework/CESM_output_for_testing\"\n", "start_date = \"0001-01-01\"\n", "end_date = \"0101-01-01\"\n", "lc_kwargs = {\"threads_per_worker\": 1}\n", "serial = False\n", "regridded_output = False\n", "base_regridded_output = True\n", "validation_path = \"/glade/campaign/cesm/development/cross-wg/diagnostic_framework/nmse_validation/fv0.9x1.25\"\n", "subset_kwargs = {}\n", "product = \"/glade/work/richling/cesm3_0_beta04/tools/CUPiD/examples/key_metrics/computed_notebooks//atm/Global_PSL_NMSE_compare_obs_lens.ipynb\"\n" ] }, { "cell_type": "code", "execution_count": 4, "id": "9dfe1566-abe3-4b23-a59c-113334a0458f", "metadata": { "editable": true, "execution": { "iopub.execute_input": "2024-12-02T20:45:04.521216Z", "iopub.status.busy": "2024-12-02T20:45:04.521011Z", "iopub.status.idle": "2024-12-02T20:45:04.523777Z", "shell.execute_reply": "2024-12-02T20:45:04.523369Z" }, "papermill": { "duration": 0.007373, "end_time": "2024-12-02T20:45:04.524586", "exception": false, "start_time": "2024-12-02T20:45:04.517213", "status": "completed" }, "slideshow": { "slide_type": "" }, "tags": [ "hide-input" ] }, "outputs": [], "source": [ "# Want some base case parameter defaults to equal control case values\n", "if base_case_name is not None:\n", " if base_case_output_dir is None:\n", " base_case_output_dir = CESM_output_dir\n", "\n", " if base_start_date is None:\n", " base_start_date = start_date\n", "\n", " if base_end_date is None:\n", " base_end_date = end_date\n", "\n", " if base_regridded_output is None:\n", " base_regridded_output = regridded_output" ] }, { "cell_type": "markdown", "id": "74c7803f-a8c5-445d-9233-0aa2663c58bd", "metadata": { "editable": true, "papermill": { "duration": 0.00495, "end_time": "2024-12-02T20:45:04.532996", "exception": false, "start_time": "2024-12-02T20:45:04.528046", "status": "completed" }, "slideshow": { "slide_type": "" }, "tags": [] }, "source": [ "## Read in the current case" ] }, { "cell_type": "code", "execution_count": 5, "id": "7f4132b5-db1f-4ae8-92df-07dd531b650e", "metadata": { "editable": true, "execution": { "iopub.execute_input": "2024-12-02T20:45:04.542240Z", "iopub.status.busy": "2024-12-02T20:45:04.542014Z", "iopub.status.idle": "2024-12-02T20:45:04.545371Z", "shell.execute_reply": "2024-12-02T20:45:04.545023Z" }, "papermill": { "duration": 0.008963, "end_time": "2024-12-02T20:45:04.546035", "exception": false, "start_time": "2024-12-02T20:45:04.537072", "status": "completed" }, "slideshow": { "slide_type": "" }, "tags": [ "hide-input" ] }, "outputs": [], "source": [ "def fix_time_dim(dat):\n", " \"\"\"CESM2 output sets time as the end of the averaging interval (e.g. January average is midnight on February 1st);\n", " This function sets the time dimension to the midpoint of the averaging interval.\n", " Note that CESM3 output sets time to the midpoint already, so this function should not change CESM3 data.\"\"\"\n", " if \"time\" not in dat.dims:\n", " return dat\n", " if \"bounds\" not in dat.time.attrs:\n", " return dat\n", " time_bounds_avg = dat[dat.time.attrs[\"bounds\"]].mean(\"nbnd\")\n", " time_bounds_avg.attrs = dat.time.attrs\n", " dat = dat.assign_coords({\"time\": time_bounds_avg})\n", " return xr.decode_cf(dat)" ] }, { "cell_type": "code", "execution_count": 6, "id": "ccca8e3a-a52f-4202-9704-9d4470eda984", "metadata": { "editable": true, "execution": { "iopub.execute_input": "2024-12-02T20:45:04.552131Z", "iopub.status.busy": "2024-12-02T20:45:04.551890Z", "iopub.status.idle": "2024-12-02T20:45:07.724289Z", "shell.execute_reply": "2024-12-02T20:45:07.723847Z" }, "papermill": { "duration": 3.176572, "end_time": "2024-12-02T20:45:07.725321", "exception": false, "start_time": "2024-12-02T20:45:04.548749", "status": "completed" }, "slideshow": { "slide_type": "" }, "tags": [ "hide-input" ] }, "outputs": [], "source": [ "if regridded_output:\n", " file_path = f\"{CESM_output_dir}/{case_name}/atm/proc/tseries/regrid\"\n", "else:\n", " file_path = f\"{CESM_output_dir}/{case_name}/atm/proc/tseries\"\n", "\n", "dat = (\n", " fix_time_dim(xr.open_mfdataset(f\"{file_path}/*PSL*.nc\", decode_times=False))\n", " .sel(time=slice(start_date, end_date))\n", " .PSL\n", " / 100.0\n", ")\n", "\n", "# Ensure all datasets have the same coordinates as the output data\n", "# (Avoid round-off level differences since all data should be on the same grid)\n", "lon = dat.lon.data\n", "lat = dat.lat.data\n", "\n", "if base_case_name is not None:\n", " if base_regridded_output:\n", " base_file_path = (\n", " f\"{base_case_output_dir}/{base_case_name}/atm/proc/tseries/regrid\"\n", " )\n", " else:\n", " base_file_path = f\"{base_case_output_dir}/{base_case_name}/atm/proc/tseries\"\n", "\n", " base_dat = (\n", " fix_time_dim(\n", " xr.open_mfdataset(f\"{base_file_path}/*PSL*.nc\", decode_times=False)\n", " )\n", " .sel(time=slice(start_date, end_date))\n", " .assign_coords({\"lon\": lon, \"lat\": lat})\n", " .PSL\n", " / 100.0\n", " )" ] }, { "cell_type": "code", "execution_count": 7, "id": "073a2ad0-81e6-4817-9024-4b9b718fabb4", "metadata": { "editable": true, "execution": { "iopub.execute_input": "2024-12-02T20:45:07.734493Z", "iopub.status.busy": "2024-12-02T20:45:07.734288Z", "iopub.status.idle": "2024-12-02T20:46:39.481717Z", "shell.execute_reply": "2024-12-02T20:46:39.481260Z" }, "papermill": { "duration": 91.752553, "end_time": "2024-12-02T20:46:39.483231", "exception": false, "start_time": "2024-12-02T20:45:07.730678", "status": "completed" }, "slideshow": { "slide_type": "" }, "tags": [ "hide-input" ] }, "outputs": [], "source": [ "# --Compute seasonal and annual means\n", "dat = seasonal_climatology_weighted(dat).load()\n", "\n", "\n", "if base_case_name is not None:\n", " base_dat = seasonal_climatology_weighted(base_dat).load()" ] }, { "cell_type": "markdown", "id": "e0527e3e-cd26-46b5-8c1e-08882109e12e", "metadata": { "editable": true, "papermill": { "duration": 0.006158, "end_time": "2024-12-02T20:46:39.497569", "exception": false, "start_time": "2024-12-02T20:46:39.491411", "status": "completed" }, "slideshow": { "slide_type": "" }, "tags": [] }, "source": [ "## Read in validation data and other CMIP models for comparison (precomputed)" ] }, { "cell_type": "code", "execution_count": 8, "id": "126e65b3-2b8c-400c-af02-2ad0b0f82e6e", "metadata": { "editable": true, "execution": { "iopub.execute_input": "2024-12-02T20:46:39.506072Z", "iopub.status.busy": "2024-12-02T20:46:39.505538Z", "iopub.status.idle": "2024-12-02T20:46:41.730251Z", "shell.execute_reply": "2024-12-02T20:46:41.729741Z" }, "papermill": { "duration": 2.229921, "end_time": "2024-12-02T20:46:41.731893", "exception": false, "start_time": "2024-12-02T20:46:39.501972", "status": "completed" }, "slideshow": { "slide_type": "" }, "tags": [ "hide-input" ] }, "outputs": [], "source": [ "# ---ERA5\n", "era5 = xr.open_dataset(f\"{validation_path}/PSL_ERA5.nc\").assign_coords(\n", " {\"lon\": lon, \"lat\": lat}\n", ")\n", "era5 = era5 / 100.0 # convert to hPa\n", "\n", "# ---CESM2\n", "lens2 = xr.open_dataset(f\"{validation_path}/PSL_LENS2.nc\").assign_coords(\n", " {\"lon\": lon, \"lat\": lat}\n", ")\n", "lens2 = lens2 / 100.0 # convert to hPa\n", "\n", "# ---CMIP6\n", "modelfiles = sorted(glob.glob(f\"{validation_path}/CMIP6/*.nc\"))\n", "datcmip6 = [\n", " xr.open_dataset(ifile).assign_coords({\"lon\": lon, \"lat\": lat}).mean(\"M\")\n", " for ifile in modelfiles\n", "]\n", "datcmip6 = xr.concat(datcmip6, dim=\"model\")\n", "datcmip6 = datcmip6 / 100.0" ] }, { "cell_type": "markdown", "id": "22cc331d-413c-4a87-bd89-812ad118cf8c", "metadata": { "editable": true, "papermill": { "duration": 0.006831, "end_time": "2024-12-02T20:46:41.745944", "exception": false, "start_time": "2024-12-02T20:46:41.739113", "status": "completed" }, "slideshow": { "slide_type": "" }, "tags": [] }, "source": [ "## Compute the NMSE" ] }, { "cell_type": "code", "execution_count": 9, "id": "6857717d-7514-45b5-ba33-a774f38b7c3e", "metadata": { "editable": true, "execution": { "iopub.execute_input": "2024-12-02T20:46:41.755023Z", "iopub.status.busy": "2024-12-02T20:46:41.754402Z", "iopub.status.idle": "2024-12-02T20:46:43.519032Z", "shell.execute_reply": "2024-12-02T20:46:43.518600Z" }, "papermill": { "duration": 1.771012, "end_time": "2024-12-02T20:46:43.520665", "exception": false, "start_time": "2024-12-02T20:46:41.749653", "status": "completed" }, "slideshow": { "slide_type": "" }, "tags": [ "hide-input" ] }, "outputs": [], "source": [ "nmse_dat = []\n", "nmse_cesm2 = []\n", "nmse_cmip6 = []\n", "if base_case_name is not None:\n", " nmse_base_dat = []\n", "else:\n", " nmse_base_dat = {key: None for key in [\"AM\", \"DJF\", \"MAM\", \"JJA\", \"SON\"]}\n", "for ivar in era5.data_vars:\n", " nmse_dat.append(nmse(era5[ivar], dat[ivar]))\n", " nmse_cesm2.append(nmse(era5[ivar], lens2[ivar]))\n", " nmse_cmip6.append(nmse(era5[ivar], datcmip6[ivar]))\n", " if base_case_name is not None:\n", " nmse_base_dat.append(nmse(era5[ivar], base_dat[ivar]))\n", "nmse_dat = xr.merge(nmse_dat)\n", "nmse_cesm2 = xr.merge(nmse_cesm2)\n", "nmse_cmip6 = xr.merge(nmse_cmip6)\n", "if base_case_name is not None:\n", " nmse_base_dat = xr.merge(nmse_base_dat)" ] }, { "cell_type": "markdown", "id": "1014f119-fc3f-428b-99ca-ab9de700148d", "metadata": { "editable": true, "papermill": { "duration": 0.005841, "end_time": "2024-12-02T20:46:43.533213", "exception": false, "start_time": "2024-12-02T20:46:43.527372", "status": "completed" }, "slideshow": { "slide_type": "" }, "tags": [] }, "source": [ "### Set up the plot panel" ] }, { "cell_type": "code", "execution_count": 10, "id": "53494900-0145-4ab2-85b8-5ed6ae347892", "metadata": { "editable": true, "execution": { "iopub.execute_input": "2024-12-02T20:46:43.541494Z", "iopub.status.busy": "2024-12-02T20:46:43.541227Z", "iopub.status.idle": "2024-12-02T20:46:43.546597Z", "shell.execute_reply": "2024-12-02T20:46:43.546201Z" }, "papermill": { "duration": 0.010395, "end_time": "2024-12-02T20:46:43.547367", "exception": false, "start_time": "2024-12-02T20:46:43.536972", "status": "completed" }, "slideshow": { "slide_type": "" }, "tags": [ "hide-input" ] }, "outputs": [], "source": [ "def plotnmse(fig, cmip6, cesm2, cesm3, cesm_baseline, x1, x2, y1, y2, titlestr):\n", " ax = fig.add_axes([x1, y1, x2 - x1, y2 - y1])\n", "\n", " cmip6 = cmip6.sortby(cmip6, ascending=False)\n", " binedges = np.arange(0, cmip6.size, 1)\n", " ax.bar(\n", " binedges,\n", " cmip6,\n", " width=1,\n", " bottom=0,\n", " edgecolor=\"black\",\n", " color=\"gray\",\n", " label=\"CMIP6\",\n", " )\n", "\n", " ax.plot(cmip6.size + 1, cesm3, \"o\", color=\"blue\", label=\"THIS RUN\")\n", " if cesm_baseline is not None:\n", " ax.plot(cmip6.size + 1, cesm_baseline, \"x\", color=\"red\", label=\"BASELINE\")\n", "\n", " ax.fill_between(\n", " np.arange(0, cmip6.size + 3, 1) - 0.5,\n", " np.arange(0, cmip6.size + 3, 1) * 0 + np.array(cesm2.min()),\n", " np.arange(0, cmip6.size + 3, 1) * 0 + np.array(cesm2.max()),\n", " color=\"salmon\",\n", " alpha=0.5,\n", " label=\"LENS2\",\n", " )\n", "\n", " ax.set_xlim(-0.5, cmip6.size + 2 - 0.5)\n", " ax.set_xticks([])\n", " ax.set_ylabel(\"NMSE\", fontsize=14)\n", " ax.set_title(titlestr, fontsize=16)\n", "\n", " ax.legend()\n", "\n", " return ax" ] }, { "cell_type": "code", "execution_count": 11, "id": "56b4cd99-a27e-4f28-86c2-8013e7c7bc78", "metadata": { "editable": true, "execution": { "iopub.execute_input": "2024-12-02T20:46:43.556256Z", "iopub.status.busy": "2024-12-02T20:46:43.556021Z", "iopub.status.idle": "2024-12-02T20:46:44.542084Z", "shell.execute_reply": "2024-12-02T20:46:44.541431Z" }, "papermill": { "duration": 0.993423, "end_time": "2024-12-02T20:46:44.544833", "exception": false, "start_time": "2024-12-02T20:46:43.551410", "status": "completed" }, "slideshow": { "slide_type": "" }, "tags": [ "hide-input" ] }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAABfUAAAQGCAYAAACer1CDAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd1hT1xsH8G/C3htciIrgHnVvEAeOuvfE1dqhVlt/nbZol6taW+2yVnDUUUdxobjAvVBx1oWAskTZO5Cc3x/HGxKyITjfz/PkQe889+Tcm+S9575HxBhjIIQQQgghhBBCCCGEEELIC0/8vAtACCGEEEIIIYQQQgghhBD9UFCfEEIIIYQQQgghhBBCCHlJUFCfEEIIIYQQQgghhBBCCHlJUFCfEEIIIYQQQgghhBBCCHlJUFCfEEIIIYQQQgghhBBCCHlJUFCfEEIIIYQQQgghhBBCCHlJUFCfEEIIIYQQQgghhBBCCHlJUFCfEEIIIYQQQgghhBBCCHlJUFCfEEIIIYQQQgghhBBCCHlJUFCfEEIIIVVizLwkjJmX9LyL8VwtXp+OgPceIDW99HkXhRBCCCGEEELIK8L0eReAEELI6yXgvQcGLX/019pITS/F2C+T0baxJRbPcFe73M24YsxY+giBHWzwyUQX+fTF69MRcTYfq/7ngcZ1LeTTpVKGPSfzcPh8PhJSSlBcwmBvI4a7syma1LNA7/Y28PE011m+0L1ZWB+eozTNwkyE6q6m6NzcCqN728PGSvkeunA8LXws8OMcD7Xb1bSMcDwA8OvHHmhYx0Jl3Tk/PsKVu8XYvrAmnB1MdB7DqyavQIaQvVm4nSBBSnop8gpksLcxgaeHKQb72aFrSyuIRCKV9fILZVi3LxvHYwqQmSOFk70JurW0RlB/B5X38EURc6cIH65Iw8R+9pj0pqNRtikpYdhyKAeHz+fjUUYp7KzF6NDUClMGOKq0p8S0Ehy7VIDzN4uQ/LgU2XlSONmZoKWvBcb1cUDtamZ671exbQvEYsDBVoxGdSwwsqcdmte3VJp/4EwelmzIwLRBDhgb6CCfLpw/+vJwNsHmb2sCAHZG5uLuQwnuPpAgPrUEMhmwfLY7Wvpaalz/zgMJNkVk484DCTJyZHC0E6N+LXOM6GGHFj7K6wnvmSblr1WCW/HFCN2XjZv3i1EqBbyqm2F4gB16tLXR+zirWmp6KTZH5OBWQjHSMqUoKJLByd4EdaubYUQPe7RqqL4OM7KlWLsnC2evFyK3QAYPZ1P0bGeDMb3tYWaqeq7qQ7gOHv21tsq87DwpTsQU4sy1QsQnS/AkWworCzEaepljWIAd2ja2Ulnn+OUCHI3OR2xiCTJzpZAxwMPZFK0bWmJULzu4OSr/rDLmuZH0uASHzuXj7sMS3HkgQXq2VKnNanLhZiE2ReTg7kMJGAN8a5tjbKC92uMr72ZcMWb98AgyBpXzSx9HLuRj+9FcJKSUwNQEaFzPApPfdEADL9W2DfD6+mt3NmLuFKGwmKGWmyn6d7HFoG62EItV24Ah1ymgYue1NoZ8XhRJZNh9PA93Hkhw96EEiWmlYAzY9E0NVHOp2M9xQ86ZzFwp9p/Kw52HEtx5IEFquhQA1J4b2gjX1fLfs6qKIe33yt0inL5aiLtP6zi/iOksp0zGsOt4HvadzEPi41JYWYjQ0tcSUwc6oJa76vl56Fw+rsUW484DCeKSJSgpBT6e4Iw+HW0rdHyvexsmhBBSeXQFJoQQ8kxN7GevMm19eA5srEQY1t3umZRBKmP49JfHuHirCC4OJvBrZQ0HWxOkZ0vx4FEJ/o3MhaW5SK+gvqDbG1aoU53/CMzMkeHczUL8HZGDM9cL8evH1WBuVrHAlDarw7KwfLb6mwKvs+w8KfafyUfjOubo0twadjZiZOVKceZaIeb/+QT9O9vgo3HKP/QLi2WY8+Mj3EssQeuGlghoY4P7iRJsP5qLmDtF+OkjD1hZvJiBfWOSyRi+/OMxLtwsQqM65ujS0h7Jj0tw4Ew+om8V4df/VVMKNoTsyUbkxQLUrWGGTs2tYGMpwv3kEhw6X4DjlwuxeKabSiBel36dbODqyPchKWFISC3FueuFOHu9EN9Md0PHZroDkrZWYpVrTV4hw87IXHg4myCwg3Ig3Na67L1dtS0TAODiYAJHWzEycmRa93UypgDz/3wCM1MRurS0gpuTKR5nluJkTCFOXy3UGPRp4WOBFj6qAU43R9VgTsydInyyKg2mJiJ0b2MNG0sxTsYU4LuQdKSml2JcH8MCrlUl6XEpIi/mo3E9CzSuawFrSzGeZJXi9NVCnLuRhqkDHVTKmpEtxXtLU/E4U4rOza1Qy8MM12OLEbqX38D4/j03tUHdyjh2qQArtmTC1dEEb/hawNXRFI+zSnHiciHO3yzC9CGOGNVLuf2cvFKA2MQSNPAyh8vTc+BeogT/RuXi4Nk8/PSRB+rWKPvMMOa5ce1eMdaH50AsBryqmSEzR6pzncPn8/F9aDocbMXo3d4GIhEQdakAn6x6jM8nuaBnO803g4olMixenw5zcxGKipleZVT094Fs/LU7G+7OJhjQ1RaFxQyR0fmYtewRFs9QDULGp5Rg5g+pKJYw+LeyhqujCc7fKMLKfzJxP0micr029DoFGH5ea2Po50VWrgy/78wCwG8g2lmLkZNf8f0bes4kpJRgze5siERATTdTWJqLUCQx/H19lgxtvwfO5CPibD4szUVwdzJBfpHup+N+3JyBfafy4VXdDEP8bJGZK0PkxXxE/1eIlXOryb/TCdbuycKjDCkcbMVwtjfBowzd56Emr3sbJoQQYhwU1CeEEPJMqetNvD48B7ZWYqP1NNblyIUCXLxVhLaNLfHdu24wNVEOGGVkS/Ek27Afa93esEZAm7IfmZIShveXpiI2sQRHovPRt4I9uTSp4WaKmDvFOH+jEO2a6A5yvk6quZpizw+1YFLufS0okuH9pY+w71Q+hna3UwrAbT2Ug3uJJRjdyw5vD3GSTxeexNh6KOeZtc/nKeJcPi7cLEL3NtaYN9lF/kTD/jN5WLohA6vDsvBpUFmArW1jS4wNtId3LeUbYEej8/Ht2nT8uDkTIV9WN6gM/TrbqvRUj7pUgK/XPMHWQzn6BfWtVa8nqeml2BmZi2ouplrfy+/fdYNvbXM4O5jgx00Z2HMyT+u+/tqdBQZg5VwP1Fe4EXjngQTvLk7FhvBsjUF9fdqUVMrww98ZAIAVH3rIbzYG9XfAjKWPELo3G36trNX2LH3Wmte3QNjSWipB+CdZpZi+KBXr9mVjUDc7pZsoq8OykJYhxQejnTCoG7+xyxjDkg0ZiDibj4hzxr9+1vIww/fvuqFdE0ulsj7oW4L3l6Tir91Z6NHWGq4Kve/njnNRe3M2/FQefvg7A+v2ZWP+W27y6cY8N5r7WGLV/zzgXdMMFuZiBM7S/sRbboEMP2/NgIOtGH98Wg3uzvw4xgY6YPrCFPy8NQPtm1rBzlr9jcq/dmcjI1uKMb3tEbInW68yChLTShC6Nxu13E3x6yfVYPu0x+8Qf1u8v+QRr6uvqitdn1dszkB+IcP377mhQ1N+fk8ZyPDpqjTsO5WPgDY2eKNB2Y0AQ69TgOHntTaGfl442IixZCbfv72NCT5ZlYYLN4sqvH9Dz5na1czw4xx3+Hiaw9pSjKAFyXj46MVNCVeR9jvYzxYje9qhdjUz3E6QYMbSR1r3cfl2Efadykez+hZYOtNdfm73bm+D/61Mw4rNGVjxoXKnibnjXVDTzRTVXEyxKSIba3YZdm4oet3bMCGEEON49bucEUIIIeXcvF8MABjQxVYloA8Azg4m8K2tfy99dczNRPK0GHceSCq1LXUm9nOAiRj4c1cWGHuxe9zlFsjww9/pGPZJIvp88BDvLk7FqasFBm/nyt0ifP5rGgb/LxGBsx5gQnAy/tqdhSKJcm8xE7FIJaAPANaWYrRtxANDyY/LAhqMMew7lQ8rCxEm9FPuRTw20AF21mKEn86vVD1LZQybDmRjfHCyvOxbDuVAJlO/TX2ONXRvljyNy/rwHAS890D+EnL4P3xUgj92ZuLthSnybU2cn4zVYVkoLFLtZbfvaZDgrUGOSimK+na0hVc1U0RezEeBwnp9OtqqBC0BIKCNDWq5myIhpQTZeRXvzSho15i/b8bYli4dmlkZlLYq+UkpXBxMlAL6AE8V4Wxvgsy8yvVmvHSbp2/p0VY5JZi1pRgT+tpDKuO9VPWhOMbDrmO5mLSAt8fR85Kwbl+2xvZ46koBPvrpEQZ+9BCBsx5gyjcp2HooB9Jyy5uZitT2qnd1NEWTuhYolQKPMsrOvYIi3jO2uqspBnYtC0KKRCJMG+QIsaisTRoi4L0HuHK3WP5v4bV4fToAoFUDS3RoZqVS1toeZuje2galUuDGfeXrtqanrfxaWQNQvqYAxj03ariaonFdC1iY6/fT7dilAuQVMgzxt5MHRAHew3dYgD3yChmOXVJ/Db4eW4ydkbmYPtRJ7VMjuhw4kw+pDBjfx14e0AeAujXM0au9DZIfl+LS7bJg4MNHJbh6rxgtfS3kAX0AMDURYepARwDAvlPKbcDQ6xRg+HmtSUU+L6wsxWjTyAr2NpXff0XOGWd7E7TwsYS1ZcV/+h84kydPaRZxNl/pvIq5U/Z+FklkCN2bhaCn15ZBcxPx2S9puB5brPe+KtJ+G3hZoG4Nc5jo+VSP0KamDHBQOrdbNbRE20aWuHqvGA8flSit07qhpdFSzbzObZgQQojxUFCfEELIa8fOhn/8JT2u4p5qT38P6fsj0xC13E3Rv7MtYhNLcPi84QHyZ6VUCsz96RFuxBajd3sb9GpnjYePSvDVH09w+Lx+gUgA2H08Fx+uSMPNOAk6NrPCEH87uDqa4O8DOfjfz2koKdUdcJeUMFy+UwSRiOcjFySmlSI9W4qm3hYqKXbMzURoXt8CT7KklWovv2zLxLajuWjbyBKD/ewglTGs/jcLK7ZkVvhYW/paytPItPCxwMR+9vKXEEw7EVOA/WfyUcPVFL3b22BAVzvYWYux5WAO/rcyDaXSsnqTlDDcipfA08NUbeCidSMrlJTyXNv6EG6YGaP9R//Hg0aGpMR6VupUN0NGthSxicpB4HsPJcjIkeINDfmOkx7zJwc2RWTjyIV8jQFeITjdppHqdto8zS195a5hPSZ/35mJ0H3ZaFTXAgO68MDgun3Zantlr9mVhS//eILER6Xo9oY1BnWzg7mZCH/8m4Vv/nqi1/6y86T4L14CS3M+3ojgxv1ilJQCbRpaqoxz4eJggro1zXArXgJJiWE31Cb2s4eHs4n838Krc3PdT3mYPI1Zmej5K+ns9UIAQJ0a+j8pYcxzQx0hyKquzQg3NtW1maKnaXda+FrgzS4VezqibN+qdS3s++rdsmuItvbdsI45bK1E8mUA41+nDPUsPi+0qapzRpf6tcwx9GmKRO9aZkrnlfA+SEoY5v6UhvXhObA0F2FYgD06t7DClbvFmPPjIxy/rN93lYq2X0NcuVsMSwsRmnqrpkBr09hSvkxVeN3bMCGEEOOh9DuEEEJeGkmPSxG6N0vtvCdZ+vfg7drSGpsP5mDtniykZpSiQ1Mr+HjyXrXGUiyRyYPWzdT8aDSGif0ccPB8PkL2ZsG/tXWFB5TcfjQHeQX69ybu09FW795q6dlS1K5misUz3OWBrBE97DF9YSp+3pqBTs2tdPYejE8pwcp/MuFdyww/zHJX6ikmPAL/b1QuRvYsl0O9QIbtR3PAGM8He+5GIdIypZjYz14pVUlSGv/hWtNN/THVdOfTE9NKK5zi5PYDCf78vJo8ncek/g6Y+cMj7D2Zh57trOW5tQ05ViEvdcTZfI2pXHq1t8GIHqoDJ64Pz0bo3mxEXSyQ5yZOelwCGdNcD7We1kNSWinaNNJ+vP/FFyM+hecft9WQ4kOT8FN5OH+DB0olJQwPH5Xi3I1C+HiaYeog1WN83t4b5oTPf3uMmcseoUsLK7g9zc9+MqYQzbwt8OFYZ7XrHblQgCMXyoJcFmYiBL3pgNHlcrknpvHeouranp21GA62Ynkb1tfdBxKs+aK6PDf8hH5STAhOxr/HcjGxv4O8vUT/xweqbNfEEvPfcoXl057ijDGs2JKJPSfycPxyAbq9Ya20/dT0Uhw4kwcZA9KzpDh9rRB5BTLMGeOsdL4LQSPhHCuvppspYhNLkPykVCW/tTaT3nTElbvFeJQhNShtVkGRDMcvF8DcTIRm9dVft0/GFOBeogTFEob4lBJc+K8I1V1MMFnP/VTm3NCXtmua4vWsvD/DspCeI8WSmeoHpNdr308HHFXXo1i+b4Vgobb2LRKJUNPNDLcfSFAkkcHSXGzU61RFPIvPC637r6JzRpf6nuYYbi3Gzshc1K9lrva82nooBzfjJOjZ1hqfTSpLKTOsux3eW5KKZX9noE0j3U8MVLT96quwWIb0bCnq1jBTe2OtlpvZ03KUqMwzhte9DRNCCDEeCuoTQgh5aSQ/LsX68JxKb8e3tjk+nuCCX7dnYtexPOw6xh+DdnM0QauGlhjib2dw+p3jlwvwIJX/AMzMleHstUI8zuKD2HVtWTU5750dTDA8wA4b9+dg1/FcDA9QHYRYHzuO5ho04FtLX8MeQZ/8pqNSmqPa1czQp5MNdh3Lw6krhejVXvOAjQCw90QupDJg5ggnlUe/R/eyx/YjuTgaXaAa1C+UKbUXUxNg+hBHjOypPCBz/tNH3G2s1AcabJ4GIPILK55GZai/nVJ+bitLMSb0c8CCNU9w8Gy+PKhf0WPVxM1R/fs02M8WoXuzcfFWkTyon1/Ie3baaqgHaz3rIa9QhsXr0iEW8fo2VPhp1Sc4HG3FCOxgC3enF+/R/xa+lljxoQcWrHmi9NSMu5MJ+nS0kQfOBQ62Ykwf4oiOzazg7myCvAIZYu4UY3VYFlb/mwUbSxEGdC1ro8L7YmOp/qadMBitIcb3c1Aql4OtCTq3sEbE2Xw8fFSCejX59S/s6bXxwzHO8oA+wIOtbw12xN6TeTgana82qK947llZiPDxBBeVc11oS1V57hnix80ZyMyRYfKbDnCwVd/WTl0tRMTZsjbaoLY55k11UXoCQZPKnhv6Eq5p6s5lKwsxxGLVOr1ypwhhx/Lw/nAnvY5F474LZXC0U1936t5PXW3A2kr0dDkGS3PjXacq6ll8Xmjd/wt2zig6cDYfpibAW4OVU8p41zJHnw622HNSv8/8irRfQ+jd5oqqJrXh696GCSGEGA8F9QkhhLw02ja2xOIZ6nsQ3owr1jkwmqLe7W3g38oa0f8V4npsMe48kODGfQkizubj0Ll8zBrlhIHd7HRv6Knjlwtx/HKh0rSuLa0w/y1XlUfkjWl0L3vsPZGHvw/koG9HW40/0rTZ/G3NKigZZ2oCNK6reoOkubcFdh3Lw71Eic4f+DfjeVqT8zeLcPGW6iP3JiYiPHik2qOumospjv5aG1IZw+NMKY5G52PtnizcuF+M4GmuavPuVxV1vX6FafcSy8pe0WPVhDGGA2fyceBsPuKTS5BfKINiGvR0AweE1kVSwhC8+jEePCrF1IEO8qcJDLHqfx7ygXIlJQxJj0uwcX8OVm3LxMNHJfhgtPqe78/LuRuF+PavJ+jQzArfveOGai4meJQhxd8HsrFkQwbuJ5XgveFlAxHWrWGuNEizpbkYPduZwruWGd5ZlIrQfdno39lWbW56Y/FVk8bI9Wn+9DyFQM5/cTxFRfhp9XntLcxEeJCqekOhpa8ljv5aG6VShtT0Uuw9mYdF69NxK6EYM0e+WO+fYM2uLBy5UIB2jS0xto/mm2afTHTBJxNdkFcow72HEvy1OwvvLErFgrfd0KqB5vZujHOjqhQWy7BkYwYa1zXHYD/jDkr8MjpwJk8+LomgSwtrlXEzqoq6p+cMeULuecgvlCHlSSm8qpnCzUm1nC18LbDnpH6f+a8C4YkeRS19LZ/Zef+82zAhhJBn48X9ZkAIIYRUMXMzETo1t0an5ryXqaSEYevhHITsycYv2zPRpYW13oOSzZvigoA2NpBKGR48KsEfO7NwIqYQIXuzMWWAo9KyQoxfw5iUSvN03Q+wthRjXB97/LI9C1sO5cgHFnxR2NuI1QYnnZ6mOspXM1hrebn5fJm/D1TsKQ0TsQjVXEwxNtABYrEIq//Nwt5TeRj09KaNrl5punq16UNdz1UnOzHEIuX9VvZYy1v5TybCjuXB3ckEnZpbwdneBGZPv/2tD89RGovA5mnvxDwN9VCgox4kJQxf/fEYl28XY2ygPcb1cVC7nCHMzUSoW8Mcn09ywa0ECfacyMOoXvYvTHArJ1+K79Y+QU13M3wW5CJv67WrifFpkIs8b/4gP1vUdNOexqBuDXM0rGOBa/eKkfS4FJ4efHkbHb1GC4pk8jasL3XvoZBDXqbw9ufkyyCVQesTUuUHqlZkaiJCLXczvDPUCcUShn+j8tCuiRXaN7FSKkdVnnv6WLcvG5sicvBGAwsseNtVr1z3tlZitPS1xKL33RG0IBmL1qVj0zc11A6+XhXnhjZCe8grlKk8cVBYLINMplynf+3ORnq2FAvfd6v0zSQbK7FB76euNlDwtFez9dMnVSp7ndJHxNl8lXzq1VxMUd/T/Jl8Xqh7ek54Qu5FOWfKE+rdScNTGs4GfOYb2n4NpW+b0/R0lD7KP9EjaOlr+Vq0YUIIIc/Gi/GLiBBCCHkBmJuJMKGvAy7+V4Sr94px/X6xSloJXUxMeBDy6+lumPptCv4+kIMuLayV0vkIP5Ry8jX/uBUGzdTnR9XAbnbYGZmLHUdzMcRP/6cLBFWZUz8nXwaZjKkEijJznh6fHsFIIZizd3ktnbl4dWnbyBKr/wWu3CmWB/WF/LGaBoUT8s/W0pDDWB9ZuVLU9lAO6mbm8l7ziu+xMY81M1eKXcfzUK+mGVb9z0MpfUpGtlQlUFvTzQxikeZ6EHIYq8vlLClh+PKPx7hwswije9lhmpFz35uYiODjaYaUJ6W491DywgT1r8cWI6+QoYWPhUobF4lEaOlriZtxEtx7WKIzqA8ADk8H8S6WlAXweU7jQiSmlaikBcstkCE7T4Ym9aqm96XQNsOW1qr0tto0ssSu43m4cqdIHtQXcjprGhMg6XEpxCKgRiXSweiybl821u3LRksfC3z3rhsszA2/QdKorgVOXSlEUlqp0iDcQNWfG+rUdDfF7QcSJD0uVQmKqruexSbygVUnLUhRu701u/h4HkO722HGCCe1y8j37WaKm3ESZGRLVW6Ky/etkMtbyNmdqCZ/OWP8SR0XBxP5gJ6VuU7p68c5HhrnPYvPC21Pz70I54w6wudVZq76p78M+cw3tP0ayspCDBcHE6Skl0IqYyo38RIflzwtR8XzyQtP9KjzOrRhQgghzwbdfiWEEELKsbSofNoLczMR3hnqCMb44IOKbK3EcHc2QeKjEnnwvryb93kPK++aun9UmpmKMHmAI4okDOvCsw0u646juVgfnqP3q/wj3dqUSoGbcRKV6Vdj+fHVr6U7GNmoDk/FcjOuWMeSuj15mm7GRCFOUMvdFC4OJrgeW4zCYuWbG5IShqv3iuHiYKJxUDl9XLunWnZhWv1aZe+xoccqFnpXq+nEnfKkFIwBrRtaKgX0gbL6V2RuJkLDOuZ4+KhU7Xt88b9CmJmWlVGgGLQc2dMObw/RHvSrKOEmmLYnXJ610qenb5aGQFbW0/PbTI+mI5Uy3H0ogUgEuDuXNdAWPry+o/9TTccUfbPw6TJVk9KhYR1z5OTL1AZcDSU/9xQCaI3rWsDMFIi+VQTGlN/Y9Gwp4pJK0LCOOczNDL8mC+eGVEuDCd2bhXX7stHCxwLfv++mcp7oK13NdQV4dudGedrazIWn0xTbTPumVujXyUbl1fxpirAGXubo18kGTdSkUlPdt+XTfReqzBP23dzHQmF5zWW9FS+R3zQTVPQ6ZSzP4vNCm6o8Z3QRTl1155SNlRjVXU2R9LgUj9WM8SH0GvfW4zPf0PZbEc19LFBUzHBdzWdh9E1hH1XThl73NkwIIcR4KKhPCCHktXM0Oh+Xbqv+IAZ4z9srd4phIgYa6RHA0KZzC2v4eJrh4q0iXL2n/OO0d3sbSGXAH/9mqZTjcWYpth7OhVgM9GirX+7ZHm2tUb+WGcJPqeZR1WXztzVx9Nfaer8MzQkbsjcLpdKyY3yQWoIDp/NhYyVC5xZlgwiXShkepJYg6bFyAHGQny1MxDyVTFqG6rHlFchw92HZjYN7DyVqH2vPyZfir11ZAIB2jcv2KxKJ0L+zDQqLGTaUuymyKSIbuQUy9O9sU6mxEXZG5SoNZlpYJJPvSzG/sKHHamfNv8o9zlQNKns48x/kN+4XQ6YQhHmcWapyo0nQvwvPp/3nLuV2uf9MHhJSS9G9tY3SkwWSEoZ5v/Og5YgednhnqO6gZXq2FA9SSzSmHlDnzgMJrsfy87JJvaoJdFREo7rmEIv5mBqx5fInxyVLcDS6AGamymW+cb9Y5ZyXShl+/zcLjzKkaNvIUmmQ5FYNLFHd1RRHLuTjnsJ7X1Akw4b9OTARA4EdlK8T2Xm8jjXdNNTXUH/+NMvSDRlqt5WRLUVCStn5+l98MSQlqtfV1PRSbI7gT4a0a1J2/bCxEqN7axukPCnF7hNlefsZY1izKwsyVtYmDaXt3AB4QH99eA6a1bfA9+9pD+hLSpjGG237z+ThVrwENd1M5b3OhXWexbmhjn9rG9hYifBvVK7SdSQ9W4odR3NgayWCX6uyp9BG97LH3PEuKq8+HXm76trSCnPHu6B7G92fR3062sBEDGw8kKN0HHHJEhw6l48abqZKYw94epiheX0LxNwpxtnrZTcCSqUMa/fwa2T/zsptwNDrlDE9i88LbarynNHFzloMkQh4ouGcCuxgg1IpsCZM+X2JS5bgwFn+md9F4TNfE0Pbb0W8+bRNrd2TrZSG7tKtIlz4rwjN61vIU6BVhde5DRNCCDEeuv1KCCHktXMzToKdkblwdTRB8/oWcHc2RWkpQ0JqCS7+VwQZA94a7Ag3x8p/TAb1d8C8358gdE82ls8pC2SMC7THpVtFOHAmHzfvF6N1I0tYW4rxKKMUp68WorCY4Z2hjnr/qBSJRHhrsCM+WfVYJRfv8+TiYIK8Ahne+j4VHZpYIr+I4Wh0PiSlDB+Nc1FKMfMkS4pJX6fAw9lEKf1A3Rrm+GC0M1ZsyUDQghS0b2qJGq6myC9iSHlSiit3i9Cngy3mjOUDcB44m4/w03lo6WMBDxdTWJmL8ChDirPXeb12e8MKPdoqBwRG9bLH6auF2HIoF3cf8jQnsUkSnL9RhPq1zDCql+aBM/XRoLY53vo+Ff6trWFuKsKJmAKkpkvRv7ONUo9DQ4+1djUzuDiYIPJiASzNRXBzNAFEPCWTi4MJur1hheOXC/HO4lS0amCJzBwpzl4vwhsNLJDyRPWmQe/2Noi6WIDI6AKkPilFC19LpDwpxYnLBXB3MsHbgx2Vlv9xcwai/yuCs70YVhYihO7NUtlm+XRNa3ZlIeJsPj6e4Iw+HVWDT+Gn8nD+Bg/ulZQCyU9KcfpqAUqlwOQBDnBRM87FsUsFePhI/c2sgDbWaNtYdyBJsCkiW76tG0+fmNl8MEeeH7lfJxs0q8/fMzdHU4wNtMfG/Tl4b0kqOje35gPlZkpxMqYAJaXA9CGOSikkvl37BCIRD/S7Opggr1CGq/eK8fBRKdydTTB7jPJAsiYmIswd54xPVqXhg+WPENDGGtaWYpyMKUBKuhRTBjioXCf+jeJP30zsZ49JbzrqfezltWtihQl97bFhfw4mBCejbRMreDibIidfiuS0UlyNLcaUAQ7wqs5zxG86kINrscXy66qJmL9/528UoqQUGB5gJ687wVuDHRFzpwg/b83EpVtFqOVuhmuxxbgeW4y2jS0RWMFBNd9oYInjlwuxYM0TtG9iCXMzEerVMEeHZlY4cCYP68P5DZGGXubYekh1zADFQS0lJQwzlj5C3Rpm8K5lBldHU+QXynArvhh3H5bAykKEjycov2/GPDey86T4fWfZ+lIpkJ0vw+L16fJpiqk+7KzFmDXSGQvXpWP6olR0b20NsQiIvFSAzBwZPgtykd/0MDZPDzME9XfA2j3ZmPZdCvzesEZRMb/ul0oZPhrrrDJI+ewxzpj5QyqCVz+GXytruDqY4PzNItxPKkG/zjZ4o9wAxIZepwDDzmtdKvJ58duOTPnTRveT+I2w33dmytMKjeltj9rV9Pu8r8g5o9hWMp4+WaI47Z2hjiqpbsqzshSjgZc5rt4rxuL16ajlbgqRiHc+8HA2xehe9jh7vRCHzhfgQWop3mhoiexcKSIvFaBUyvBpkKteaeUq0n6v3StC+Gn+XgpPTl2LLZYfo6cHH1dH8EYDS/TrbIPwU/l4eyH/fpKZK0PkxXxYW4pUrsMAsO9Unrxn//0kfoM1/HRZ7vrOza3QpaV+Nxte9zZMCCHEOCioTwgh5LUzsocdariaIvq/QtxOkOD0tUJIpQxO9ibo+oY1BnS1VepJWBmdmlujQW1zxNwtxqXbRfLtWpiLsXy2B3Ydz0XkxQIcPJuPIgmDg60YbzSwxFB/O5VAhi5tG1vhjQYWuHy78mlqjMXUBFg6yx2rw7Jw8Fw+8gplqFfDHOP72aNzc/172r3ZxRb1a5lh29FcXL1bjNNXC2FjJYa7kwmGB9gr9VT2e8MK+YUy/BdXjGv3ilEkYbC3EaOZtwV6tbdBQBtrlR5oVhZiLJ/jgfX7snH8cgGu3C2Cs70JhgfYYWJ/B/mP1op6f4QTjl0swL7T+XiSVQo3J1O8PdgRI3qqjoFgyLGaiEX4+m1XrA7LwqHz+Sh4OphqQBsb2FqJ8ckEF3g4Z+NETAH+jcqFh7Mphveww5je9ug986HKvk3EInwz3Q1bDuXg0Ll83ivSWozADjaYMtBRJUe28FRIRo5M42CqwgCP+hICMwBP92BrzQckHdjNVmObufuwBHcfqk8R413LzKCg/oWbRSoDDF64WfakTQsfCzSrXzZvygBH1Ktpjr0ncnHxVhHyi2SwtRKjhY8lhvjboWMz5X0P7GaHCzcKEXOnGDn5UpiIRajhZopxfewxsqe92mDrGw0s8dNHHli3NxtRlwpQWgrUqW6GyQMc0bNdxYLe+po8wBHNfSyxMzIXl28VIa9QBnsbMaq5mCKovwN6KjxN1K+zLczNRbidIEH0rSKUljI42pmgfRMr9O9iK8+lr8jFwQS/fFwNa3dn4eyNQpy9Xgh3J1NMetMBo3vZV3jg1jc72+JReimOXizA3wdyIJXxnsQdmlnJ261UBmw7kqtxG0JQ39JChElvOiDmdhEu3y5Gdl4BTE1E8HAxxbAAOwwPsJM/GSMw5rlRWMxUBt0sKjetfP7uXu1t4GArxqaIsqCfj6c5Pp1ob9D5UBHj+zqgmospdhzNxe7jeTB9+rTKpDcd0FBNSpE61c3w68fV8NfuLJy/UYTCYhlquplhxggnDPZTvfFn6HUKMPy81qYinxfHLxeo3HA/frnsyYTADjZ6B0Qrcs6oG7RVcVpQfwc46NHB/7MgF/y6PROnrhQgv4iBMZ4SyMPZFOZmIiz7wB1bDuYg8mIBdhzNgYWZCM3rW2BcoL3eAWfA8Pab9LhU5RiTH5ci+Wne+BY+FkpBfQD4cIwz6tUwx96TedgZlQsrCzE6NrPC1IHqO1Rcjy1W2cf1pzdTAMDD2UTvoP7r3oYJIYQYh4ipyz1ACCGEEEIIIYQQQgghhJAXDuXUJ4QQQgghhBBCCCGEEEJeEhTUJ4QQQgghhBBCCCGEEEJeEpRTnxBCCCFET/ceSnDySoHO5aq5mKodBJYQUjExd4oQc6dI53L1a5nrndeaEEIIIYSQlxUF9QkhhBBC9HQvUaJx0EtFLXwsKKhPiBHF3CnS69wL7GBDQX1CCCGEEPLKo4FyCSGEEEIIIYQQQgghhJCXBOXUJ4QQQgghhBBCCCGEEEJeEhTUJ4QQQgghhBBCCCGEEEJeEhTUJ4QQQgghhBBCCCGEEEJeEhTUJ4QQQsiLKz4eEImASZOed0leLnXq8FdlvCp1L5EA8+YB3t6AuTk/pqio510qQgghhBBCCKkwCuoTQsjrSAjWlX/Z2ADNmwMLFgB5edq3sXZt2XrXr2tf9tQpYMQIoGZNHlRzcgIaNgTGjgXWrVNeNipKfdkUX4MHK68jEvHt6SJs+513lKdPmlS27QsX1K/r78/np6aWTdNUj4qvli11l0tx+8JLLAYcHYHOnYE//gBkMtV1QkP5svPna96upmXq1OHTq1UD8vPVr6tvvb6qYmKAL78EOnQA3N0BCwugXj3gvfeApCTV5RkD/vc//l7WqAFYWgIeHkCnTsBffwElJc/6CF58x48Dc+cC3bsDDg66byKUP0/UvTZsUF7nhx+A774DatcGPv4YCA7WfMNDOF/UnYtduwIhIarrCNeBPn1U5wnnmb6v+Hi+3p49wMyZ/Py3sdF9ngNAcjLwwQdA48Z8HQ8PoEsXXh9Sqery2sqxaJH6faSmAtOmAdWr8/bt6wt8/TW/cfKiqOh5WFzMj8XXl69TvTo/VsVrvqHmz9d8E6mkBNixg7f3Ro34e2ZnB7RvD/z6q/r37MoVYPJk/jnt4sLL6e0NjBwJREerLp+eDqxeDQwcyK9dFhaAqyvQty8QEVGxY9q0CWjXjpfXyQno10/9vhWX79wZsLXl67Rty8+z8hgD9u8H3n2XH5+DA2BtDbRoAXz/PVBUZHhZL1zg5XNy4vtu146XR5OcHODDDwEvL15XXl78/zk52o9P3/qoyHmtjUwGrFrF68vKCnBz423h7l31y2/cCEyfDrRpw49PJFL/XujL0HNm5cqy9mtqWvEbrMa4aa2vu3d5nbq58Tpu3pzXubrvZLGx/P0cOJB/3xWJ9CtnRAS/Xtnb82uAv7/m89PQz0x9vM5tmBBCXnKmz7sAhBBCniNvb2D8eP5vxoDHj/mP6vnz+Q+KEycAExP16wpBfcZ4oOTHH9UvFxoKTJnCf8D16wf4+ACFhcD9+0B4OP+BEhSkul7r1sCbb6rfZlUGmj/5BDh61LB1FOuxvGrVDNvWRx/x4IdUCiQkADt38psQly8Dv/9u2Lb08egRsGwZ8NVXxt/2y+6dd4Dz53kQavRo/gPy3Dngt9+Abdv4+aHYFqVSHrRo0wbo35//OM3MBA4c4IGObdt4mxdTnwq5tWv5jT1rax501xY8A3jwwt9fdXpJCbBwIa/bHj2U54WH83Pq4EHAzEy/cvXowQPiAFBaCjx8COzaxa9lt24Bixfrt53Zs4GsLOVpK1YA2dn85kJ5jo7877JlwLFjPMhTowZw7572/dy/z4PB6elAYCAwYACvy7AwYOJEfk1Td0PCy0t9QEg4dkWpqXwfDx/yG6u+vsDJk/w4zpwB9u17Mdp2Rc5DmQwYNIh/7rVvDwwdygN0ISHAoUP8vDf0Wq5LbCwwfDgP4gUE8EBgdjYPmr3/Pi/vrl38c1Zw4QIve8eOgJ8fD6rdv8/X2b4dWL9e+bNo2zYeJK9Zk++jZk0gMZHfTDhwAFi6lAcI9fX998AXX/Bz9Z13+M3/LVt4gE8ITCr66CNg+XJed+PG8fMvPJwHdq9f5zfcBMXF/DuChQXfTmAgD+RHRPB9hoXxc8LKSr+yRkXxbZib8+u3gwP/PB03jt88+/xz5eXz83mdxsQAvXoBY8bwmyg//ghERvK2bmNTufow9LzW5Z13gD//5DfyZs7kn+dbt/Jr3enTfLqiefP49wpXVx6AT0io+L4rcs7MmsX/Vq/Oz8vK3DB7Fm7e5DcDCwp4oLlmTf4deeZM4OpVfsNM0YkTvFOMiQm/UafP8f39Nz9nXV35d2GRCPjnH36TeONG3l4VGfqZqcvr3IYJIeRVwAghhLx+4uIYAxgLDFSdV1TE2Btv8PlHj6pf/9YtPn/ECMbq1GHMxYWx4mLV5fLzGbOzY8zenrFr11TnSySMHTyoPC0ykm97+nT9jwdgrEED3ctp2nZQEJ/u7c3/7t+vuq6fH5+XklI2TVs9Gkrd9hlj7O5dxmxsGBOJGIuNVZ4XEsLXCQ7WvF1Ny3h5MWZmxljt2vw9SktTXVffeq1KQh0HBT37fa9cydi9e6rTFy3iZerXT3VeYaHqtJISxrp35+vs3Wv8cqrj5cVflfEs6v7CBcauX2estJSxM2cqvr/t2/m6AwaozqtbV/+6EM6XhQtV592/z89FCwvGCgrKpht6HfDy4strc/w4Y3fuMCaTMbZ5s+7z/N13+TI//aQ8PTOzbH/x8crzAH7d0dfEiXydX38tmyaTlV0/167Vf1tVzdDzcO1aPn30aH5M5adPnFixcgQH8/UjI1XnJSbyuszPV56el8dYmzZ8vX/+UZ6n7rgY4+eQpSVj7u7K5T9yhB+rVKq8/K1bjDk48M+ApCT9juXOHcZMTRnz9WUsK0t539bW/POzpKRs+oULZZ+r6enKx9e2LZ93+nTZdImEse++421WkUTCz2uAsSVL9CtrSQnfr4UFY5culU3PyWGsSRN+HHfuKK/z1Vd8Hx9/rH76V19Vrj4YM/y81uboUb5+1678e5vg8GH+faFbN9V1Dh0quw4sXMjXDwmp2P4rcs7s3Vv2HWf6dM3nhi7G+HzTR7duvIz79pVNk0gY69FD/Xfk2Fj+OSZ8PlhYaC9nRgZjjo6Muboy9uBB2fTkZMaqVePzMjKU1zHWZyZj1IYJIeQV8AJ0pyGEEPJCsbDgj/UCvOe+On/9xf9OnMh7GKWn8x6F5V2/DuTm8u01bao638yM94h7UQQH8ycKPv2UP4HwIqhfn/ceZAy4dMm42xaLea+y3Fzgm2+Mu+2qcP06Txvh4MB7iQ0YwHvSGYIx3tOtc2e+DWtr3qN37VrVZWfM4E9hlDd3Ll/v2DHVeZaWqtNMTctSRlW0V1tkJO8l3qAB73Vua8vLXb6noDaKqUD+/BNo0oSXt3Zt4LPPtKe3uH+f9yoW0lj07Ml7sVa2nG3a8HJoeiJIX2vW8L9Tp5ZNE443Lo735hNSy6jr6a+PunX5cRUX83OmKnXtyp9qUuylrc39+/xvv37K04UUXoDm67k+cnN578l69ZTTl4lEZU9I/PmnftsSUhyFhgJHjvCnAmxseDqZoCD+eaLO1au8x3X16rz3tZcX79mpbnlDz0Oh7IsWKdf55Mm8x+3WrYa/5/7+/PoK8M9Aof0J6Thq1uS96K2tldezseEpXwDVa4y64wL4OdSoEZCWptxzNyCAP61Q/gmKBg2AUaP4Ey6nT+t3PCEh/KmVL77g12DFfU+cyHtpKz7lFhbG/374IeDsrHx8X3zB/6349JmZGe89Lzytojj9s8/4v9Vdc9U5epSXZ+xY4I03yqbb2fGUaqWlyk+uMMavIba2qk+tffYZv+799Zfy9wJD6wMw/LzWRmiz337Lv7cJevTgTygcPw7cuaO8Ts+e/LwxhoqcM/37V+6JFyHVWUKC8jVdXQqYdet46jzhc6hDB9V0j9rcucPrsHt35euqmRlP5waoXvPq1eP70fdpkm3b+JNcM2cCnp5l06tXL3vKa9s25XWM9ZkJUBsmhJBXAAX1CSGEKJNIynLPq8sHX1rKH/F3c+OPB0+cyKcLgX5Fwg/5uDj1+UdfND4+wFtv8WDl338/79KUEQIJplWQNW/iRH7D5Y8/ygKDL6L793lwsrSU57Tv3ZuncejcGfjvP/22wRi/CTV1KvDkCQ/4TJvG0y5Mnap/GgqRiP+g1vf9kMl4qgtA/c0tfSxezH/gtm3LbzaMH8+PYfp0nuLCEMuW8UBbx448B7uDAw/MDB6s/mZWfDxPr/D4MQ/Y9+rFg7Hdu/NH5auqnPpKTOSP6lerxoNGAn9/fqPOwYG/goP5q6L5hx88AG7fBmrV4mMsvEiaNOF/hXYmyMnhY5p4eKimMQB40GjNGp6C4c8/NecxPnOG38zo1Us1mFO9OtCsGU+3YUje8z17eLCsWjUe3Pb25p8tgwapLrt7N8/5vGcPf19nz+b7XLWKt+PMTN3703QeFhXxsjdooD5Y1Ls3P/azZ/U/NoC3Mz8//u+goLL2N3u27nWFNFH6XmNiY3nb9PRUDs4Zcx9C7vPevVXnBQbyv4pBd+HaULeu6vLCNH1T3RmzrMI0xbLevcvHpBDyhCuytAS6dePjqCjeDDK0PowtKoqXVbhp9yz3X1XnjC6Ojuqv6cHByjdr58zh519iIv9snzaNv3+TJpXdMNNF2/vbrh0vS2Xr90VoQ897/8+rDRNCyCuCcuoTQsjr7N69st5NjPHgW0QE//GzZAnPmVze3r38x/qsWfwHto8PD6ocOsRzLSv2NvL2Blq14j3MAwL4D6r27fl2dfUyio7WPPhWnz68N1RV+OorHlj68kueQ9XcXPc6ivVYXocO6gfQ1Nft2/xHjZkZ/yFpbGIxD+gNHMhzlWobRFCbrCyeK9wQhgyuduIEL5/iEwXr1/Ng2YwZPMisy5o1/PimTuU9RIUAkUTCe6EvW8bzKLdurX0727fzHogjRmheRji2J0942W7d4u2/fL53ff32m2pwrLSUB0V/+okH52vX1m9bhw/z80sIBH/3Hd9ORATP4TthgvLyx47xoP8nn5RN+/JL3rsuJIQ/2VIV5dRXSAgP2E6apBz08/fnL2EQPUPa2+HDZQHq0lIeHNq9mwcgXsRB+f73P16+Dz7gOZ+bNeMB/V27+LVjxw7VHuEAv4H51ltl/xeJeA7nP/5QXl4I9vv4qN+/jw/f1v376m8eqLN7Nw/qCAEdqZT3woyK4sFA4Rqfns7bpJsbv0Gh2H42b+Y35776iufRL0+f8zA2lrcfbccG8Dow5MmySZP4DbFjxzSPBaGJ8OSQumAbwPO+h4XxnvYJCbwuAf3HXcnN5dcxS0ve81Yfd+/yHs/qelor1pHAzY3/jYtTXV6YlpjI85Wra5uKdNWHurIqlkuRkxPPx61YVn3at7Cc4r8NqQ9jys8HUlL4zSl136Wqev9Vdc7o4ujIz2lt1/QTJ/h3kUaN+M1I4SbXggX8mvLjjzz/v7pxQxRpaxMiEX+KMjpav/ZbkX1U9XsobPt1bcOEEPKKoKA+IYS8zmJjy9IDKBo4ULnHqyKhR75i4G/iRP7jKSRE+dF1kYg/Ojx+PA9sCD1urK35jYDx4/l21H2hv3iRv9RxdKy6oH61aryX17ffAr/+ql+vSk31CPAgmyFB/R9+UB4od8cO/qNx6VI+KFlVGDCAB3a2bOHBQcV0BfrKytJcB5oYEmR1clIOHgO87Sxdynt7lr+hpM6qVTwou2qVcvDX3JwHtvfs4UFCbUH9hw/5DS0rK+0pixTrQiTiTwEsXKi9fNqo6+1qaspToRw6xNPeqBtwWp0JE8oC+sJ2vv+eb2fdOtWgft26vF0omjqVnyMXLlRdOfXBWFkaDcXUO5V15IjqjSJTUz6AaZs2xtuPsVSrxq/B48bxJ1jCw/l0S0vg44/Vn9Nz5/IbU0IqhcuXefqTjRv5jYzNm8uWzc7mfzX1Are3V15OH2PHKvfQNDHhbSMqircr4Rq/fj2/QfHLL6o3hMaM4dfMLVvUB/X1OQ+r4tgqY/VqfmMmIEA1nZIgJkb52Dw8eD3pG/R+5x1+c/7rr3naI31kZ2t+QkVdHfXty+t6xQr+XgtpdQoKlN+D7GztQdEDB/hNpkaN9D/H9XlPExMNW15xOeHfhtSHMT3vNvu896+NYsBfsXxCz/4xY/gyuoL6hhxjRYP62vZhY8OviVVZh69zGyaEkFcEBfUJIeR1FhionK4hLY0HsmbNAjp14o9XK/bWT0nhwYaGDZUDW6NG8eB3SAjvwauYnqFePZ6zNyaG9369cIH/XwiarV/Pt6mYTxPg6Tr07XVobB9/zIMI333H040IPy40KV+PlbFsmeq0FSv4zYGqtHgxf88/+YSnMjFUnTpVOw7BG2+opkUQifgP8+vXeS9hbUH9ggLg2jV+Y2TRItX5JSX8761bmreRkcGDbGlpvN02aKB5WcZ4T8bkZP50y2ef8aBreLju9qRObi4PXoaF8ZtI+fnK85OT9d+Wup65bdrwGxUxMarzWrRQzcldqxb/m5VVdeXUx9GjvNevnx/vOWksCxeW3USSSvnTSxs28OubEHQWUoK8CGJjgTff5DcEjx/n50tWFn8y5Ysv+PXp5EnlMi9dqryN7t35NblFCx4knzdP+eaPsbVqpTpNXbsSUnicPat+TIqiIt4T/8kT3gNbkbHPw6q2bx9/8sjLi99c0WTSJP4qKuI9WZct40H0xYt1pxH7/HPeLvr04f+uKl278huEGzbwpzcGDuTtLzyc3zRycOABO21P7UVH8+8XDg68g0D57wmvsqiosvQogpYty8aFqGphYaqfB8LTTy+yy5f5X3XlFKap+5x7FQlP9CiqU6fiKegM9bzbMCGEvAYoqE8IIaSMuzvvxVRYyHvELVqkPIDounU8wFW+J6+TE+/tvX07D7KpSzHSsqVyjv6oKN5TPzKS94ifM6cKDqiC7Ox4IGz2bJ6G6Ntvn92+U1J4r9vCQn5TRcj13rBhWY5RgRBo1TZegTCvfFC2vI4d+Q+tsDAe2Ktompiqoqk3mYcH/6urN1dmJg/wJSVpf6KgfBBacf2ePYEbN3iKmfHjdZdZLOZBynfe4b1hR47kN4oWL9a9riKJhAcjLl3iwdoJE/j2TE15eo9163j+Yn1pqkt3d14/5anrSSc86SCVVl059SEMkDttmnG3q8jEhPcQ/+ILng5rwwbei10YT+RFMHkyf7Ln/v2yVAq2tvwGZUYGb3MbN/LltLG25p8B33zDU90IQX2hDWg6z4TBWfXN565pWXXtKiOD//3lF+3by89XDeoDus/Dqji2ioiIAIYN49e0o0f5WAW6WFryVEuhoXzMi08+4cF6TWN3LFjAb1gFBAA7dxo22KYQhFdHUx2FhvIbhn/9xf9tZcU/x5Ys4W3L1JR/f1Dn8mX+5IFIxOvGkBtM+ryn5Xtx61pecTnh31XZZqKiVD+rgoL45/SzaLNhYeoHlvX3f3HOGU37FovL0j8p8vDg8/Tp/a3vMVbm5qDiPso/MZOfz6+DlanD8k/0APwGuBDUf9XbMCGEvAYoqE8IIUSVkLv90iXl6UKA/4sv+Eudv/7SLyDs788DR1Om8ADGixTUB/jAjT/9xPOvzpjx7PdvZcXraN8+oHlzXk937yo/5i382ElP17ydJ0+Ul9Vm4UKeguaTT1TTquhS1Tn109LUTxcGY9R1fMIP79atee9PQ2Rk8ID+5cs8sDh9umHrA2VpMcr3WtPHrl38XJw2jQ9mqmjLFvWBF2001WVaWuV+QBu7nLpkZgL//svTegwbZtxta9KuHQ/qX7r04gT1c3N5HulWrdTnRg4I4AHsixd1B/WBssB4QUHZNF35je/e5cGyevUMK7s+hHP32rWKDzQtUHceenvzsms7NkBz/nBjOHAAGDKE131kZMXqURg8/MQJ9fW0YAG/5vr78+u8lZVh2/fx4U85pKaqtjNNdSQW8yf/Zs1Snh4fD+Tl8Tar7omXS5d4LnaplD851rat4WUVylU+nVpmJv9c7NRJ/fLqqDu+itSHIebP1/wZaWPDb/rExfE6Kn9zxhj7Dw3VPH7Ii3DOaGJvzzszPH6segM7LY3P0ycQr61NMMafGqpRQ/UJQkP4+PDvI3fvqgb1jVGHwhM92vb/KrdhQgh5DejotkcIIeS1JPSMVOwBfvw4/5Lt7c17j6t7OTvzIFtmpn77qcyPoapmbs5vOhQUGJ4r3pgaNuR5vJOTVYPmzZrxv2fOaF5fmNe8uX77mjyZB//++cewcgo59Q15GeLyZfW96E+d4n9btNC+vp0dz8n833+qKWO0UQzor1wJvPee/usqEtLOmFagP0VsLP87cKDqvBMnDN+eunWio/nTIYpP0xjK2OXUZeNG3vN/3DjDA5QVpe7a+LxJJPyvcAOvvMeP+V99U5ecO8f/1qlTNq1DB77+oUOqabZSUnjAvX173nPc2Nq353+1Xef0pe48tLTkN2tu3+ZPO5R38CA/dqEchhACVYpPHpR34ADvuerkxAP6FU0jpe0aIwTX/Pz4jeKK5AD38+N/1aVni4hQXkaXv//mf0ePVp136RK/5paU8LqpSL1rK6swTbGsPj48QHvqlOrnTFER//5To4bye2PM+qgIPz9eVuEz8FnuvyrPGX2YmGg+p4TxQ9TdQBfGddLnc05I1aPu/T1/nn+PqGz9vght6Hnv/3m1YUIIeUVQUJ8QQogymaxswEHF3NvCALnz5vGUF+peQUH8B7Dwgz0ujg9Kmpurup/8fN4THtA9YNnzMnYs//G3Zg3vWfi8fPopD1r+8EPZI8kA783ZpQsPOKvrUXf4MO+RWaeO+jzq6ixYwPc1b55hZRRy6hvyMkRmpmou/PXreTAxIEA5n352Ns+Nn5KivPysWfwmzVtvqb9BEBen/D5nZPCnTi5f5m1V1xMbt26p7wVfUAB8+CH/d9++2rehjpcX/3vypPL0Y8dUe8TrY8MGnkZIUFpallu7MoPYGrucugjXpIoMkKupjehaRzjP9D2fngUXFz6+w4MHZemIBDk5PNUJwHPmCy5fVu6JL9i2jacWcnXlgVWBvT3PbX7/vvJYJ4zxPPUyGT+vFBUU8Dp+8KByxzd5cllKNMV2q7gfIe8+ULHz8O23+d9PP1W+NoWE8BuBo0ZVLM2GszP/qzgoq6LyAX1dvVJPneLna3kxMfx9MTXlPdwVBQfz63rXrvoF9DWdG5Mn8+1/951yyowbN/i12NubX4sVKX5eCU6c4E+FeXnxlEiKFAP6+/fztHAV0aMH/3zctEk5f3puLr9Zb2qq3INZJOJPGOXl8cGDFS1cyD9/pk1THi+oIvVhTEKbnTev7MYewNPnRUQA3bopj4lUVfs39jmjD2dnfhOzqEh1nvAZtmCBcvvLySnrTKDP55yvL6/DyMiygccB3jaF70flr3mGGjmSPx23ciXw8GHZ9JQU3onD0ZEPZl5VXvc2TAghrwBKv0MIIa+ze/eUH419/Jj/gPnvPx4kFX645OTwfPm2ttp/YEyezNPV/PUXD4BmZwMzZwL/+x8PKDRpwgPGSUl80MKMDP5o/MyZqtuKjtb82K6jI893ryglRfNjxrVrq/5Q14dIxAPJffqo740mKF+P5RmSZkYdDw+eDmj5cl6/wcFl89as4T98Jk/mAcd27XgvtqtXecDI2poHcfXtIV6jBh+UV91gss9T167Azz/z4F3btsCdO/ypEAcHfuNI0b//8voIClK+2TF9Ol9/3ToeHOvZkx/vo0c8iHXuHA8CCT2Uhw7lAaGGDXlbVfc+zp7N2yPA6/uTT3gPv3r1eNmSknhwKj0d6Ny5LKhoiAEDeJmWLOGDAjdtyntI7t3LA4I7dhi2vZ49ec/r0aN5cCQ8nG83MFC/sQKMWc6TJ8sC0UKP8pMny87lhg3LBqxVdPEiHxy5VauynpmG0NRGBIcPlwWMZDL+Pu7ezQNJvXqpT/dz7Zrma1CrVqopSLQJCysb4DAurmyacNOpSxflcQRWrOD1/9ZbPCjfqhXvSbpnD2/fb74J9O9ftvxPP/Ht9ejBr4+M8YDqiRO8F+66dfx6r2jRIv758P77vH58ffnyp07xtlM+UHb+PL+R4OdXsbRTAjc3fkwjRvAncvr04e2iqIhfl48d46lUhMHKK3IeTpwIbN3K00TFxfF179/nbdbT0/BxMATdu/PPkS++4NcYBwf+evdd/v/Bg/nTJv7+/BjLKz+o5fvv8/Okc2f+vpWW8nPs4EH+Hi5frvyERWgo/+wzNeWfDeUHRwZUBz/VdG74+vJr4Lx5/Mmv4cP5zdHNm3mg888/VT9nhg/nTwA1b84DvNeu8ffB2Zm3Pzu7smWFp6IyM/l7fOgQfylS99mvjqkpv64EBvLPjjFj+P537uTv77ffqgYLP/6Yn+NLlvCbXq1b82vM/v385v7HHysvX5H6MPS81qZ7d77smjX8Gti/Pz/Xt27lx/rbb6rrrFlTdtP12rWyacL5OXiw/oOYVuScWbSobDB64cmbRYvK2tm0afp18ggI4N8RBwzg76+5OV+vSxf+fWjmTB4ob9qUX6sZ4+/9w4f8Otytm37H+Ntv/NoyZAgPwNeowa8vV6/ysireKAX454PiQNUlJXya4jmseE45OfHvLxMm8Gv26NE8rdHWrfy93LBBdcyJin5mqvO6t2FCCHkVMEIIIa+fuDj1factLBhr0ICxDz9k7PHjsuV//53PnzpV97Zbt+bLXrzIWFERYzt2MPb224y1aMGYqytjJiaMOTkx1qULY8uXM1ZYqLx+ZKTuPt5eXsrr6Fq+RQvlbU+frrx+UBCffuaM+mMKCCjbVkqK7nos/9KHn5/q9hWlpjJmbc2YgwNjGRnK85KT+XvWsCFjVlb8faxXj9f73bvqt+flxZdTJyuLMWdnXp4GDfQrf1UR6jgoiLGrVxnr04cxOzvGbG0Z69+fsevXVdcJCSlbR52tWxnr2ZO3QzMzxmrWZMzfn7Fly5TbvZeX7vc2Lq5s+WvXGHv3XcaaNePbNjVlzMWFv7e//cZYSUnF6+H+fcaGDWPMzY23g7ZtGduypaxNBwcrL+/lpXqeBAfzZSMjGfvjD8YaN+ZtoFYtxj79lLGCAuXlFeteHYAfW2XKKbxXml7lty94910+/9df1c9XpK4uNLURTeWxtWWsXTvGfvyRMYlEeR19rgODBimXR9d1QXivNL3UvSfR0YyNHMlY9eq87dnY8PpfsUK17e3cyctUpw5/n8zNGatbl1/j//tPc7mSkxmbMoUxDw++Tv36jC1YwK/15Qnvefn3UKjjkBDN65RvJ4wxdusWL5+XF9+3kxM/12bNYuz8+bLlKnoeFhXxY6lfn2/fw4Mfa3Ky5vrQR2goL4uFhfLnlz6fdeXrbv16xgYP5tuwsuLl9PJibOxYxk6fVt23rnak7ZzUdN5v3MhYmzZ8/w4O/JqsWP+KfvmFt0EHB15Wb2/GPviAf56Vp895VP481uXcOV4+Bwde3jZtePk1ycpibM4cxjw9+WeDpyf/f1aW5nUMqY+KnNfaSKWM/fwzY02a8Pbl4sLY8OGM3b6tfnnhu46+bUEXQ88Z4XuOppe6a4I6ubmMvfUWv9aJxerLvnYtb3vW1mWfRWvXGnZ8jPG6HD6c162FBa/rn3/mdV+ePm1Ynf37GevWjX/O2Nryfx84oH7Zin5mavM6t2FCCHnJiRhj7HnfWCCEEEIIIVVs/nyefiAyUrlnLiGEEEIIIYSQlwrl1CeEEEIIIYQQQgghhBBCXhIU1CeEEEIIIYQQQgghhBBCXhI0UC4hhBBCyLMWFsYH4dWl/CCWhJDnJz5e/cDK5ek7oCshhBBCCCEVRDn1CSGEEEKetUmTgHXrdC8XHMxz4RNCnr+oKKB7d93LeXnxGwCEEEIIIYRUEQrqE0IIIYQQQgghhBBCCCEvCcqpTwghhBBCCCGEEEIIIYS8JCioTwghhBBCCCGEEEIIIYS8JCioTwghhBBCCCGEEEIIIYS8JCioTwghhBBCCCGEEEIIIYS8JCioTwghhBDykomKioJIJML8+fOfd1EIIYQQQgghhDxjFNQnhBBCCKlikZGRGDVqFDw9PWFhYQFnZ2d06dIFP/74I4qKitSuU6dOHdSpU+fZFpRUqbS0NCxcuBDDhw9H3bp1IRKJIBKJtK4jk8mwatUqtGrVCtbW1rC3t4efnx92796tdnlhm9peDx8+VFonMzMTc+fORf369WFhYQE3NzcMHz4cN27cqNBxpqamYtq0aahevTosLS3h6+uLr7/+GhKJxCh1osvdu3cxcuRIuLm5wcrKCs2bN8eqVasgk8lUlo2NjcX8+fMxcOBA1KxZEyKRqELn3bO60RYTE4Mvv/wSHTp0gLu7OywsLFCvXj289957SEpK0rievnXCGMP+/fvx7rvvonnz5nBwcIC1tTVatGiB77//Xu31KiEhAe+88w5at24NNzc3WFhYwMvLC/3798eRI0cqdIyff/45AgMD4ebmBpFIBH9/f6PXiSaLFi1C79694enpCSsrK7i4uKBNmzZYvnw5CgoKVJavijZMCCGEEKKLiDHGnnchCCGEEEJeRaWlpXj//fexevVq2NjYoG/fvqhfvz6ys7Nx8OBBxMbGwtfXF/v27UP9+vWV1hUCi/Hx8SrbjYqKQvfu3REcHEy99V8iwvsmEong4+ODxMREFBQUQNPXccYYRowYgR07dsDb2xt9+/ZFcXExdu3ahbS0NKxcuRIzZsxQWkdTe7h37x7+/vtvNGrUCDdv3pRPT09PR8eOHXH37l107NgRHTt2REpKCnbs2AFTU1McPXoU7du31/sYU1NT0b59ezx8+BCDBw+Gr68vTp48iVOnTqFPnz7Yt28fxOKyfkWG1okuN2/eRKdOnVBQUICRI0eiZs2a2L9/P65du4a33noLq1evVlo+NDQUkydPhomJibxuPD091Z532jyrc7JDhw44f/482rZti/bt28PCwgLnzp3DiRMn4OrqihMnTqBhw4ZK6xhSJ0VFRbCysoKFhQX8/f3RrFkzFBUVISIiAnfv3kXbtm1x7NgxWFlZydc5fPgwRowYgY4dO6Ju3bqwt7dHUlISdu3ahZycHHz33Xf4/PPP9T7G+fPnY8GCBTA3N4evry+uX78OPz8/REVFGa1OtKlbty5cXV3RrFkzuLu7Iy8vD1FRUbhx4wZatGiB06dPw9raWr68sdswIYQQQoheGCGEEEIIqRJz585lAFjbtm1ZYmKi0rzS0lL21VdfMQCsfv36LDs7W2m+l5cX8/LyUrvdyMhIBoAFBwdXUclJVUhNTWXHjh1jOTk5jDHGGjRowLR9Hd+2bRsDwDp37swKCgrk0x8/fsy8vLyYhYUFi4uL02vfM2bMYADYsmXLlKa///77DAD78MMPlaafPn2amZiYsMaNGzOpVKrnETI2ceJEBoD9+uuv8mkymYwFBQUxAGzt2rVKyxtaJ7p069aNAWD79u2TT5NIJKxHjx4MADt69KjS8rGxsezMmTPy+rWwsNB43mnzrM7JlStXsnv37qlMX7RoEQPA+vXrpzLPkDqRSCTsu+++Y5mZmUrbkEgkbMCAAQwAW7JkidK84uJitW0kKSmJeXh4MDMzM5XtaXP9+nV28eJFJpFIWEpKCgPA/Pz8NC5fkTrRprCwUO30CRMmMABs1apVStON3YYJIYQQQvRB3zYIIYQQQqrAnTt3mFgsZs7Oziw1NVXjcmPHjmUA2JdffskYYywuLo4BUPsSAoaKAcSLFy+y3r17M1tbW2Zvb88GDx6sMdB7//59NnXqVObp6cnMzc1ZtWrVWFBQEIuPj1dZVgikJSYmsqCgIObh4cFEIhGLjIzUetx+fn4MACsqKmJffvkl8/b2ZqampvKyC/PVEQK/iuUPCQlhAFhISAg7fPgw69y5M7O2tmbOzs5s4sSJ7MmTJyrbOXr0KOvTpw+rXr06Mzc3Z9WrV2d+fn7szz//1Fr2Z01X8G/cuHEqwVjBihUrGAD21Vdf6dxPYWEhc3JyYubm5iwtLU1pXs2aNZlYLGa5ubkq6w0ePFhtIFyTnJwcZmFhwerVq8dkMpnSvOTkZCYWi1nHjh21bqMyAdHbt28zAKx79+4q886ePcsAsDFjxmjdRkWC+sHBwRrPWcW2/OTJEzZ79mxWp04dZm5uztzc3NjIkSPZjRs3DNqfOqWlpcza2prZ2NgoTTdGnQhOnz7NALD+/fvrXa4hQ4YwACwmJkbvdRTpE9TXRFOdVNSuXbsYADZ79myty1FQnxBCCCHPgqkxe/0TQgghhBAuNDQUMpkMb7/9Njw8PDQu9+WXX2LTpk1Yu3Ytvv76azg6OiI4OBgrVqwAAMyePVu+bPm80tHR0Vi6dCn8/f0xffp0XL58GWFhYbh27RquX78OS0tL+bLnzp1DYGAg8vPzMWDAANSvXx/x8fH4+++/sX//fpw5cwb16tVT2r6QmsXZ2RmjRo2CRCKBvb29Xsc/dOhQXLlyBYGBgXB2dlbZtqH27NmDvXv3YsCAAXj33Xdx/PhxrF+/HrGxsTh58qR8uX379mHAgAFwdHTEoEGDUL16dTx+/BgxMTH4+++/MW3atEqV41l69OgRAJ4OpDxh2tGjR7FgwQKt29m5cycyMzMxfPhwuLm5qezD1dUVtra2WvfRvXt3neU9c+YMiouL0atXL5Wc4tWrV0ezZs1w7tw5FBUVKbVNYxHSs/Tu3VtlXrt27eDo6Ihjx44Zfb/+/v6Ij4/HunXr4Ofnp3SeOjo6AuDnUocOHXDv3j34+/tj9OjRiI+Px/bt27Fv3z4cOnQIHTt2rHAZRCIRTExMlFIbAcatEzMzMwCAqal+PyHT09Nx7tw5WFtbV/r8rwhNdVJR+/btAwA0bdrUKNsjhBBCCKkMCuoTQgghhFSB06dPAwB69OihdbmGDRuiRo0aSEpKwsOHD+Hp6Yn58+cjNDQUgOYc6QAPMm3ZsgWjRo2ST5s4cSI2bNiAsLAwjB49GgBQUlKC0aNHQyaTITo6Gi1atJAvf/LkSfj7++ODDz7Anj17lLZ//fp1TJ48GX/++SdMTEwMOXwkJyfj6tWrcHZ2Nmg9TXbv3o2oqCh07twZACCVStGzZ09ERUXh7Nmz6NChAwBg7dq1YIwhKioKzZs3V9pGenq6XvsKCwtDTEyM3mXz9/fXOpBnRQkB+Li4ODRq1EhpXlxcHADgzp07Orfz119/AYDaGxpubm549OgR8vLyVAL7huwD4IOxAoCPj4/a+T4+Prhy5Qru37+Pxo0b67VNQ2jbv0gkQv369REdHY2CggKlnOiVJbz369atg7+/v9pz9uOPP8a9e/fw2Wef4fvvv5dPnzRpEvr06YOgoCDcunWrwgHo7du3Izc3FyNGjFCabsw6Wbt2LQD1NwgAPv5HaGgopFIpkpOTsXv3bmRlZeH333+HnZ1dRQ6rUjTVib5WrFiBrKwsZGVl4dSpU4iOjkbv3r0xceJEI5eUEEIIIcRwFNQnhBBCCKkCqampAABPT0+dy3p6eiI5ORkpKSl6LS/o1q2bUkAfAKZMmYINGzbgwoUL8qD+3r17ER8fj2+++UYpoA8AXbp0waBBgxAWFoacnBylnvjm5uZYsmSJwQF9AFiwYIHRAvoAMHbsWHlAHwBMTEwQFBSEqKgoXLhwQR7UFygO5ClwcXHRa19hYWFYt26dQeWriqB+3759sXnzZixatAgBAQHy3u3p6enyJzmysrK0biMuLg6RkZGoXbs2evXqpXYfa9euxYIFC7B06VL59PPnz2Pv3r167UOQnZ0NAHBwcFA7X2hbwnLGZsj+jRnU10UikWDz5s1wcXHBvHnzlOYFBgYiMDAQEREROH36NLp06WLw9h8+fIhZs2bBysoK33zzjdI8Y9XJgQMH8Mcff6BRo0aYOnWq2mXi4+OVnhqxtbVFSEgIxo8fb9DxGIO2OtHXihUrkJCQIP//+PHj8dtvv8mfWCCEEEIIeZ4oqE8IIYQQ8pwxxgBAJWWJLq1atVKZVqtWLQDKgdizZ88CAG7duqW2F3FqaipkMhnu3LmDNm3ayKfXrVsXrq6uBpVJ0K5duwqtp4m+xzpy5Ejs3LkT7du3x5gxYxAQEICuXbvC3d1d732FhobKn5R4nsaMGYOQkBBERkaiWbNm6NOnD0pKShAWFiZP6aTrhovw5MLkyZPV9gJfsGAB9u/fjx9++AFnzpxBhw4dkJKSgu3bt6Nx48a4evWq0j6E3suKJk2ahDp16lT6ePWhrv3Onj1bnubmRXTr1i0UFhbC399fbeDc398fERERiImJMTion5GRgX79+iEtLQ3r169HgwYNjFVsuejoaIwaNQoODg7Ytm0bLCws1C7n7+8PxhhKSkoQHx+P1atXY+LEiTh//jx+/vln+XKhoaGIj49XWnfw4MFo2bKlUcqrq070bcNCGVNTUxEZGYmPP/4Y7du3R0REhPzaQwghhBDyvFBQnxBCCCGkClSrVg23bt3Cw4cPdQbaEhMT5esYQl3vWyHftVQqlU/LyMgAAPz9999at5efn6/0f21jAehSmXXV0fdYR40aBTMzM6xYsQJ//PEHfv31V4hEIvj7+2P58uVGCxw+C6ampti/fz8WLVqETZs2YfXq1XBwcMCQIUMwd+5c+Pr6quTIVySTyRAaGgqxWIwpU6aoXaZWrVq4cOECgoODsX//fpw/fx6enp74+uuvUadOHYwePVppH+V7LwM8mFunTh35e6SpJ35OTg4Azb3G9aFu/IBJkybB0dFR7/3rOy6EsQj71XROCOe9oU8wZGZmomfPnrhx4wZ+++03tT3iK1snly9fRu/evSESiRAREYEmTZroLJeZmRl8fHywdOlSFBQUYOXKlejbty/69u0LgAf1y+fxr1OnjlHOTX3qRFsbVqdatWoYM2YM6tevj3bt2uGjjz7C1q1bK11WQgghhJDKoKA+IYQQQkgV6NSpE6KionDkyBH07NlT43K3bt1CcnIyatasaVDqHUMIAbs9e/bgzTff1Hs9Q58c0Gddobd4aWmpyoCbxkrLMnToUAwdOhQ5OTk4ffo0du7cib/++guBgYG4ffu2zl7dL0pOfQCwsLBAcHAwgoODlaYLA6AqPllR3oEDB5CYmIjAwEDUrl1b43I1a9bEmjVrVKYLveIV91G+h7UiIW+7kMe9vLt370IsFldq0FThqRZD988Yw71791CjRg3Y2NhUeP8VIZx/wsDH5QnTDbnZkJGRgZ49e+Ly5cv45ZdfMH36dLXLVaZOLl26hF69ekEqleLgwYNo27at3uUT9O7dG7/++iuioqLkQX2h7RqbvnWirQ1r07ZtWzg5OVVZ+QkhhBBCDEFBfUIIIYSQKhAUFIRFixbhzz//xIcffqixR/V3330HACo9qU1MTCCRSIxSlvbt2wMAzpw5Y1BQvyo4OTkBAJKSkuDl5SWfLpPJcOXKFaPuy97eHn369EGfPn0glUqxdu1anDt3DoGBgVrXe1Fy6msjPHUhjJugjrYBcnWRSqXYsmULTE1NMWzYML3W6dChAywsLHDo0CEwxpRu7KSkpODatWto3769fGwAYxPeg4MHD+LTTz9Vmnf+/HlkZWXJA8vGJqQoUnxqRNCwYUNYWlriwoULagekFXqt69tTXTF4vXLlSrz33nsal61onVy6dAk9e/ZEaWkpIiIi5NcQQyUnJwOAyg08YzOkTioqLy8P2dnZBj9RRQghhBBSFVQTaxJCCCGEkErz9fXFBx98gPT0dAwYMAApKSlK82UyGb755hts3LgR3t7emDt3rtJ8Z2dnPHnyBEVFRZUuy6BBg1C7dm0sX74cx48fV5lfUlKCkydPVno/+hB6fZfPWb98+XLExcVVevtHjhxRW2dpaWkA1A+gW15oaCgYY3q/1OV5NxYhPYqi7du3Y+3atWjbti2GDh2qdr3Hjx9jz549cHV1xcCBAzVuv6SkBIWFhUrTZDIZ5s6di9u3b2PmzJmoUaOGXmW1t7fHqFGjcP/+ffz+++/y6YwxfPbZZ5DJZHjrrbf02lZF+Pr6olu3boiMjER4eLh8eklJiXyA2qravzAotJBKS5G5uTnGjBmDJ0+eYOHChUrzDh8+jP3796N+/fpKA0FrkpGRgR49euDy5cv46aefMGPGDK3LV6ROhIB+SUkJ9u/fj44dO2rdx/nz59WecwkJCfLjraqbKYDhdaJNQkKC2p78JSUlmD17NmQyWZUeCyGEEEKIvqinPiGEEEJIFVmyZAmys7Oxdu1a+Pj4oH///vD29kZOTg4OHjyIu3fvwsfHB+Hh4SqpNwICAhAdHY0BAwaga9euMDc3R5cuXQweSBPgKVy2b9+Ovn37ws/PDz169EDTpk0BAA8ePMCJEyfg4uKCW7duGeW4tZk8eTKWLFmC+fPnIyYmBt7e3oiOjsb169fh5+enkmvbUB999BEePHggz5EtEolw8uRJnD9/Hp06ddIrcFqVJk2aJP+3cKNHcdoPP/ygNDhx+/bt4enpiUaNGsHS0hLnz59HVFQU6tWrh23btmkcKHf9+vUoKSnBxIkTYW5urrE8jx49QpMmTdC7d2/UrVsXEokEERERuHXrFvr3768ShNZl0aJFiIyMxPvvv4/Dhw/D19cXJ06cwKlTpxAYGIigoKBK14k2v/32Gzp16oQhQ4Zg5MiRqFGjBg4cOICrV69i2rRp6N69u9LyT548UbqhVlJSgidPnijtX59Bkxs2bIgaNWpgy5YtsLa2Rq1atSASifDuu+/CwcEBixcvxrFjx/Dtt9/i9OnTaN++PeLj47F9+3ZYW1sjJCRE7UDG5Q0dOhQxMTFo2LAhMjIy9Bo42JA6EXq8Z2Zmok+fPjh06BAOHTqktH1HR0fMnj1b/v/vv/8eJ06cgJ+fH2rXrg1TU1PExsYiPDwcEokEc+bMMei6devWLSxatAgA5Decbt26JX9PXF1d8cMPP1SqTjS5fPkyhg0bhq5du8LHxweurq549OgRDh8+LB8fRXi6SpEx2zAhhBBCiF4YIYQQQgipUocOHWIjRoxgNWrUYGZmZszR0ZF17NiRLVu2jBUUFKhdJzc3l7311lusevXqTCwWMwAsODiYMcZYZGSk0v8VxcXFMQAsKChIZV5iYiL74IMPmI+PD7OwsGD29vasUaNGbNq0aezIkSNKywJgfn5+Bh+rn58f0/UV89KlS6xHjx7M2tqa2dvbs0GDBrG7d++yoKAgBoDFxcXJlw0JCWEAWEhIiMp21NXDli1b2MiRI5m3tzeztrZmDg4OrGXLlmzJkiUsLy/P4OMxNgBaX4rHzhhjwcHBrFmzZszOzo5ZWlqyRo0asXnz5rHs7Gyt+2nUqBEDwG7evKl1uZycHDZhwgRWr149Zmlpyezs7FjHjh3Zn3/+yaRSaYWOMTk5mU2ZMoV5eHgwc3NzVr9+fbZgwQJWVFSkdnlD60SX27dvs+HDhzMXFxdmYWHBmjRpwn7++We1xyOcL9pe+jp79izz8/NjdnZ2asv++PFjNmvWLObl5cXMzMyYq6srGz58OLt27Zre+/Dy8qpQfelbJ/rUh5eXl9I6e/bsYaNHj2be3t7MxsaGmZmZsZo1a7IhQ4aw8PBwvY9NIJzX+u6/onWiTkJCApszZw5r3bo1c3FxYSYmJszBwYF16NCBLV68WOM1xNhtmBBCCCFEFxFjWkabIoQQQgghhBBCCCGEEELIC4Ny6hNCCCGEEEIIIYQQQgghLwkK6hNCCCGEEEIIIYQQQgghLwkK6hNCCCGEEEIIIYQQQgghLwkK6hNCCCGEEEIIIYQQQgghLwkK6hNCCCGEEEIIIYQQQgghLwkK6hNCCCGEEEIIIYQQQgghLwkK6hNCCCGEEEIIIYQQQgghLwkK6hNCCCGEEEIIIYQQQgghLwkK6hNCCCHktTJ//nyIRCJERUUpTReJRPD396/0doxp0qRJEIlEiI+Pr7J9GIu/vz9EItHzLgYhhBBCCCGEvPIoqE8IIYSQF8aYMWMgEomwZcsWrculp6fDwsICrq6ukEgkz6h0xhcaGgqRSITQ0NDnXZQXwst0E0MdofzaXmFhYfLlhfdf8WVlZQVfX1/MnDkTqampWvd3//59iMViiEQirFq1SuNy8fHxWsuk63xTdPz4ccydOxfdu3eHg4MDRCIRJk2apHWdxMRETJ8+HbVr14a5uTlq1KiByZMn4+HDhyrLqquT8q8ePXqorHfu3DkMGjQIrq6usLCwgK+vL7766isUFhbqfWyKIiIi4O/vD3t7e9jZ2cHf3x8RERFGqxNdNm3ahHbt2sHGxgZOTk7o168foqOj1S67Z88ezJw5E507d4aNjQ1EIhHmz59v8D6fxflXUlKCHTt2YNKkSWjUqBFsbGxgZ2eH9u3b49dff4VUKtW4rr51kp6ejtWrV2PgwIGoV6+e/LOib9++Gt/DnTt3Yvjw4fDx8YG9vT1sbW3RpEkTzJ49G0lJSQYf58aNGzF9+nS0adMGFhYWWq/zlakTdRISEvDOO++gdevWcHNzg4WFBby8vNC/f38cOXJE7TpV0YYJIYQQUrVMn3cBCCGEEEIEU6dOxZYtWxASEoLRo0drXG7jxo2QSCSYMGECzM3NjbLv//77D9bW1kbZlrEsXLgQn376KWrWrPm8i0IMMHXqVNSqVUvtvIYNG6pM69GjB7p06QIAePLkCY4ePYpVq1YhLCwMly5dgpubm9ptrV27FowxiEQi/PXXX5gxY4bWcrVo0QKDBw9Wmd60aVMdR6S8z3Xr1sHa2hq1a9dGTk6O1uVjY2PRqVMnpKWloVevXhg1ahTu3r2LdevWITw8HKdPn4a3t7d8+ZYtWyI4OFjttrZv344bN24gMDBQafrOnTsxatQomJiYYNiwYahWrRpOnTqFb775BkePHsWRI0dgYWGh9zH+/fffGD9+PFxdXREUFASRSIR//vkHffr0wcaNGzFu3LhK1Yku33//Pb744gvUrl0b77zzDvLy8rBlyxZ07txZfrNB0bJly3Ds2DHY29ujRo0auHfvXqX2X5ViY2MxfPhw2NnZISAgAAMHDkR2djb27NmD999/HwcOHMCuXbtUnvoxpE62bduGd999FzVr1kRAQABq1qyJxMRE7NixAwcOHMDSpUsxd+5cpe3/+++/uHLlCtq2bYvq1asDAGJiYvDzzz9j3bp1OHnyJJo0aaL3cc6bNw8JCQlwdXVF9erVkZCQYPQ60eTu3bvYunUrOnbsiA4dOsDe3h5JSUnYtWsXwsPD8d133+Hzzz9XWsfYbZgQQgghzwAjhBBCCHlByGQyVqdOHSYWi9mDBw80LteiRQsGgF27ds3gfQQHBzMALDIyshIlNc52QkJCGAAWEhJSqbK8CPz8/Fhlv1oGBQUxACwuLs44hXrGhPKfOXNGr+WF93/hwoVK06VSKevXrx8DwL766iu165aWlrKaNWuy6tWrs3HjxjEA7OLFi2qXjYuLYwBYUFCQQcejzoULF9j169dZaWkpO3PmjM7t9u/fnwFgP/30k9L0f/75hwFggYGBeu23uLiYubi4MFNTU5aamiqfXlBQwFxdXZmZmRmLjo6WT5fJZOz9999XW7/aZGRkMEdHR+bq6qp0DUpOTmbVqlVjjo6OLCMjQ2kdQ+tEmzt37jBTU1Pm6+vLsrKy5NOvX7/OrK2tmbe3NyspKVFa5/jx4+zOnTtMJpOxzZs3MwAsODjY4H0/i/MvMTGR/frrryw/P19pel5eHmvTpg0DwP755x+leYbWyZEjR9jevXuZVCpV2s6tW7eYg4MDMzMzY0lJSUrzCgsL1ZZ3zZo1DAAbPny4Qcd56NAhFh8fzxhjbOHChVqv8xWpE22Ki4tVjp0xxpKSkpiHhwczMzNjmZmZSvOM2YYJIYQQ8mxQ+h1CCCGEvDBEIhEmT54MmUyGdevWqV3m4sWLuHLlCtq1a4emTZsiOTkZwcHB6NChA9zd3WFhYYE6dergvffeQ1pamkH7VpdT/+HDhxgzZgycnZ1ha2sLPz8/HD9+XO02JBIJVq5cicDAQHh6esLCwgLu7u4YOnQoLl++rLTspEmTMHnyZADA5MmTldKLKC6jKR3GunXr0KFDB9ja2sLW1hYdOnRQW2dRUVHydByXLl1CYGAg7Ozs4ODggCFDhhicauPkyZPw8/ODjY0NXFxcMGrUKLVpVAAY9N7UqVNHXv66devK60LxPfn3338xZswY1K9fH9bW1nBwcEDXrl2xY8cOg47hRScWi+WpLy5evKh2mYiICCQlJWHs2LHydvTXX39VednatGmDJk2awMTEROeyRUVFiIiIgIeHB2bOnKk0b8SIEWjZsiUiIiJw//59ndv6999/kZ6ejjfffBMeHh7y6adOncKTJ08wePBgtG7dWj5dJBLh22+/BQD8/vvvYIzpdXzbtm1DVlYWZs6cCU9PT/n06tWrY/bs2cjKysK2bduU1jGkTnQJCQlBaWkpvvjiCzg4OMinN2nSBBMnTkRsbCyOHj2qtE7Xrl3h4+NTqTEt9Dn/AOD06dPo378/nJ2dYWlpiYYNG2L+/PkoKCjQaz81a9bEu+++q/JUlI2NDT788EMAwLFjx5TmGVonAQEB6N+/P8Ri5Z+6DRo0wKhRo1BSUoLTp08rzbO0tFRb3hEjRgCAwU8/9OzZE15eXnotW5E60cbc3Fzl2AGgRo0a6NSpE0pKSlSeHDBmGyaEEELIs0FBfUIIIYS8UCZPngyxWIzQ0FC1gbiQkBAAPMUJwHMBL1u2DB4eHhgzZgxmzpwJb29v/Pbbb+jYsSOys7MrXJaUlBR07NgRW7ZsQbt27TBr1iw4OzujV69eOHv2rMryGRkZmD17NoqLi9GvXz/MmTMH/v7+CA8PR6dOnXDhwgX5soMHD8agQYMAAIMGDUJwcLD8pcucOXMwadIkJCYmYurUqZg2bRqSkpIwadIkeRCovOjoaHTt2hWmpqbyXM9hYWHo2bMnioqK9KqPI0eOICAgAOfOncPw4cPx9ttvIy4uDp07d0ZmZqbK8oa8N7Nnz0aLFi0AAB988IG8LhTzOn/22We4ceMGunTpgg8++AAjRozA7du3MXz4cKxcuVKvY3hZCG3f1FR9tkwhgD9x4kR0794dnp6e2LRpk9b3Mjk5Gb/99hsWLlyIdevWITEx0fgFV5Ceno7S0lJ4eXmpDTjXrVsXABAZGalzW8LxTps2TWn6o0ePlLalyNHREU5OTkhISNDrxgEA+cDXvXv3VpknpP0xJMBqqOe1f33Ovx07dsDPzw9RUVEYPHgwZs+eDVtbWyxYsAA9e/ZEcXFxpcpgZmYGQLXNG7NONO1Dk3379gEwLEWVMRlaXm3S09Nx7tw5WFtbo169epXeHiGEEEKeL8qpTwghhJAXiqenJ3r16oWIiAgcP34cfn5+8nnFxcXYtGkTrK2t5Tn3AwICkJqaCltbW6XtrF+/HkFBQVi1ahW++OKLCpXls88+Q1JSEr799lulbaxevRrTp09XWd7JyQkPHjxQyYF/48YNdOjQAZ9//jkOHToEgAf1s7KysGvXLgwePFjvQQlPnDiBFStWoFGjRjhz5oy85+qCBQvQoUMH/Pjjjxg6dKg8R7tg37592LJlC0aNGiWfNnHiRGzYsAFhYWFaxzAAAJlMhrfffhulpaU4fvy4fPuMMYwfPx6bNm1SWceQ92b27NmIiYnBlStXMHv2bNSpU0dle+Hh4SrBqLy8PHTq1Alffvklpk6dqte4CKGhoQY9oTB48GC0bNlS7+XXrFmDAwcOqJ336aefauwVLJBKpVi7di0AqLyPAPD48WPs2bMHzZo1Q/PmzQEA48ePx8KFC7Fjxw6VnO+CQ4cOydsfwAOFs2bNwtKlS9X27K0sJycnmJiYICEhQZ77X1FcXBwA4M6dO1q3k5CQgCNHjqBmzZro06eP0jxhvAFhW4qys7PlN5vu3LmjlLtfk7t37wIAfHx8VOYJ04RlqsLdu3dha2uLatWqPdP96zr/cnNzMW3aNJiYmODMmTPydqd4/i9duhTz5s2rcBmENl8+eG+sOsnNzcX27dthaWmJrl27ql0mLCwMMTExKCgowI0bNxAREYG6devi66+/NvRwjEJTnegjPj4eoaGhkEqlSE5Oxu7du5GVlYXff/8ddnZ2xi4qIYQQQp6155n7hxBCCCFEna1btzIAbOLEiUrThXzR+uT6lclkzN7envn7+ytN15QLHwDz8/OT/7+4uJhZWloyd3d3lXzLUqmU+fr6GpRTf8CAAczc3JxJJBL5NF059dXluJ4yZQoDwLZu3aqyvFA/U6dOlU+LjIxkAFi3bt1UlhfmffjhhzrLf+zYMQaADRgwQGVefHw8MzEx0Tunvqb3pqI5vZctW8YAsKioKL2WF/L/6/vSd8wDofzaXoq5rIX3v0ePHiw4OJgFBwezGTNmsAYNGjAArEOHDiwvL09lPz/88AMDwJYuXSqf9t9//zEArHv37irLP3r0iAUHB7OYmBiWk5PD0tLS2O7du1mjRo0YAPbpp5/qdXzl6ZN7OyAggAFgq1atUpq+Y8cOeZ28/fbbWvcjnLPz5s1TmZebm8vs7e2ZmZkZu3TpktK8mTNnyvexadMmvY7Jx8eHAVDJWy8wMTFhvr6+GtevbD5yMzMzVrNmTbXzHjx4wACw3r17a1y/qnLqr1+/ngFg7777rtpymZqaMm9vb4P3Kfjjjz8YABYQEKAyr7J1Ihg7diwDwL7++muNy5Q/h9u0acPu3bun/4GooSunviba6kQfwvVdeNna2rINGzboXI9y6hNCCCEvB+qpTwghhJAXzuDBg+Hi4oLt27dj1apV8l6FQq/FKVOmKC2/c+dO/PHHH7h06RIyMzMhlUrl85KTkytUhtu3b6OoqAgBAQEqPavFYjE6deqktodxTEwMlixZgpMnTyI1NRUlJSVK8588eYLq1atXqEwA5Ln51eX/F6bFxMSozGvVqpXKtFq1agEAsrKydO73ypUrAKC2h6uXlxc8PT3V9n435nuTlpaGRYsWYf/+/UhISEBhYaHSfH23J6TzqCpnzpxBhw4d9F7+yJEjOHLkiNK0jh074ujRo2p79a9duxZisRhjx46VT2vYsCHatm2LqKgo3L9/X+mJBnd3d8yfP1/+fzs7OwwYMABt27ZF06ZNsXz5cnz88cdwcnIy4Cj1s3z5cnTp0gUzZszAnj170Lx5c9y7dw+7du1C8+bNcfXqVa15vGUyGUJCQiASiVTOewCwtbXF8uXLMW3aNHTs2BHDhw9HtWrVcPr0aVy8eBENGzbErVu35PsQei8rcnR0xOzZs4152BrFxMQgLCxMaVqdOnX0flLnedF23fH09IS3tzdu376N3Nxcg3uB79u3DzNmzICXlxc2btxojOKq+Pzzz7Fp0yb06dMHn3/+ucblQkNDERoaiuzsbFy+fBlffPEFWrdujZ07dyIgIAAAv16uWLFCZV3Fc6yytNWJvm3Y398fjDGUlJQgPj4eq1evxsSJE3H+/Hn8/PPPRisrIYQQQp4PCuoTQggh5IVjbm6O8ePH46effsI///yDqVOn4uHDhzhy5Ah8fHzQrVs3+bLLli3D3Llz4ebmht69e6NWrVqwsrICAKxYsaLCeZ6FfO/u7u5q5ysO1ik4ffq0PPDTu3dv+Pj4wNbWFiKRCGFhYbhy5Uql807n5ORALBbL046UL5NYLFY7joDiAJMCIU+zYqBdE33qo3xQ35jvTUZGBtq2bYsHDx6gc+fO6NmzJxwdHWFiYoKYmBjs2rWr0nX7vCxcuBCffvopZDIZ4uPjMX/+fGzYsAFvvfUWNmzYoLTs2bNncfPmTfTq1Qs1atRQmhcUFIQLFy4gJCQE33zzjc79VqtWDf369cOGDRtw4cKFCqX40KVFixa4cOECgoODERkZicjISNSvXx9//PEHsrKy8L///U9tWxYcOnQIDx48QI8ePdTmzQf4+Bo1atTAkiVLsGvXLkilUrRp0wZHjhzB4sWLcevWLfk+4uPjsWDBAqX1vby85AFR4TzJzs6Gi4uL0nL5+fmQSqVqzyV9xcTEqOzfz89PHtR3cHDQOA5ITk6OUhmfJWHf6q57AG9Lt2/fRk5OjkFB/YiICAwbNgweHh44evSo2huela2TBQsWYOHChQgICMDOnTv1GgzWwcEB/v7+2L9/Pxo0aICJEyciLi4OZmZmyMrKUnkPAeMF9XXVia42XJ6ZmRl8fHywdOlSFBQUYOXKlejbty/69u1rlPISQggh5PmgoD4hhBBCXkhTp07FTz/9hLVr12Lq1KkIDQ2FTCZT6q1bWlqKb775BjVq1EBMTIxScJAxhiVLllR4/0KQKC0tTe18YYBORd999x2Ki4tx8uRJdO7cWWne2bNn5b3dK8Pe3h4ymQyPHz9WCbCnpaVBJpPB3t6+0vspz9D6MPZ789dff+HBgwcq4xsAwKJFi7Br1y69t1XVOfUrSiwWo169eli3bh0SEhKwceNGDBs2DIMHD5YvIwwYe+jQIbWDzwL8+BYsWKBXnnxXV1cAQEFBQeUPQIOGDRti69atKtOFQHabNm00rqtpgNzyNAUpJ0yYALFYLH9SRei9rImPjw+io6Nx9+5dlaC+tnz7+po0aZLWXvk+Pj44c+YMUlNTVXLIG2P/FSVcU9Rd9xSnG3LtOXDgAIYMGQJXV1dERkZqHLy1MnWyYMECzJ8/H/7+/tizZ4/8pqK+7O3t0aFDB4SFheHevXto1KgR6tSpo7UNVYY+daKrDWvTu3dv/Prrr4iKiqKgPiGEEPKSo6A+IYQQQl5IzZo1Q9u2bXH69GncunULoaGhMDExQVBQkHyZJ0+eIDs7Gz169FDp7RsdHa2SnsUQDRo0gKWlJaKjo1FUVKSUBkUmk+H06dMq68TGxsLZ2VkloF9QUIBLly6pLC/0GNWnp7zgjTfewOXLlxEVFYWRI0cqzTt27BgAVEkAukWLFgD4QL3/+9//lOYlJCTg4cOHStMq8t5oq4/Y2FgAwMCBA1XmnThxwoAj4UFvoa70UadOnWcS1BeIRCL89NNPaNWqFT777DMMGDAAJiYmyM/Px9atW2FtbY0xY8aoXffs2bPyAT71CdqdP38eANQOTFyVcnNzsWfPHjg7O6NXr15ql0lPT8euXbvg7OyMIUOGGLyPU6dOIT4+Hv369dO7d7ufnx82b96MgwcPqqRQioiIkC9TVfz8/HDmzBkcPHgQEydOfKb713b+vfHGGwCg9rqTlJSE2NhY1KtXT+9e+gcOHMDgwYPh7Owsf3pDk4rWyfz587FgwQL4+flh3759eg2irY6Q1kt4sqmqGFInFfWsjoUQQgghVU939x1CCCGEkOdk6tSpAHgv3fv376Nfv35KqQjc3d1hZWWFS5cuKfU0zszMxMyZMyu1b3Nzc4wcORJpaWlYtmyZ0rw1a9aozafv5eWFzMxM3LhxQz5NKpVi7ty5ePz4scryzs7OAIDExES9yyXc1FiwYIE89QTA01AIKRkUb3wYS5cuXVC3bl3s3bsXJ0+elE9njOHzzz9XCQRW5L3RVh9eXl4AoLRvANi0aRPCw8MNOpaoqCgwxvR+PY985y1btsTgwYNx69YtbNq0CQDwzz//IDc3FyNGjMCaNWvUvr7//nsAZT3cAR64Lz+2A8Dz3Z86dQqNGzeW37QxtsLCQpSWlipNKy4uxtSpU5GRkYHg4GC14wYAwIYNGyCRSDB+/HhYWFho3IfieSBITk7GtGnTYGpqqlcqIsHIkSPh4OCAlStXKt2oSklJwYoVK+Do6IgRI0bovT1DTZ48Gaampvjuu++UUs7cuHED69evh7e3tzzFl7FpO/8GDRoEBwcHhISEKF3fGGP47LPPUFJSovd5IgSvnZycEBkZqfPJg4rUSXBwMBYsWICuXbvqDOgXFxfj7NmzaueFhITg/PnzqF+/fpU+IWFonWhz/vx5FBUVqUxPSEjAwoULAYB66RNCCCGvALpFTwghhJAX1pgxY/Dhhx/i1KlTAMqC/AKxWIz33nsPy5YtQ4sWLTBgwADk5ORg//798PLyUsk5bqhFixbhyJEjmDdvHk6ePIk33ngD//33H8LDw9G7d28cPHhQafmZM2fi4MGD6NKlC0aOHAlLS0tERUUhKSkJ/v7+KgO0duzYEVZWVlixYgVycnLkPdo//fRTjWXq1q0bZs6ciZUrV6Jp06YYNmwYGGPYuXMnHj58iFmzZimNOWAsYrEYq1evRr9+/dCzZ0+MGjUKNWrUwNGjR5GSkiIf9FRxeUPfm4CAAPzwww+YPn06RowYARsbG9SuXRtjx47FhAkTsHjxYsycORORkZHw8vLC1atXcfjwYQwdOhQ7d+40+jFX1Jo1a3DgwAG18/z9/dUONqrO/PnzERYWhq+//hpjxoyRB+rVDRgr6NevHzw8PLB79248fvwYbm5u+Pjjj3Hr1i34+fnB09MThYWFOHPmDC5fvgwnJyds2LBBYyqf8k6ePIk1a9YAgPxG1cmTJ+UB3YYNGyq134sXL2Lo0KHo1asXPD09kZOTg3379uHBgwd46623tN580zf1zs8//4yNGzeiS5cucHd3x8OHD7Fr1y4UFBTgr7/+UjtItCZOTk5YtWoVJkyYgFatWmH06NEQi8XYunUrHj16hA0bNqgMKGxonWjj6+uL+fPnY968eWjevDmGDx+O/Px8bN68GSUlJfjzzz9VelmHhYXJB9+Ni4uTTxNSTHXp0kVnHQLazz97e3v8+eefGDNmDNq3b49Ro0bBzc0NR44cQXR0NNq1a6fyBI86t27dwuDBg1FcXAx/f39s3rxZZZnyAwcbWiehoaH4+uuvYWpqinbt2mHp0qUq+1A8DwsLC9GxY0c0bdoULVu2RM2aNZGdnY3z58/j0qVLsLW1RUhIiM5jU7RmzRr5Dchr167JpwmfAYMHD5an1apInWjz/fff48SJE/Dz80Pt2rVhamqK2NhYhIeHQyKRYM6cOejSpYvSOsZsw4QQQgh5RhghhBBCyAts4sSJDADz8PBgJSUlKvMlEgn77rvvmI+PD7OwsGC1a9dmH374IcvNzWVeXl7My8tLafng4GAGgEVGRipNB8D8/PxUtp+QkMBGjRrFHB0dmbW1NevatSs7duyYxu1s376dtWrVillbWzNXV1c2cuRIFhsby4KCghgAFhcXp7T8vn37WNu2bZmVlRUDwBS/nmlahzHG1q5dy9q2bcusra2ZtbU1a9u2LVu7dq3KcpGRkQwACw4OVpkXFxfHALCgoCCVeZocP36cdevWjVlZWTFnZ2c2YsQIlpCQwPz8/Fj5r5aGvjeMMbZkyRLm4+PDzMzMVN6TmJgY1rt3b+bk5MTs7OyYn58fO3z4MAsJCWEAWEhIiN7HURWE90vbS/F9EMq9cOFCjdscNmwYA8B+//13BoB5e3vrLMdHH33EALBly5Yxxhj7888/WZ8+fVitWrWYpaUls7S0ZA0aNGAffPABe/jwoUHHKJRZ06v8OZSQkMBGjBjBPD09mbm5OXN0dGQBAQFs+/btWvdz7tw5BoC1a9dOZ5mOHDnCevbsydzd3ZmZmRmrVq0aGzVqFLt06ZJBx6Zo//79rFu3bszW1pbZ2tqybt26sQMHDqhd1tA60cfGjRtZmzZtmJWVFXNwcGB9+vRh58+fV7uscC3S9DLk/NZ2/jHGz/++ffsyR0dHZm5uznx9fdmXX37J8vLy9Nq+cD2qSH3pWye66qP8eSiRSNiCBQuYv78/q169OjMzM2PW1tascePGbPbs2SwhIUHf6pPTdS1Q3H9l6kSdPXv2sNGjRzNvb29mY2PDzMzMWM2aNdmQIUNYeHi42nWqog0TQgghpGqJGKuiUX4IIYQQQgghhBBCCCGEEGJUlFOfEEIIIYQQQgghhBBCCHlJUFCfEEIIIYQQQgghhBBCCHlJUFCfEEIIIYQQQgghhBBCCHlJUFCfEEIIIYQQQgghhBBCCHlJUFCfEEIIIYQQQgghhBBCCHlJUFCfEEIIIYQQQgghhBBCCHlJUFCfEEIIIYQQQgghhBBCCHlJUFCfEEIIIYQQQgghhBBCCHlJUFCfEEIIIYQQQgghhBBCCHlJUFCfEEIIIYQQQgghhBBCCHlJUFCfEEIIIYQQQgghhBBCCHlJUFCfEEIIIYQQQgghhBBCCHlJUFCfEEIIIYQQQgghhBBCCHlJUFCfEEIIIYQQQgghhBBCCHlJUFCfEEIIIYQQQgghhBBCCHlJUFCfEEIIIYQQQgghhBBCCHlJUFCfEEIIIYQQNerUqQORSASRSISwsDCNy/Xs2RMikQihoaFK00NDQ+Xrm5ubIz09XeM2SktL4e7uLl9+/vz5apeLiIjA0KFDUbNmTZibm8PR0RENGjTAgAEDsGzZMsTGxiotHx8fL9+mrld8fLyeNaPbzZs3MX36dPj6+sLKygo2NjaoW7cu/P398eWXX+L06dMq6wj1Xb4eNZk0aZLKMZiZmaF69eoYOHAg9u/fb7TjKe/ixYvyfY4bN07n8oplXLlypdZl58yZI1+2Tp06RioxIYQQQgh5lZg+7wIQQgghhBDyops/fz4GDRoEkUhUofVLSkqwdetWvPfee2rnR0RE4PHjx1q3MWPGDPzyyy8AABsbG/j4+MDa2hoJCQnYu3cv9u7di5SUFPzwww9q12/Tpg0sLCw0bt/S0lLPo9Hu77//xpQpUyCRSGBmZobatWvD2dkZaWlpOHbsGI4dO4b9+/cjOjraKPtzd3eHj48PAKCoqAh37tzBnj17sGfPHnz22Wf4/vvvjbIfRRs2bJD/OywsDLm5ubCzs9N73ZkzZ6qdJ5VKsWXLFqOUkRBCCCGEvLqopz4hhBBCCCFamJiY4MqVK9ixY0eF1vfx8YFIJFIKBJcnzGvQoIHa+Zs3b8Yvv/wCsViMn376Cenp6bhx4wYuXLiAtLQ03LhxA1988QXc3d017mPbtm04efKkxle1atUqdHyK4uPjMXXqVEgkEkyZMgWJiYm4d+8ezp8/j/j4eKSkpGDVqlVo3Lhxpfcl6Nu3r/wYoqOj8eTJE8ydOxcAsHDhQpw5c8Zo+wL4UxWbN28GADg6OqKgoAA7d+7Ua90GDRrgwoULuH37ttr5hw4dQmpqqsZ2QAghhBBCCEBBfUIIIYQQQrQaM2YMAGDBggVgjBm8fu3atdGtWzecPXsW9+7dU5mfm5uL3bt3o27duujcubPabaxbtw4AMGXKFMyaNUulx33jxo3x7bff4uOPPza4fMa0ZcsWFBcXo0GDBvjzzz9VbjJUq1YN77//PtavX19lZTA3N8eSJUvQsmVLeZmM6eDBg0hLS4Onpyc+++wzANB6w0bR+PHjAQAbN25UO1+YPmHCBCOUlBBCCCGEvKooqE8IIYQQQogWU6ZMQZ06dXD9+nX8888/FdqGtmDu9u3bUVhYiHHjxmlM73P//n0AkAeqX1RCOZs1awax+Pn91BCJROjSpQsA4O7du0bdthDAHz16NMaOHQuxWIzIyEgkJibqXHfYsGGwsrLCxo0bVW4Q5efnIywsTH4TiBBCCCGEEE0oqE8IIYQQQogWZmZm+OKLLwDw3voymczgbYwYMQKWlpb4+++/VeYJgX4h8K+Ovb09AOD8+fMG7/tZEsoZExODkpKS51qWijxVoUtOTg527doFABg7dixq1aqFbt26QSaTYdOmTTrXt7Ozw6BBgxAfH49Tp04pzdu5cyfy8/O13twhhBBCCCEEoKA+IYQQQgghOk2aNAn16tXDf//9V6F0Lg4ODhgwYADu3bunlOM9MTERUVFRaNeundY86n369AHAe4m/++67uHDhAqRSqeEHUsWEct67dw99+/bF/v37UVBQ8MzLwRiTB83r169vtO0KT1U0btxY/tTEuHHjAOifgkdIrVN+eeH/2m7uEEIIIYQQAlBQnxBCCCGEEJ1MTU3x5ZdfAgC+/vrrCgXUhWCtYjD377//hkwm0xnI/eSTT9C6dWswxvD777+jXbt2sLe3R5cuXfDpp58iOjpa5/7r1q0LkUik9mWstD49e/bE22+/DQA4cuQI+vXrBwcHB7Ro0QLvvPMO9u7dW+U3IyQSCT7++GPExMQAAEaOHGm0bQvv3dixY+XThg8fDnNzc1y/fl2+T2169+4Nd3d3/PPPPyguLgYApKSk4OjRo2jVqpVRBxEmhBBCCCGvJgrqE0IIIYQQoocJEybAx8cHt2/fVptGR5e+ffvC1dUV//zzjzw1zcaNG2FqaorRo0drXdfOzg4nT57EsmXL0KhRIwBAQUEBTp06hcWLF6Nt27YYPHgwsrKyNG6jTZs26Ny5s9rXG2+8YfDxaPLHH39gx44d8PPzg4mJCUpLS3H16lX88ccfGDBgAFq0aIFr164ZbX/79+9Hly5d0KVLF7Rp0waurq744YcfAABz5syR59avrIcPH+LYsWMAygZPBgBHR0f069cPgH699YX3OysrC/v27QMAbNq0CVKplAbIJYQQQggheqGgPiGEEEIIIXowMTGR99b/5ptvUFpaatD6ZmZmGDlyJNLT0xEeHo6YmBhcv34dgYGBcHNz07m+paUlPvzwQ9y8eRNJSUnYuXMn5syZg7p16wIAdu3ahaFDh2pcf9u2bTh58qTaV0hIiEHHosvQoUMRFRWFjIwMHDp0CN988w3atWsHALhx4wZ69uyJx48fG2VfaWlpOHXqFE6dOoWYmBhYWlqib9+++Pfff7F8+XKj7AOAfHDbDh06oF69ekrzhBQ8QnBel/JPbWzYsAEmJiZKNwsIIYQQQgjRhIL6hBBCCCGE6Gns2LFo0KAB7t27p3cOdUVCT+yNGzfKB8itSO/sGjVqYMiQIVi+fDnu3LmDjz76CAAQGRmpMgDr82Rvb4+ePXti3rx5OHfuHLZt2waxWIy0tDSsXr3aKPsICgoCYwyMMZSWliItLQ3h4eEYPHiwUbYvUJd6R/Dmm2/C3t4eqampOHz4sM5ttW3bFg0bNkR4eDiOHz+OK1euoFevXvDw8DBqmQkhhBBCyKuJgvqEEEIIIYToycTEBF999RWAivXW79ChA3x8fLBnzx5s3LgR9vb2GDhwYKXKZGpqiiVLlqBatWoAgPPnz1dqe1Vp+PDhGDZsGIAXu5zlRUdH47///gMAzJo1S2VMAisrK+Tk5ADQf8Dc8ePHQyKRyG/qUOodQgghhBCiLwrqE0IIIYQQYoDRo0ejcePGiIuLQ2hoqMHrjxs3DsXFxXj06BGGDRsGKyurSpdJLBbDy8sLAB8o9kUmpK550cupSAjUW1tbw8PDQ+1LSKH077//Ii8vT+c2x48fD5FIhAcPHsDW1tboTxYQQgghhJBXFwX1CSGEEEIIMYBYLEZwcDAA4Ntvv5UPequvCRMmoEePHujRowfeeustvdZJS0vTOj8rKws3b94EAPj4+BhUHmPSVU4AOH36NIDnW05DlJaWYsuWLQCAX375BampqRpftWrVQkFBAXbu3Klzu15eXpg+fTp69OiBuXPnwtrauqoPhRBCCCGEvCIoqE8IIYQQQoiBRowYgWbNmiEhIcHgHPb16tXD4cOHcfjwYXTs2FGvdfr164dx48bh6NGjKjcRYmJiMGjQIOTm5qJ69eoIDAw0qDyaTJo0CSKRCJMmTdJ7ne+//x5du3bF5s2bkZubqzQvJSUF77zzDk6cOAGRSISgoCCjlNNQderUgUgk0vspi4iICKSlpcHKykqeOkgdsVgsH+hW3xQ8v/32Gw4fPiy/SUQIIYQQQog+TJ93AQghhBBCCHnZiEQiBAcHY/jw4ZBKpVW+P6lUik2bNmHTpk2wtLRE/fr1YWlpieTkZCQnJwMAHB0d8c8//8DGxkbtNkaMGAELCwuN+1i4cCG6du1aqXKKRCKcPHkSJ0+ehFgshre3N5ycnPD48WM8fPgQpaWlMDExwfLly9G6dWu125g5cybmzp2rcR9RUVFo2rRppcppCCFAP3jwYNjZ2Wlddvz48Vi6dCmOHj2KpKQk1KxZ81kUkRBCCCGEvGYoqE8IIYQQQkgFDB06FC1btkRMTEyV7+vgwYOIiIjA/v37cf36dSQnJyMrKwu2trZo3749AgMD8f7778Pd3V3jNqKjo7XuIz09Xen/qampAICWLVvqXc7vv/8evXr1wv79+3Hu3DkkJSUhPj4eFhYW8PX1Rbdu3fDuu++iefPmGreRl5enNSe9oYMTK5JKpXjy5AkAoEWLFjqXz8nJwe7duwHwgL0uzZs3R7NmzXDt2jVs2rQJ//vf/ypcVkIIIYQQQjQRMcbY8y4EIYQQQggh5MUhk8ng7OwMxhgSExN19lB/WVy6dAmtW7dG9+7dcfTo0eddHEIIIYQQQiqEcuoTQgghhBBClNy4cQPZ2dl4++23X5mAPgD5+AcfffTRcy4JIYQQQgghFUdBfUIIIYQQQoiS06dPw9TUFLNmzXreRTGq06dPo2HDhujXr9/zLgohhBBCCCEVRul3CCGEEEIIIYQQQgghhJCXBPXUJ4QQQgghhBBCCCGEEEJeEhTUJ4QQQgghhBBCCCGEEEJeEhTUJ4QQQgghhBBCCCGEEEJeEqbPuwCEEELIq0wmkyE5ORl2dnYQiUTPuziEEEIIIaSKMcaQm5uLGjVqQCymvpSEEEKMj4L6hBBCSBVKTk6Gp6fn8y4GIYQQQgh5xh4+fIhatWo972IQQgh5BVFQnxBCCKlCdnZ2APiPOnt7++dcGkIIIYQQUtVycnLg6ekp/x5ICCGEGBsF9QkhhLwyfv31VyxduhQpKSlo0qQJVqxYga5du+pc79SpU/Dz80PTpk0RExOjNG/Hjh348ssvERsbC29vb3z33XcYMmSI3mUSUu7Y29tTUJ8QQggh5DVCqRcJIYRUFUruRggh5JWwdetWzJ49G1988QUuX76Mrl27om/fvnjw4IHW9bKzszFx4kT06NFDZd6ZM2cwatQoTJgwAVeuXMGECRMwcuRInDt3rqoOgxBCCCGEEEIIIUQrEWOMPe9CEEIIIZXVvn17tGrVCr/99pt8WqNGjTB48GAsXLhQ43qjR4+Gj48PTExMEBYWptRTf9SoUcjJycH+/fvl0/r06QMnJyds3rxZr3Ll5OTAwcEB2dnZ1FOfEEIIIeQ1QN//CCGEVDVKv0MIIeSlJ5FIcPHiRXz66adK03v37o3Tp09rXC8kJASxsbHYuHEjvv32W5X5Z86cwZw5c5SmBQYGYsWKFRq3WVxcjOLiYvn/c3Jy9DwKQgghhLwOpFIpSkpKnncxSCWZm5tDLKbkB4QQQp4PCuoTQgh56T158gRSqRQeHh5K0z08PJCamqp2nbt37+LTTz/FiRMnYGqq/uMwNTXVoG0CwMKFC7FgwQIDj4AQQgghrzrGGFJTU5GVlfW8i0KMQCwWo27dujA3N3/eRSGEEPIaoqA+IYSQV0b5wcgYY2oHKJNKpRg7diwWLFgAX19fo2xT8Nlnn+HDDz+U/z8nJweenp76FJ8QQgghrzAhoO/u7g5ra2saRPUlJpPJkJycjJSUFNSuXZveS0IIIc8cBfUJIYS89FxdXWFiYqLSgz4tLU2lpz0A5ObmIjo6GpcvX8aMGTMA8B9njDGYmpri4MGDCAgIQLVq1fTepsDCwgIWFhZGOCpCCCGEvCqkUqk8oO/i4vK8i0OMwM3NDcnJySgtLYWZmdnzLg4hhJDXDCWAI4QQ8tIzNzdH69atcejQIaXphw4dQqdOnVSWt7e3x7Vr1xATEyN/vfPOO2jQoAFiYmLQvn17AEDHjh1Vtnnw4EG12ySEEEII0UTIoW9tbf2cS0KMRUi7I5VKn3NJCCGEvI6opz4hhJBXwocffogJEyagTZs26NixI1avXo0HDx7gnXfeAcDT4iQlJWH9+vUQi8Vo2rSp0vru7u6wtLRUmv7BBx+gW7duWLx4MQYNGoRdu3bh8OHDOHny5DM9NkIIIYS8GihNy6uD3ktCCCHPEwX1CSGEvBJGjRqF9PR0fP3110hJSUHTpk0RHh4OLy8vAEBKSgoePHhg0DY7deqELVu2YN68efjyyy/h7e2NrVu3ynvyGyImJga2trYGr6fI1dUVtWvXrtQ2CCGEEEIIIYSQ/7N373FVVfn/x98HkIsXMDnKJUEoNRQrFfNGdA/UqbG00Uwpxksymok2ftVMU7Q0M0XLG42JjkVomlmZSjOZktaUI93UMm+YQIaNIF5A8fz+4MepI6BcDgfO4fV8PPYj9tprf9Zng49He33OOnvDvhlMJpOptpMAAMBR5eXlycvLyyqxPDw8dODAAQr7AADYmQsXLujIkSMKDg6Wu7t7bacDK7ja37Tk/i83N1eenp61lCEAwJGxUh8AABt48MEH5efnV+Xzc3JytGHDBuXk5FDUBwCgnioqknbulLKyJD8/KSJCcnau7awAAICt8aJcAABswNvbW/7+/lXejEZjbV8CAACoRRs2SEFB0t13S489VvzfoKDi9ppgMBiuusXExJj7bdy4sdT5MTExeuihh8rdP3nypEaOHKnAwEC5ubnJ19dXUVFR2r17d7k5TZ8+3Ty+k5OT/P39NXjwYB0/ftyiX1BQkBISEkqdn5CQoKCgoFLxSt7BVCI9PV0Gg0FHjx4tNxcAAGoTRX0AAAAAAOqwDRukRx6Rfv7Zsv3EieL2mijsZ2VlmbeEhAR5enpatC1cuLBa8fv376+vv/5aq1at0o8//qhNmzbprrvu0m+//XbV80JDQ5WVlaWff/5ZKSkp+vbbbzVgwIAq5+Hu7q4VK1boxx9/rHIMAABsjcfvAAAAAABQRxUVSWPHSmW9Dc9kkgwGKS5O6tvXuo/i8fX1Nf/s5eUlg8Fg0VYdp0+fVlpamrZv364777xTktSqVSt17dr1mue6uLiY8/D399eIESP09NNPKy8vr0rPr7/pppvUokULPffcc1q7dm2lzwcAoDawUh8AAAAAgDpq587SK/T/yGSSjh8v7mcvGjdurMaNG2vjxo0qKCiocpzs7Gxt2LBBzs7Ocq7GJxpz5szR+vXr9eWXX1Y5BgAAtkRRHwAAAACAOiory7r9asKgQYPMhfqS7c033yy3v4uLi5KSkrRq1So1bdpU4eHhevbZZ/XNN99cc6xvv/1WjRs3VsOGDeXn56ft27dr9OjRatSoUZXz79y5swYMGKBJkyZVOQYAALZEUR8AAAAAgDrKz8+6/WrCggULlJ6ebrH9+c9/vuo5/fv3V2ZmpjZt2qSoqCht375dnTt3VlJS0lXPu+mmm5Senq4vv/xSL7zwgjp27KgXXnih2tcwa9Ys7dy5U9u2bat2LAAAahpFfQAAAAAA6qiICKlly+Jn55fFYJACAor71RZfX1+1bt3aYmvSpMk1z3N3d9f999+vadOmadeuXYqJidHzzz9/1XNcXV3VunVrhYaG6tlnn1XHjh31t7/9zaKPp6encnNzS517+vRpeXl5lRn3xhtv1IgRIzRp0iSZynqBAQAAdQhFfQAAAAAA6ihnZ2nhwuKfryzsl+wnJFj3Jbm1pX379jp79mylzpk6daqSk5P13//+19wWEhJS5vPxv/zyS910003lxpo2bZp+/PFHvf3225XKAQAAW6OoDwAAAABAHdavn/TOO9L111u2t2xZ3N6vX+3kVVWnTp3SPffcozVr1uibb77RkSNHtG7dOs2dO1d9+/atVKwbbrhBffv21bRp08xt48eP10cffaT4+Hjt27dP+/bt08yZM7VlyxY988wz5cby8fHR+PHjtWjRoipfGwAAtuBS2wkAAAAAAICr69dP6ttX2rmz+KW4fn7Fj9yxxxX6jRs3Vrdu3bRgwQIdOnRIFy9eVEBAgEaMGKFnn3220vGeeeYZhYeH64svvlC3bt3UvXt3bd26VfHx8UpISJAkhYaGauvWrerWrdtVY02YMEFLly7VhQsXqnJpAADYhMHEw+IAAKgxeXl58vLyUkxMjIKCgqocJzMzU4mJidqzZ486d+5svQQBAECNu3Dhgo4cOaLg4GC5u7vXdjqwgqv9TUvu/3Jzc+Xp6VlLGQIAHBmP3wEAAAAAAAAAwE5Q1AcAAAAAAAAAwE5Q1AcAAAAAAAAAwE5Q1AcAAAAAAAAAwE5Q1AcAAAAAAAAAwE5Q1AcAAAAAAAAAwE5Q1AcAAAAAAAAAwE5Q1AcAAAAAAAAAwE5Q1AcAOIwlS5YoODhY7u7uCgsL086dO8vtm5aWpvDwcHl7e8vDw0MhISFasGCBRZ+kpCQZDIZS24ULF2r6UgAAAAAAAMpEUR8A4BBSUlIUFxenKVOmaO/evYqIiFDv3r2VkZFRZv9GjRrpqaee0o4dO7R//34999xzeu6555SYmGjRz9PTU1lZWRabu7u7LS4JAACg1sXExFgsbvD29lavXr30zTfflOr75JNPytnZWW+//XapY2fPntXEiRN1ww03yN3dXc2bN9ddd92lDz74wNznrrvuKnNBRWxsrLmPwWDQxo0by8x1+/btMhgMOn36tMV+hw4dVFRUZNG3adOmSkpKMu8HBQWVOfacOXMq8dsCAMA2KOoDABzC/PnzNWzYMA0fPlzt2rVTQkKCAgICtHTp0jL7d+rUSYMGDVJoaKiCgoI0ZMgQRUVFlVrdbzAY5Ovra7EBAADY1PTp0syZZR+bObP4eA3q1auXeXHDv/71L7m4uOiBBx6w6HPu3DmlpKRowoQJWrFiRakYsbGx2rhxo1577TUdOHBAW7ZsUf/+/XXq1CmLfiNGjCi1oGLu3LnVyv/QoUNavXr1NfvFx8eXGnvMmDHVGhsAgJrgUtsJAABQXYWFhdqzZ48mTZpk0R4ZGaldu3ZVKMbevXu1a9cuzZo1y6I9Pz9frVq1UlFRkTp27KiZM2eqU6dO5cYpKChQQUGBeT8vL68SVwIAAFAGZ2dp2rTin6dO/b195szi9vj4Gh3ezc3NvLDB19dXEydO1B133KFff/1VzZs3lyStW7dO7du31+TJk+Xn56ejR48qKCjIHOP999/XwoUL1adPH0nFK+PDwsJKjdWwYUOrL6IYM2aMnn/+eQ0aNOiq37hs0qQJCzgAAHaBlfoAALuXk5OjoqIi+fj4WLT7+PgoOzv7que2bNlSbm5u6tKli0aPHq3hw4ebj4WEhCgpKUmbNm1ScnKy3N3dFR4eroMHD5Ybb/bs2fLy8jJvAQEB1bs4AACAqVOLC/fTpv2+Yv+PBf0/FvprWH5+vt588021bt1a3t7e5vYVK1ZoyJAh8vLyUp8+fbRy5UqL83x9fbV582adOXPGZrmWiIuL06VLl/Taa6/ZfGwAAGoCRX0AgMMwGAwW+yaTqVTblXbu3KmvvvpKy5YtU0JCgpKTk83HunfvriFDhujWW29VRESE1q5dq7Zt2+rVV18tN97kyZOVm5tr3o4fP169iwIAAJAsC/tubjYt6H/wwQdq3LixGjdurCZNmmjTpk1KSUmRk1NxSeHgwYP6/PPPNXDgQEnSkCFDtHLlSl2+fNkcIzExUbt27ZK3t7duu+02jRs3Tp999lmpsZYsWWIeq2RbtWpVtfJv2LChnn/+ec2ePVu5ubnl9ps4cWKpsbdv316tsQEAqAkU9QEAds9oNMrZ2bnUqvyTJ0+WWr1/peDgYN18880aMWKExo0bp+lXeSatk5OTbrvttquu1Hdzc5Onp6fFBgAAYBVTp0qurlJhYfF/bbRC/+6771Z6errS09P1xRdfKDIyUr1799axY8ckFa/Sj4qKktFolCT16dNHZ8+e1ccff2yOcccdd+jw4cP617/+pf79++v7779XRESEZl7xroDBgwebxyrZHn744Wpfw7Bhw2Q0GvXSSy+V22fChAmlxu7WrVu1xwYAwNoo6gMA7J6rq6vCwsKUmppq0Z6amqqePXtWOI7JZLJ4Hn5Zx9PT0+Xn51flXAEAAKps5szfC/qFheW/PNfKGjVqpNatW6t169bq2rWrVqxYobNnz+r1119XUVGRVq9erQ8//FAuLi5ycXFRw4YN9dtvv5V6YW6DBg0UERGhSZMmadu2bYqPj9fMmTNVWFho7uPl5WUeq2SzxiIJFxcXzZo1SwsXLlRmZmaZfYxGY6mxPTw8qj02AADWxotyAQAOYfz48YqOjlaXLl3Uo0cPJSYmKiMjQ7GxsZKKH4tz4sQJrV69WpK0ePFiBQYGKiQkRJKUlpamefPmacyYMeaYM2bMUPfu3dWmTRvl5eVp0aJFSk9P1+LFi21/gQAAoH678hn6JfuSTZ+pLxU/8tDJyUnnz583Pyd/7969cnZ2Nvc5cOCABg8erFOnTlk8e/+P2rdvr0uXLunChQtydXWt8bz/8pe/6OWXX9aMGTNqfCwAAGoSRX0AgEMYOHCgTp06pfj4eGVlZalDhw7avHmzWrVqJUnKyspSRkaGuf/ly5c1efJkHTlyRC4uLrrxxhs1Z84cjRw50tzn9OnTevLJJ5WdnS0vLy916tRJO3bsUNeuXW1+fQAAoB4r66W4Jf+1QWG/oKDA/JjD//3vf3rttdeUn5+vBx98UAkJCfrTn/6kW2+91eKc0NBQxcXFac2aNRo7dqzuuusuDRo0SF26dJG3t7f27dunZ599VnfffbfFSvxz586VeqSim5ubrrvuOvP+kSNHlJ6ebtGndevWFbqWOXPmKCoqqsxjZ86cKTV2w4YNeZwiAKDOoagPAHAYo0aN0qhRo8o8lpSUZLE/ZswYi1X5ZVmwYIEWLFhgrfQAAACqpqio7JfiluwXFdXo8Fu2bDE/frBJkyYKCQnRunXr1K5dO3344Yd66623Sp1jMBjUr18/rVixQmPHjlVUVJRWrVqlZ599VufOnZO/v78eeOABTSv5UOL/e/311/X6669btEVFRWnLli3m/fHjx5ca75NPPqnQtdxzzz265557tG3btlLHpk2bViqfkSNHatmyZRWKDQCArRhMJpOptpMAAMBR5eXlycvLSzExMQoKCqpynMzMTCUmJmrPnj3q3Lmz9RIEAAA17sKFCzpy5IiCg4Pl7u5e2+nACq72Ny25/8vNzWWVPwCgRvCiXAAAAAAAAAAA7ARFfQAAAAAAAAAA7ARFfQAAAAAAAAAA7ARFfQAAAAAAAAAA7ARFfQAAAAAAAAAA7ARFfQAAAAAAAAAA7ARFfQAAAAAAAAAA7ARFfQAAAAAAAAAA7ARFfQAAAAAAAAAA7IRLbScAAAAAAEB9ZLpwXrp40XYDNmggg7uH7cYDAAA1gqI+AAAAAAA2ZrpwXpd3pMp07qzNxjQ0bCSnO+6vVGE/JiZGp0+f1saNG0sdCwoK0rFjx0q1z549W5MmTdLRo0cVHBys5s2b69ChQ2rSpIm5T8eOHfXQQw9p+vTpkqTDhw9rypQp+vTTT/Xbb7/JaDQqLCxML7/8stq2baujR49q5syZ+ve//63s7Gz5+/tryJAhmjJlilxdXSv9uwAAwJ5R1AcAAAAAwNYuXiwu6Ls0kBrYoCh9sbB4vIsXJSuu1o+Pj9eIESMs2v5YvJekM2fOaN68eZoxY0aZMQoLC3X//fcrJCREGzZskJ+fn37++Wdt3rxZubm5kqQDBw7o8uXLWr58uVq3bq3vvvtOI0aM0NmzZzVv3jyrXQ8AAPaAoj4AAAAAALWlgasMbm41PoxJki5Z/1E/TZo0ka+v71X7jBkzRvPnz9fo0aPVokWLUsf37dunw4cP69///rdatWolSWrVqpXCw8PNfXr16qVevXqZ92+44Qb98MMPWrp0KUV9AEC9w4tyAQAAAABAjRk0aJBat26t+Pj4Mo83b95cTk5Oeuedd1RUVFThuLm5uWrWrJm10gQAwG5Q1AcAAAAAAFUyceJENW7c2GLbvn27RR+DwaA5c+YoMTFRhw4dKhXj+uuv16JFizRt2jRdd911uueeezRz5kwdPny43HEPHTqkV199VbGxsda+JAAA6jyK+gAAAAAAoEomTJig9PR0i61bt26l+kVFRen222/X1KlTy4wzevRoZWdna82aNerRo4fWrVun0NBQpaamluqbmZmpXr166S9/+YuGDx9u9WsCAKCuo6gPAAAAAACqxGg0qnXr1habh0fZL+KdM2eOUlJStHfv3jKPN2nSRH/+85/1wgsv6Ouvv1ZERIRmzZpl0SczM1N33323evToocTERKtfDwAA9oCiPgAAAAAAqHFdu3ZVv379NGnSpGv2NRgMCgkJ0dmzZ81tJ06c0F133aXOnTtr5cqVcnKipAEAqJ9cajsBAAAAAABQd+Xm5io9Pd2ireQFtWfOnFF2drbFsYYNG8rT07PMWC+88IJCQ0Pl4vJ7OSI9PV3PP/+8oqOj1b59e7m6uurTTz/VG2+8oYkTJ0oqXqF/1113KTAwUPPmzdOvv/5qPt/X19calwkAgN2gqA8AAAAAQG25WCiTjcapqu3bt6tTp04WbU888YQkadq0aZo2bZrFsZEjR2rZsmVlxmrbtq2GDh1q8eicli1bKigoSDNmzNDRo0dlMBjM++PGjZMkbdu2TT/99JN++ukntWzZ0iKmyWST3yAAAHUG31UDADiMJUuWKDg4WO7u7goLC9POnTvL7ZuWlqbw8HB5e3vLw8NDISEhWrBgQal+69evV/v27eXm5qb27dvr3XffrclLAAAA9UWDBjI0bCRduiidP1vz26WLxeM1aFCpNJOSkmQymUptSUlJOnr0aJnHSgr6QUFBMplM6tixo0XM5cuXy2Qyafr06ZKKn8u/cOFCffvttzpz5ozy8vL0zTff6JlnnjE/YicmJqbMsSjoAwDqI1bqAwAcQkpKiuLi4rRkyRKFh4dr+fLl6t27t/bt26fAwMBS/Rs1aqSnnnpKt9xyixo1aqS0tDSNHDlSjRo10pNPPilJ2r17twYOHKiZM2fq4Ycf1rvvvqsBAwYoLS1N3bp1s/UlAgAAB2Jw95DTHfdLFy/abtAGDWRwL/sltgAAwH4YTHysDQBwAN26dVPnzp21dOlSc1u7du300EMPafbs2RWK0a9fPzVq1Ej//Oc/JUkDBw5UXl6ePvroI3OfXr166brrrlNycnKFYubl5cnLy0sxMTEKCgqq+AVdITMzU4mJidqzZ486d+5c5TgAAMD2Lly4oCNHjpi/UQj7d7W/acn9X25ubrnvFgAAoDp4/A4AwO4VFhZqz549ioyMtGiPjIzUrl27KhRj79692rVrl+68805z2+7du0vFjIqKumrMgoIC5eXlWWwAAAAAAADWQlEfAGD3cnJyVFRUJB8fH4t2Hx8fZWdnX/Xcli1bys3NTV26dNHo0aM1fPhw87Hs7OxKx5w9e7a8vLzMW0BAQBWuCAAAAAAAoGwU9QEADsNgMFjsm0ymUm1X2rlzp7766istW7ZMCQkJpR6rU9mYkydPVm5urnk7fvx4Ja8CAAAAAACgfLwoFwBg94xGo5ydnUutoD958mSplfZXCg4OliTdfPPN+uWXXzR9+nQNGjRIkuTr61vpmG5ubnJzc6vKZQAAAAAAAFwTK/UBAHbP1dVVYWFhSk1NtWhPTU1Vz549KxzHZDKpoKDAvN+jR49SMbdt21apmAAAAAAAANbESn0AgEMYP368oqOj1aVLF/Xo0UOJiYnKyMhQbGyspOLH4pw4cUKrV6+WJC1evFiBgYEKCQmRJKWlpWnevHkaM2aMOebYsWN1xx136KWXXlLfvn313nvv6eOPP1ZaWprtLxAAAAAAAEAU9QEADmLgwIE6deqU4uPjlZWVpQ4dOmjz5s1q1aqVJCkrK0sZGRnm/pcvX9bkyZN15MgRubi46MYbb9ScOXM0cuRIc5+ePXvq7bff1nPPPaepU6fqxhtvVEpKirp162bz6wMAAAAAAJAkg8lkMtV2EgAAOKq8vDx5eXkpJiZGQUFBVY6TmZmpxMRE7dmzR507d7ZeggAAoMZduHBBR44cUXBwsNzd3c3tGRkZysnJsVkeRqNRgYGBNhvPkZX3N5V+v//Lzc2Vp6dnLWUIAHBkrNQHAAAAAMDGMjIyFBISovPnz9tsTA8PDx04cKDShf3s7Gy98MIL+vDDD3XixAm1aNFCHTt2VFxcnO69914FBQXp2LFjSk5O1qOPPmpxbmhoqPbt26eVK1cqJiZGkhQUFKS4uDjFxcWZ948dO2bO8YYbbtCYMWMsvkFZUFCg+Ph4rVmzRtnZ2WrZsqWmTJmioUOHVv0XAgCAnaKoDwAAAACAjeXk5Oj8+fPq16+fjEajTcbbsGGDcnJyKlXUP3r0qMLDw9W0aVPNnTtXt9xyiy5evKitW7dq9OjROnDggCQpICBAK1eutCjqf/7558rOzlajRo2uOU58fLxGjBih/Px8JSUlKTY2Vk2bNtXAgQMlSQMGDNAvv/yiFStWqHXr1jp58qQuXbpUyd8CAACOgaI+AAAAAAC1xGg0yt/fv7bTKNeoUaNkMBj0n//8x6I4HxoaarFKfvDgwVqwYIGOHz+ugIAASdIbb7yhwYMHa/Xq1dccp0mTJvL19ZUkzZo1S2vXrtXGjRs1cOBAbdmyRZ9++qkOHz6sZs2aSVK1HmsIAIC9c6rtBAAAAAAAQN3z22+/acuWLRo9enSZq+2bNm1q/tnHx0dRUVFatWqVJOncuXNKSUmp8uNx3N3ddfHiRUnSpk2b1KVLF82dO1fXX3+92rZtq7///e82fXQRAAB1CUV9AAAAAABQyk8//SSTyaSQkJAK9R86dKiSkpJkMpn0zjvv6MYbb1THjh0rNealS5eUlJSkb7/9Vvfee68k6fDhw0pLS9N3332nd999VwkJCXrnnXc0evToyl4SAAAOgaI+AAAAAAAoxWQySZIMBkOF+v/pT39Sfn6+duzYoTfeeKNSq/QnTpyoxo0by8PDQ6NHj9aECRPML8q9fPmyDAaD3nzzTXXt2lV9+vTR/PnzlZSUxGp9AEC9RFEfAAAAAACU0qZNGxkMBu3fv79C/V1cXBQdHa3nn39eX3zxhQYPHlzhsSZMmKD09HQdO3ZM+fn5mjt3rpyciksWfn5+uv766+Xl5WXu365dO5lMJv3888+VuygAABwARX0AAAAAAFBKs2bNFBUVpcWLF+vs2bOljp8+fbpU29ChQ/Xpp5+qb9++uu666yo8ltFoVOvWreXv71/qmwHh4eHKzMxUfn6+ue3HH3+Uk5OTWrZsWfELAgDAQVDUBwAAAAAAZVqyZImKiorUtWtXrV+/XgcPHtT+/fu1aNEi9ejRo1T/du3aKScnRytXrrRaDo899pi8vb3117/+Vfv27dOOHTs0YcIEDR06VB4eHlYbBwAAe+FS2wkAAAAAAFBf5eTk1OlxgoOD9d///lcvvPCCnnnmGWVlZal58+YKCwvT0qVLyzzH29u7OqmW0rhxY6WmpmrMmDHq0qWLvL29NWDAAM2aNcuq4wAAYC8o6gMAAAAAYGNGo1EeHh7asGGDzcb08PCQ0Wis9Hl+fn567bXX9Nprr5V5/OjRo1c9/8rH9FzZ/1rnS1JISIhSU1Ov2Q8AgPqAoj4AAAAAADYWGBioAwcO2GylvlT8QUJgYKDNxgMAADWDoj4AAAAAALUgMDCQIjsAAKg0XpQLAAAAAAAAAICdoKgPAAAAAAAAAICdoKgPAAAAAAAAAICdoKgPAAAAAIANXL58ubZTgJWYTKbaTgEAUI/xolwAAAAAAGqQq6urnJyclJmZqebNm8vV1VUGg6G200IVmUwm/frrrzIYDGrQoEFtpwMAqIco6gMAAAAAUIOcnJwUHBysrKwsZWZm1nY6sAKDwaCWLVvK2dm5tlMBANRDFPUBAAAAAKhhrq6uCgwM1KVLl1RUVFTb6aCaGjRoQEEfAFBrKOoDABzGkiVL9PLLLysrK0uhoaFKSEhQREREmX03bNigpUuXKj09XQUFBQoNDdX06dMVFRVl7pOUlKS//vWvpc49f/683N3da+w6AACAYyp5XAuPbAEAANXBi3IBAA4hJSVFcXFxmjJlivbu3auIiAj17t1bGRkZZfbfsWOH7r//fm3evFl79uzR3XffrQcffFB79+616Ofp6amsrCyLjYI+AAAAAACoLazUBwA4hPnz52vYsGEaPny4JCkhIUFbt27V0qVLNXv27FL9ExISLPZffPFFvffee3r//ffVqVMnc7vBYJCvr2+N5g4AAAAAAFBRrNQHANi9wsJC7dmzR5GRkRbtkZGR2rVrV4ViXL58WWfOnFGzZs0s2vPz89WqVSu1bNlSDzzwQKmV/FcqKChQXl6exQYAAAAAAGAtFPUBAHYvJydHRUVF8vHxsWj38fFRdnZ2hWK88sorOnv2rAYMGGBuCwkJUVJSkjZt2qTk5GS5u7srPDxcBw8eLDfO7Nmz5eXlZd4CAgKqdlEAAAAAAABloKgPAHAYBoPBYt9kMpVqK0tycrKmT5+ulJQUtWjRwtzevXt3DRkyRLfeeqsiIiK0du1atW3bVq+++mq5sSZPnqzc3Fzzdvz48apfEAAAAAAAwBV4pj4AwO4ZjUY5OzuXWpV/8uTJUqv3r5SSkqJhw4Zp3bp1uu+++67a18nJSbfddttVV+q7ubnJzc2t4skDAAAAAABUAiv1AQB2z9XVVWFhYUpNTbVoT01NVc+ePcs9Lzk5WTExMXrrrbf0pz/96ZrjmEwmpaeny8/Pr9o5AwAAAAAAVAVFfQCATSxatEj/+c9/LNpOnjypb775psz+7733noYOHVrh+OPHj9c//vEPvfHGG9q/f7/GjRunjIwMxcbGSip+LM7jjz9u7p+cnKzHH39cr7zyirp3767s7GxlZ2crNzfX3GfGjBnaunWrDh8+rPT0dA0bNkzp6enmmAAAAAAAALZGUR8AYBNxcXHasmWLRdvSpUvVqVOnMvunp6dr1apVFY4/cOBAJSQkKD4+Xh07dtSOHTu0efNmtWrVSpKUlZWljIwMc//ly5fr0qVLGj16tPz8/Mzb2LFjzX1Onz6tJ598Uu3atVNkZKROnDihHTt2qGvXrpW5dAAAAAAAAKvhmfoAAIcxatQojRo1qsxjSUlJFvvbt2+/ZrwFCxZowYIFVsgMAAAAAADAOlipDwAAAAAAAACAnaCoDwAAAAAAAACAnaCoDwAAAAAAAACAnaCoDwAAAAAAAACAneBFuQAAm/nuu++0du1ai31JWrdunUwmU6m+AAAAAAAAsERRHwBgM+vXr9f69evN+yWF/EcffbRUX5PJJIPBYLPcAAAAAAAA7AFFfQCATTz//PO1nQIAAAAAAIDdo6gPALAJivoAAAAAAADVx4tyAQAAAAAAAACwE6zUBwDUCenp6frkk08kSbfffrtuu+22Ws4IAAAAAACg7mGlPgDAJnbs2KHHH39cn3/+ealjzz33nMLCwvT3v/9df//739W9e3eNGTOmFrIEAAAAAACo2yjqAwBsIiUlRevWrVP79u0t2j/55BO9+OKLcnZ2VnR0tGJjY2U0GrVkyRJt3LixdpIFAAAAAACooyjqAwBsYvfu3erWrZs8PT0t2pcvXy6DwaBly5YpKSlJixcv1s6dO9WgQQMlJSXVTrIAAAAAAAB1FEV9AIBNZGZmqm3btqXaP/nkE3l6eiomJsbc1rZtW/Xp00dfffWVDTMEAAAAAACo+yjqAwBs4n//+5+MRqNF288//6xff/1Vt99+u5ycLP+X1Lp1a+Xk5NgyRQAAAAAAgDqPoj4AwCaaNGmizMxMi7Y9e/ZIksLCwkr1NxgMcnd3t0luAAAAAAAA9oKiPgDAJm655RZ98MEHOnv2rLnt3XfflcFg0B133FGq/6FDh+Tv72/LFAEAAAAAAOo8ivoAAJsYOnSofvvtN915551atGiRnn76aa1Zs0YBAQG66667LPoWFRVpx44duvnmm2snWQAAAAAAgDrKpbYTAADUD0OGDNG//vUvrVq1Snv37pXJZFKTJk30+uuvl3qe/ocffqicnBxFRUXVUrYAAAAAAAB1E0V9AIDNrFy5UsOGDdPu3bvVrFkzRUVFqWXLlqX6ubm5acGCBerbt28tZAkAAAAAAFB38fgdAIBN3X777ZowYYKGDRtWZkFfkqKiojR27Fh5e3tXKvaSJUsUHBwsd3d3hYWFaefOneX23bBhg+6//341b95cnp6e6tGjh7Zu3Vqq3/r169W+fXu5ubmpffv2evfddyuVEwAAAAAAgDVR1AcAOISUlBTFxcVpypQp2rt3ryIiItS7d29lZGSU2X/Hjh26//77tXnzZu3Zs0d33323HnzwQe3du9fcZ/fu3Ro4cKCio6P19ddfKzo6WgMGDNAXX3xhq8sCAAAAAACwYDCZTKbaTgIA4PjWrl1bpfMGDBhQoX7dunVT586dtXTpUnNbu3bt9NBDD2n27NkVihEaGqqBAwdq2rRpkqSBAwcqLy9PH330kblPr169dN111yk5OblCMfPy8uTl5aWYmBgFBQVV6JyyZGZmKjExUXv27FHnzp2rHAcAAAA1q+T+Lzc3V56enrWdDgDAAfFMfQCATTz66KMyGAwV7m8ymWQwGCpU1C8sLNSePXs0adIki/bIyEjt2rWrQuNdvnxZZ86cUbNmzcxtu3fv1rhx4yz6RUVFKSEhodw4BQUFKigoMO/n5eVVaHwAAAAAAICKoKgPALAZFxcX9enTRx07drRq3JycHBUVFcnHx8ei3cfHR9nZ2RWK8corr+js2bMWHyJkZ2dXOubs2bM1Y8aMSmQPAAAAAABQcRT1AQA28dBDD+nDDz/Upk2bdOzYMQ0dOlSDBw/WddddZ7UxrvwmQMlq/2tJTk7W9OnT9d5776lFixbVijl58mSNHz/evJ+Xl6eAgICKpA8AAAAAAHBNvCgXAGATGzZs0IkTJ/Tyyy/r0qVLevrpp+Xv769BgwYpNTW1WrGNRqOcnZ1LraA/efJkqZX2V0pJSdGwYcO0du1a3XfffRbHfH19Kx3Tzc1Nnp6eFhsAAAAAAIC1UNQHANiM0WjU+PHj9c033+jzzz/X448/ri1btqhXr14KDAzUtGnTdPjw4UrHdXV1VVhYWKkPB1JTU9WzZ89yz0tOTlZMTIzeeust/elPfyp1vEePHqVibtu27aoxAQAAAAAAahJFfQBArejatauWL1+urKwsJSUlqXXr1nrhhRfUtm1bffzxx5WON378eP3jH//QG2+8of3792vcuHHKyMhQbGyspOLH4jz++OPm/snJyXr88cf1yiuvqHv37srOzlZ2drZyc3PNfcaOHatt27bppZde0oEDB/TSSy/p448/VlxcXLWvHwAAAAAAoCoo6gMAapW7u7siIyPVq1cv+fn56fLlyzp37lyl4wwcOFAJCQmKj49Xx44dtWPHDm3evFmtWrWSJGVlZSkjI8Pcf/ny5bp06ZJGjx4tPz8/8zZ27Fhzn549e+rtt9/WypUrdcsttygpKUkpKSnq1q1b9S8cAAAAAACgCgwmk8lU20kAAOqfoqIiffDBB3rjjTf00UcfqaioSB07dtTQoUMVExOjRo0a1XaKVpGXlycvLy/FxMQoKCioynEyMzOVmJioPXv2qHPnztZLEAAAAFZVcv+Xm5vL+5UAADXCpbYTAADUL/v27dMbb7yhNWvW6OTJk/L29taoUaM0dOhQ3XLLLbWdXp23f//+ascwGo0KDAy0QjYAAAAAAMDWKOoDAGwiMTFRb7zxhr788ksZDAZFRkZq6NCh6tu3rxo0aFDb6dV5+fn5MhgMGjJkSLVjeXh46MCBAxT2AQAAAACwQxT1AQA2ERsbqwYNGujBBx/UE088oeuvv16StHfv3que17VrV1ukV+dduHBBJpNJ/fr1k9ForHKcnJwcbdiwQTk5ORT1AQAAAACwQxT1AQA2c/HiRb3//vt6//33K3xOUVFRDWZkf4xGo/z9/Ws7DQAAAAAAUEso6gMAbOKJJ56o7RQAAAAAAADsHkV9AIBNrFy5srZTAAAAAAAAsHtOtZ0AAAAAAAAAAACoGFbqAwBsYtSoUVU6b8mSJVbOBAAAAAAAwH5R1AcA2MSyZcsq3NdgMJh/pqgPAAAAAADwO4r6AACb+OSTTyrULyMjQ/Hx8Tp06JBFcR8AAAAAAAAU9QEANnLnnXde9fj//vc/vfjii1q8eLEuXLigHj166KWXXrJRdgAAAAAAAPaBoj4AoFZduHBBCQkJmjt3rk6fPq2QkBC9+OKLeuihh2o7NQAAAAAAgDrHqbYTAADUTyaTSf/4xz/Upk0bPfvss2rYsKESExP13XffUdAHAAAAAAAoByv1AQA2t3HjRj377LP64Ycf5OnpqRdffFFxcXFyd3ev7dQAAAAAAADqNIr6AACbSUtL08SJE/X555/L1dVV48aN05QpU3TdddfVdmoAAAAAAAB2gaI+AMAm/vznP+vDDz+Uk5OTnnjiCcXHx6tly5a1nRYAAAAAAIBdoagPALCJDz74QAaDQYGBgcrOztaTTz55zXMMBoM+/PBDG2QHAAAAAABgHyjqAwBsxmQy6ciRIzpy5EiF+hsMhhrOCAAAAAAAwL5Q1AcA2ERFC/kAAAAAAAAoH0V9AIBNtGrVqrZTAAAAAAAAsHtOtZ0AAADWsmTJEgUHB8vd3V1hYWHauXNnuX2zsrL02GOP6aabbpKTk5Pi4uJK9UlKSpLBYCi1XbhwoQavAgAAAAAAoHwU9QEADiElJUVxcXGaMmWK9u7dq4iICPXu3VsZGRll9i8oKFDz5s01ZcoU3XrrreXG9fT0VFZWlsXm7u5eU5cBAAAAAABwVRT1AQAOYf78+Ro2bJiGDx+udu3aKSEhQQEBAVq6dGmZ/YOCgrRw4UI9/vjj8vLyKjeuwWCQr6+vxQYAAAAAAFBbKOoDAOxeYWGh9uzZo8jISIv2yMhI7dq1q1qx8/Pz1apVK7Vs2VIPPPCA9u7de9X+BQUFysvLs9gAAAAAAACshaI+AMDu5eTkqKioSD4+PhbtPj4+ys7OrnLckJAQJSUladOmTUpOTpa7u7vCw8N18ODBcs+ZPXu2vLy8zFtAQECVxwcAAAAAALgSRX0AgMMwGAwW+yaTqVRbZXTv3l1DhgzRrbfeqoiICK1du1Zt27bVq6++Wu45kydPVm5urnk7fvx4lccHAAAAAAC4kkttJwAAQHUZjUY5OzuXWpV/8uTJUqv3q8PJyUm33XbbVVfqu7m5yc3NzWpjAgAAAAAA/BEr9QEAds/V1VVhYWFKTU21aE9NTVXPnj2tNo7JZFJ6err8/PysFhMAAAAAAKAyWKkPAHAI48ePV3R0tLp06aIePXooMTFRGRkZio2NlVT8WJwTJ05o9erV5nPS09MlFb8M99dff1V6erpcXV3Vvn17SdKMGTPUvXt3tWnTRnl5eVq0aJHS09O1ePFim18fAAAAAACARFEfAOAgBg4cqFOnTik+Pl5ZWVnq0KGDNm/erFatWkmSsrKylJGRYXFOp06dzD/v2bNHb731llq1aqWjR49Kkk6fPq0nn3xS2dnZ8vLyUqdOnbRjxw517drVZtcFAAAAAADwRxT1AQAOY9SoURo1alSZx5KSkkq1mUymq8ZbsGCBFixYYI3UAAAAAAAArIJn6gMAAAAAAAAAYCco6gMAAAAAAAAAYCco6gMAAAAAAAAAYCco6gMAAAAAAAAAYCco6gMAAAAAAAAAYCco6gMAAAAAAAAAYCco6gMAAAAAAAAAYCco6gMAAAAAAAAAYCdcajsBAABge/v37692jIKCArm5uVUrhtFoVGBgYLVzAQAAAACgvqCoDwBAPZKfny+DwaAhQ4ZUO5bBYJDJZKpWDA8PDx04cIDCPgAAAAAAFURRHwCAeuTChQsymUzq16+fjEZjleMcPHhQn3zySbXi5OTkaMOGDcrJyaGoDwAAAABABVHUBwCgHjIajfL396/y+Tk5OVaJAwAAAAAAKocX5QIAAAAAAAAAYCdYqQ8AAGqVNV7aywt3AQAAAAD1BUV9AABQK6z50l5euAsAAAAAqC8o6gMAgFphrZf28sJdAAAAAEB9QlEfAADUKl62CwAAAABAxfGiXAAAAAAAAAAA7ARFfQAAAAAAAAAA7ARFfQAAAAAAAAAA7ARFfQCAw1iyZImCg4Pl7u6usLAw7dy5s9y+WVlZeuyxx3TTTTfJyclJcXFxZfZbv3692rdvLzc3N7Vv317vvvtuDWUPAAAAAABwbRT1AQAOISUlRXFxcZoyZYr27t2riIgI9e7dWxkZGWX2LygoUPPmzTVlyhTdeuutZfbZvXu3Bg4cqOjoaH399deKjo7WgAED9MUXX9TkpQAAAAAAAJSLoj4AwCHMnz9fw4YN0/Dhw9WuXTslJCQoICBAS5cuLbN/UFCQFi5cqMcff1xeXl5l9klISND999+vyZMnKyQkRJMnT9a9996rhISEGrwSAAAAAACA8rnUdgIAAFRXYWGh9uzZo0mTJlm0R0ZGateuXVWOu3v3bo0bN86iLSoq6qpF/YKCAhUUFJj38/Lyqjw+Kmf//v3VjmE0GhUYGGiFbAAAAAAAqBkU9QEAdi8nJ0dFRUXy8fGxaPfx8VF2dnaV42ZnZ1c65uzZszVjxowqj4nKy8/Pl8Fg0JAhQ6ody83NTevXr5efn1+14vDhAAAAAACgplDUBwA4DIPBYLFvMplKtdV0zMmTJ2v8+PHm/by8PAUEBFQrB1zdhQsXZDKZ1K9fPxmNxirHycjI0NatW/XAAw9UOycPDw8dOHCAwj4AAAAAwOoo6gMA7J7RaJSzs3OpFfQnT54stdK+Mnx9fSsd083NTW5ublUeE1VnNBrl7+9f5fNzcnKs8uFATk6ONmzYoJycHIr6AAAAAACro6gPALB7rq6uCgsLU2pqqh5++GFze2pqqvr27VvluD169FBqaqrFc/W3bdumnj17Vitf1G3V/XAAAAAAAICaRFEfAOAQxo8fr+joaHXp0kU9evRQYmKiMjIyFBsbK6n4sTgnTpzQ6tWrzeekp6dLKn4m+6+//qr09HS5urqqffv2kqSxY8fqjjvu0EsvvaS+ffvqvffe08cff6y0tDSbXx8AAAAAAIBEUR8A4CAGDhyoU6dOKT4+XllZWerQoYM2b96sVq1aSZKysrKUkZFhcU6nTp3MP+/Zs0dvvfWWWrVqpaNHj0qSevbsqbffflvPPfecpk6dqhtvvFEpKSnq1q2bza4L9mv//v3VjsELdwEAAAAAV6KoDwBwGKNGjdKoUaPKPJaUlFSqzWQyXTPmI488okceeaS6qaEeyc/Pl8Fg0JAhQ6odixfuAgAAAACuRFEfAADAii5cuMALdwEAAAAANYaiPgAAQA3ghbsAAAAAgJpAUR8AAKAOq+6z+XkuPwAAAAA4For6AAAAdZC1ns3Pc/kBAAAAwLFQ1AcAAKiDrPFsfp7LDwAAAACOh6I+AABAHcaz+QEAAAAAf+RU2wkAAAAAAAAAAICKYaU+AAA20MTJoEa6XOXzm7o4y7dxI3k6UJy6lIujxvF0Msi3cSMd+fYbuVw4X+VcJKlZs2a6/vrrqxUDAID6wHQmr7ZTAAA4OIPJZDLVdhIAADiqvLw8eXl56aOxI9X8Oq8qx/nfb6d1LOOY2rZtq4YNPRwiTl3KxVHj5OWe0eEjh6ucwx85Ozvr4YceVqPGjawSDwAAR5V37py8Bw9Xbm6uPD09azsdAIADYqU+AAA2cNEknZOhyuefKSrSqXPndfaySXKQOHUpF0eNc7qwUKfOnVebNm3k4VH1DxjOnz+vgwcP6nhOjppVcz2Ih4eHmjShwAEAcGCFF2s7AwCAg6OoDwCADRSaTLpYjQLvhcsm5RdeVIFJcnWQOHUpF0eNUxLDyd1Dro0bVzmXMwWFyi+8qLXvbapyjBLOzs4aOGCAGjdpUq04RZcuydmlereyDRs2lJdX1b9BAwBAmVxcazsDAICDo6gPAACAq7p06ZIkqV27dmrYsGGV4+Tm5uqnn37SW8nJ1kqtWqz1AQMfDgAAAACwJYr6AAAAqJCGDRuqSZOqr/g/d+6cpOp/OHDq1CkdPXq0WnGs+QFDXfr2gcSHDAAAAICjo6gPAAAAm7LWhwPViWOtDxjq2rcPJL6BAAAAADg6ivoAAACotxzp2weSdT9kcHFx0VNPPUVhHwAAAKhjKOoDAAAA1VQXvn3wxzjV/XDg3Llz2r9/vzKOHZOxefMqx2G1PwAAAGB9FPUBALABV4NBDWSq8vnuTgY1dm0gN4McJk5dysVR49SlXOpanLqUS03Eua5RQzVq3KjKcQwXL6qxawNt+/CDKseQJGdnFw0d+lc1aeJZrTgAYFcuFdZ2BgAAB0dRHwAAG2hgkBpWo1DXxNlZ3g091MjJ4DBx6lIujhqnLuVS1+LUpVzqYpwCmeTd0EOtAlvJzd2tajEuFOhYxjFdzD0tuThXORcAsDuXLtZ2BgAAB0dRHwAAG9h8plCB17lX+fz92f/T5o/TNMQ3SD4Nr3OIOHUpF0eNU5dyqWtx6lIudTrOkCD5NKtanF/yftGaj9PU9KFH1aZFYJVzkaRmzZrp+uuvr1YMALAV57y82k4BAODgKOoDAGADZy6bdFZOVT7/9KUiZeefVd5lkxo7SJy6lIujxqlLudS1OHUpF0eNk5l3Rr+cPadHYv5a5TxKuLm5af369fLz86tWnIKCArm5Ve2bB39kNBoVGFi9DyoAOC5D1b8oBQBAhVDUBwA4jCVLlujll19WVlaWQkNDlZCQoIiIiHL7f/rppxo/fry+//57+fv76//+7/8UGxtrPp6UlKS//rV0Mer8+fNyd6/6qnsAqA8uXLggk8mkfv36yWg0VjlORkaGtm7dqgceeKDaORkMBplM1a+2eXh46MCBAxT2AQAAUCso6gMAHEJKSori4uK0ZMkShYeHa/ny5erdu7f27dtXZtHlyJEj6tOnj0aMGKE1a9bos88+06hRo9S8eXP179/f3M/T01M//PCDxbkU9AGg4oxGo/z9/at8fk5OjlU+HDh48KA++eSTasfJycnRhg0btHPnTrVr167KcVjtDwAAgKqiqA8AcAjz58/XsGHDNHz4cElSQkKCtm7dqqVLl2r27Nml+i9btkyBgYFKSEiQJLVr105fffWV5s2bZ1HUNxgM8vX1tck1AADKZ40PB6wRJz8/XwaDQUOGDKlyDIlHCgEAAKDqKOoDAOxeYWGh9uzZo0mTJlm0R0ZGateuXWWes3v3bkVGRlq0RUVFacWKFbp48aIaNGggqbh406pVKxUVFaljx46aOXOmOnXqVG4uBQUFKigoMO/n8aI0AHAo1nisUF18pJC1PmTgwwEAAICaR1EfAGD3cnJyVFRUJB8fH4t2Hx8fZWdnl3lOdnZ2mf0vXbqknJwc+fn5KSQkRElJSbr55puVl5enhQsXKjw8XF9//bXatGlTZtzZs2drxowZ1rkwAECdVZ0V/3XtkULW/JCBDwcAAABqHkV9AIDDMBgMFvsmk6lU27X6/7G9e/fu6t69u/l4eHi4OnfurFdffVWLFi0qM+bkyZM1fvx4835eXp4CAgIqdyEAgHqhrjxSyFofMljzwwFeRgwAAFA+ivoAALtnNBrl7OxcalX+yZMnS63GL+Hr61tmfxcXF3l7e5d5jpOTk2677TYdPHiw3Fzc3Nys8mxjAABsra58OFDyMuKcnByK+gAAAGWgqA8AsHuurq4KCwtTamqqHn74YXN7amqq+vbtW+Y5PXr00Pvvv2/Rtm3bNnXp0sX8PP0rmUwmpaen6+abb7Ze8gAAOJjqfjgAAACAq6OoDwBwCOPHj1d0dLS6dOmiHj16KDExURkZGYqNjZVU/FicEydOaPXq1ZKk2NhYvfbaaxo/frxGjBih3bt3a8WKFUpOTjbHnDFjhrp37642bdooLy9PixYtUnp6uhYvXlwr1wgAQH2yf//+ap3Pc/kBAICjoqgPAHAIAwcO1KlTpxQfH6+srCx16NBBmzdvVqtWrSRJWVlZysjIMPcPDg7W5s2bNW7cOC1evFj+/v5atGiR+vfvb+5z+vRpPfnkk8rOzpaXl5c6deqkHTt2qGvXrja/PgAA6ov8/HwZDAYNGTKkWnF4Lj+srahI2rlTysqS/PykiAjJ2bm2swIA1EcU9QEADmPUqFEaNWpUmceSkpJKtd15553673//W268BQsWaMGCBdZKDwAAVMCFCxeq/Wz+kufy79y5U+3atatWPqz4hyRt2CCNHSv9/PPvbS1bSgsXSv361V5eAID6iaI+AAAAAKDOqc6z+a212l9ixT+KC/qPPCKZTJbtJ04Ut7/zDoV9AIBtUdQHAAAAADgUa6z2l1jxj+JH7owdW7qgLxW3GQxSXJzUty+P4gEA2A5FfQAAAACAQ6rOan+JFf8ofob+Hx+5cyWTSTp+vLjfXXfZLC0AQD1HUR8AAAAAgDKw4h9ZWdbtBwCANVDUBwAAAADgKljxX3/5+Vm3HwAA1kBRHwAAAACAGlTXVvwXFBTIzc2tyueXqA/fGoiIkFq2LH4pblnP1TcYio9HRNg+NwBA/UVRHwAAAAAAG6grK/4NBoNMZVWoK6k+fGvA2VlauFB65JHiAv4ff20GQ/F/ExJ4SS4AwLYo6gMAAAAAYAesseL/4MGD+uSTT6z2rYGcnByHLupLUr9+0jvvSGPHWr40t2XL4oJ+v361lhoAoJ6iqA8AAAAAgB2pzor/nJycaseod6ZPVz9nZ/U9OlU7dxa/FNfPr/iRO84vzpS+KZKmT6/tLAEA9QhFfQAAAAAAgPI4O0vTpslZ0l1Tp/7ePnOmNG2aFB9fa6kBAOonivoAAAAAAADlKSnkT5v2+/4fC/p/LPQDAGADFPUBAAAAAACu5o+F/VmzpMJCCvoAgFrjVNsJAAAAAAAA1HlTp0qursUFfVdXCvoAgFrDSn0AAAAAAFAl+/fvr3YMo9GowMBAK2RTw2bO/L2gX1hYvE9hHwBQCyjqAwAAAACASsnPz5fBYNCQIUOqHcvNzU3r16+Xn59fteLU6IcDVz5Dv2RforAPALA5ivoAAAAAAKBSLly4IJPJpH79+sloNFY5TkZGhrZu3aoHHnig2jl5eHjowIED1i/sl/VS3LJengsAgI1Q1AcAAAAAAFViNBrl7+9f5fNzcnKs8uFATk6ONmzYoJycHOsX9YuKyn4pbsl+UZF1xwMA4Boo6gMAAAAAgFpV3Q8HatT06eUfY4U+AKAWONV2AgAAAAAAAAAAoGIo6gMAAAAAAAAAYCco6gMAAAAAAAAAYCco6gMAHMaSJUsUHBwsd3d3hYWFaefOnVft/+mnnyosLEzu7u664YYbtGzZslJ91q9fr/bt28vNzU3t27fXu+++W1PpAwAAAAAAXBNFfQCAQ0hJSVFcXJymTJmivXv3KiIiQr1791ZGRkaZ/Y8cOaI+ffooIiJCe/fu1bPPPqunn35a69evN/fZvXu3Bg4cqOjoaH399deKjo7WgAED9MUXX9jqsgAAAAAAACxQ1AcAOIT58+dr2LBhGj58uNq1a6eEhAQFBARo6dKlZfZftmyZAgMDlZCQoHbt2mn48OEaOnSo5s2bZ+6TkJCg+++/X5MnT1ZISIgmT56se++9VwkJCTa6KgAAAAAAAEsutZ0AAADVVVhYqD179mjSpEkW7ZGRkdq1a1eZ5+zevVuRkZEWbVFRUVqxYoUuXryoBg0aaPfu3Ro3blypPlcr6hcUFKigoMC8n5ubK0nKzs6uzCWV8uuvv0qSsrKyVFhY6BBx6lIujhqnLuVS1+LUpVwcNU5dyqWuxalLuThqnLqUS12LU5dysWacU6dOSZLy8/OVl5dX5TjWUDK+yWSq1TwAAI7LYOL/MgAAO5eZmanrr79en332mXr27Gluf/HFF7Vq1Sr98MMPpc5p27atYmJi9Oyzz5rbdu3apfDwcGVmZsrPz0+urq5KSkrSY489Zu7z1ltv6a9//atF4f6Ppk+frhkzZljx6gAAAGCPjh8/rpYtW9Z2GgAAB8RKfQCAwzAYDBb7JpOpVNu1+l/ZXtmYkydP1vjx4837ly9f1m+//SZvb++rngcAAADHYDKZdObMGfn7+9d2KgAAB0VRHwBg94xGo5ydnUs94ubkyZPy8fEp8xxfX98y+7u4uMjb2/uqfcqLKUlubm5yc3OzaGvatGlFLwUAAAAOwMvLq7ZTAAA4MF6UCwCwe66urgoLC1NqaqpFe2pqqsXjeP6oR48epfpv27ZNXbp0UYMGDa7ap7yYAAAAAAAANY2V+gAAhzB+/HhFR0erS5cu6tGjhxITE5WRkaHY2FhJxY/FOXHihFavXi1Jio2N1Wuvvabx48drxIgR2r17t1asWKHk5GRzzLFjx+qOO+7QSy+9pL59++q9997Txx9/rLS0tFq5RgAAAAAAAIr6AACHMHDgQJ06dUrx8fHKyspShw4dtHnzZrVq1UqSlJWVpYyMDHP/4OBgbd68WePGjdPixYvl7++vRYsWqX///uY+PXv21Ntvv63nnntOU6dO1Y033qiUlBR169bN5tcHAAAAAAAgSQZTyVsBAQAAAAAAAABAncYz9QEAAAAAAAAAsBMU9QEAAAAAAAAAsBMU9QEAAAAAAAAAsBMU9QEAAAAAAAAAsBMU9QEAAAAAAAAAsBMU9QEAAAAAAAAAsBMU9QEAAAAAAAAAsBMU9QEAAAAAAAAAsBMU9QEAAAAAAAAAsBMU9QEAAAAAAAAAsBMU9QEAAAAAAAAAsBMU9QEAAAAAAAAAsBMU9QEAAAAAAAAAsBMU9QEAAAAAAAAAsBMU9QEAAAAAAAAAsBMU9QEAAAAAAAAAsBMU9QEAAAAAAAAAsBMU9QEAAAAAAAAAsBMU9QEAAAAAAAAAsBMU9QEAAAAAAAAAsBMU9QEAAAAAAAAAsBMU9QEAAAAAAAAAsBMU9QEAAAAAAAAAsBMU9QEAAAAAAAAAsBMU9QE4tKCgIBkMBhkMBm3cuLHcfvfdd58MBoOSkpIs2pOSksznu7q66tSpU+XGuHTpklq0aGHuP3369DL7bd26Vf369dP1118vV1dXNW3aVDfddJMefPBBvfLKKzp06JBF/6NHj5pjXms7evRoBX8z17Zv3z6NHDlSbdu2lYeHhxo1aqTg4GDdddddmjp1qnbt2lXqnJLf95W/x/LExMSUuoYGDRrIz89Pf/7zn/XRRx9Z7Xq2b99e5lhGo1EhISEaNGiQli9frry8vHJj/PFvceXvuqxruXJ76KGHrHY9AAAAsD3mF1Xn6POLb7755qr9O3XqZO4bExNz1b6//PKLGjRoIIPBoPDw8Gvm8sd/l88888xV+y5cuNAibwD2yaW2EwAAW5k+fbr69u1b5RuXixcvKiUlRaNGjSrz+NatW/Xrr79eNcZTTz2lxYsXS5IaNWqkNm3aqGHDhjp27Jg++OADffDBB8rKytK8efPKPL9Lly5yc3MrN767u3sFr+bq3nzzTQ0dOlSFhYVq0KCBAgMD1axZM508eVKffvqpPv30U3300Uf66quvrDJeixYt1KZNG0nShQsX9OOPP+r999/X+++/r8mTJ+vFF1+0yjglSm6MTSaTzpw5o59//llvv/223n77bf3973/XSy+9VO7f+Vr+eC1Xat++fZVzBgAAQN3C/KLiHH1+IUlr1qzR3Llzyzz2/fffKz09vcKxkpOTdenSJUnSrl27dOjQId14440VOvett97S3Llz5ezsXG6eAOwfRX0A9YKzs7O+/vprrV+/Xo888kilz2/Tpo1++ukn/fOf/yz3pvuf//ynJOmmm27SDz/8UOp4cnKyFi9eLCcnJy1YsEAjR460uIHet2+f3nrrLXl6epabx7p16xQUFFTp/Cvj6NGjGjZsmAoLCzV06FDNnj1bLVq0MB/Pzs7W+vXr9cUXX1htzN69e1usviksLNSUKVM0b948zZ49Ww8++KB69OhhtfHS0tIs9k0mk7799lstWLBASUlJGj16tI4fP67Zs2dXOvaV1wIAAADHw/yi4hx9fuHv768zZ87orbfe0pw5c+TkVPqhGNf6W5bXv2nTpjp9+rTWrFmj559//prnlcT/+OOPFRUVVer4Dz/8oK+++qrCeQCou3j8DoB6YdCgQZKkGTNmyGQyVfr8wMBA3XHHHfr888/1008/lTp+5swZbdq0ScHBweV+PXLVqlWSpKFDh+rpp58utSKmffv2mjVrlv7v//6v0vlZ09tvv62CggLddNNNev311y1uuCXJ19dXo0eP1urVq2ssB1dXV82dO1cdO3Y051STDAaDbrnlFq1cuVKJiYmSpDlz5mj79u01Oi4AAADsE/OLinP0+YWHh4f69eunEydO6JNPPil13GQy6a233lKjRo308MMPXzPevn379N///lceHh565ZVXJP1e5L+WIUOGSCp/NX5JnOjo6ArFA1B3UdQHUC8MHTpUQUFB+u6777R27doqxbjaDdI777yj8+fPa/DgweV+/fbw4cOSZL6RrKtK8rz55pvLXGViKwaDQbfffrsk6eDBgzYbd8SIEerbt6+k4sI+AAAAcCXmFxVXH+YXJX/Lsorv27dv1/Hjx/Xwww+rUaNG14xVEuOBBx7QY489Jk9PTx06dEi7d+++5rl33nmnAgIC9O677+rs2bMWx0wmk958803zhxAA7BtFfQD1QoMGDTRlyhRJxatpLl++XOkYf/nLX+Tu7q4333yz1LGSG/GSm7mylHzt9T//+U+lx7alkjzT09N18eLFWs2lKquerCE2NlaS9Mknn+j8+fO1kgMAAADqLuYXFVcf5hf33HOPrr/+em3YsEHnzp2zOFbyt6zI6vjLly+b/z089thjcnd3NxfgK7Ja32AwaPDgwTp79qzeffddi2NpaWk6evSoHnroITVp0qRC1wWg7qKoD6DeiImJ0Q033KD9+/dX6euWXl5eevDBB/XTTz9ZrJL4+eeftX37dnXt2lU33XRTuef36tVLUvHN2N/+9jd9+eWXKioqqvyF1LCSPH/66Sf17t1bH330UakbU1swmUz67LPPJEmtW7e26dg9e/aUwWBQYWGhvv76a5uODQAAAPvA/KJi6sP8wsnJSY899pjOnDmj9957z9x+4cIFvfPOO/Lz89O99957zTglq/qvu+469enTR5I0ePBgSVJKSooKCwuvGaPkw4MrPwTg0TuAY6GoD6DecHFx0dSpUyVJ8fHxVbrhLetrlW+++aYuX7581VU0kjRx4kSFhYXJZDJp2bJl6tq1qzw9PXX77bdr0qRJ+uqrr645fnBwsAwGQ5mbtb52e9999+nJJ5+UJP3rX/9Snz595OXlpVtvvVWxsbH64IMPanyyUFhYqP/7v/9Tenq6JGnAgAE1Ot6VPD095eXlJUk6efJkpc5dtWpVuX8jAAAAOA7mFxVTX+YXZRXT33vvPeXl5WnQoEFydna+ZoySc/v37y9XV1dJxd8C8PX11W+//abNmzdfM0b79u3VqVMn/etf/1JWVpYkqaCgQOvWrVOLFi10//33V/raANQ9FPUB1CvR0dFq06aNfvjhhzK/5notvXv3ltFo1Nq1a81fHV2zZo1cXFz06KOPXvXcJk2aKC0tTa+88oratWsnSTp37pw+++wzvfTSS7rtttv00EMP6fTp0+XG6NKli8LDw8vcOnXqVOnrKc/y5cu1fv163XnnnXJ2dtalS5f0zTffaPny5XrwwQd166236ttvv7XaeB999JFuv/123X777erSpYuMRqPmzZsnSRo3bpz52Ze2VPK8yzNnzlTqvBYtWpT7NwIAAIBjYX5RMfVhfnHzzTfrlltuUWpqqnlhUGUevXP+/HmtX79eUvGjd0o4OTmZ/y1U9IW50dHRKioqUnJysiTpgw8+0OnTpzVo0CC5uLhU/KIA1FkU9QHUK87OzubVNDNnztSlS5cqdX6DBg00YMAAnTp1Sps3b1Z6erq+++47RUVFqXnz5tc8393dXePHj9e+fft04sQJbdiwQePGjVNwcLCk4pUcV3tp0bp165SWllbmtnLlykpdy7X069dP27dv12+//abU1FTNnDlTXbt2lSR9//33uu+++/Trr79aZayTJ0/qs88+02effab09HS5u7urd+/eevfddzV//nyrjFFZ+fn5kn5/BmhF9e7du9y/EQAAABwL84uKqw/ziyFDhujSpUtKTk5WTk6OtmzZotDQ0Ap962Hjxo06c+aM/P39deedd1ocK3kEzwcffKD//e9/14xV8s2Akg8BSv57rW9/ALAfFPUB1DuPPfaYbrrpJv30008VXunwRyWrLNasWVOplRdX8vf318MPP6z58+frxx9/1DPPPCOp+OWsJc96rAs8PT1133336bnnntMXX3yhdevWycnJSSdPnlRiYqJVxnjiiSdkMplkMpl06dIlnTx5Ups3b9ZDDz1klfiVlZubq7y8PEnFK+8BAACA8jC/qBxHnl8MHjxYTk5OWrNmjd5++21dunSpwn/Lkn87jz76qJycLMt1Xbp0Udu2bVVYWKi1a9deM5avr6/uu+8+paena8eOHfroo48UEhKiLl26VP6iANRJFPUB1DvOzs6aNm2apKqtpunevbvatGmj999/X2vWrJGnp6f+/Oc/VysnFxcXzZ07V76+vpKk//znP9WKV5MeeeQR9e/fX1LdzrM6PvvsM5lMJrm6uurWW2+t7XQAAABQhzG/qB5Hml/4+/vrnnvu0VdffaWXX35ZTk5O5lX2V/PLL79o27ZtkqT58+eX+Y6DH3/8UVLlHsFT8t/CwkJekAs4GIr6AOqlRx99VO3bt9eRI0eUlJRU6fMHDx6sgoIC/fLLL+rfv788PDyqnZOTk5NatWolqfhFTnXZDTfcIKnu51lVy5YtkyTde++9cnd3r+VsAAAAUNcxv6geR5pflDziJiMjQ3feeadatmx5zXPeeustFRUVyc3NTT4+PuVuUvECpMOHD18z5sMPP6zGjRsrIyNDBoOhQh8uALAfFPUB1EtOTk56/vnnJUmzZs0yv5SqoqKjo3Xvvffq3nvv1YgRIyp0TsnLkspz+vRp7du3T5LUpk2bSuVjTdfKU5J27dolqXbzrCmvv/663n//fUnS5MmTazkbAAAA2APmF+Wrb/OL/v37KzIyUvfee6+efvrpCp1Tsvp+0qRJys7OLnfr0aOHpN9fwHs1DRs21DPPPKN7771XI0eONH/AA8AxUNQHUG/95S9/0c0336xjx45V+hmTN9xwgz7++GN9/PHH5hura+nTp48GDx6sf//736Vu8tPT09W3b1+dOXNGfn5+ioqKqlQ+5YmJiZHBYFBMTEyFz3nxxRcVERGh5ORknTlzxuJYVlaWYmNjtXPnThkMBj3xxBNWybOygoKCZDAYqrQKqiwmk0nffPONhg4dqieffFKS9NxzzykiIsIq8QEAAOD4mF+Urb7NLxo3bqytW7fq448/rtAz/L///nvt3btX0rVfZFtyvCJFfUmaPn26Pv74Yy1durRC/QHYD5faTgAAaovBYNDzzz+vRx55REVFRTU+XlFRkd566y299dZbcnd3V+vWreXu7q7MzExlZmZKkpo2baq1a9eqUaNGZcb4y1/+Ijc3t3LHmD17drUL0QaDQWlpaUpLS5OTk5NuvPFGXXfddfr11191/PhxXbp0Sc7Ozpo/f77CwsLKjDFmzBj9/e9/L3eM7du3q0OHDtXKszpuv/12889nzpzR8ePH9b///U+S1KRJE7300kv629/+VlvpAQAAwA4xvyhbfZhfVEfJKv0ePXqodevWV+07cOBAxcXF6eDBg/r888/VvXt3W6QIoA6iqA+gXuvXr586duyo9PT0Gh9r27Zt2rp1qz766CN99913yszM1OnTp9W4cWN169ZNUVFRGj16tFq0aFFujK+++uqqY5w6dcpiPzs7W5LUsWPHCuf54osv6v7779dHH32kL774QidOnNDRo0fl5uamtm3b6o477tDf/vY33XLLLeXGyM/PV35+frnHK/vysD8qKipSTk6OJFX5JbYlK6dcXFzk6empFi1aKDIyUnfffbcee+wxNWnSpNyxS7i6ulZpbAAAADgu5hel1Yf5RVVdvnxZb775pqRrr9KXJG9vb/Xq1Uvvv/++/vnPf1LUB+oxg8lkMtV2EgAA67t8+bKaNWsmk8mkn3/+udxCtb3573//q7CwMN19993697//XStjS9LZs2fVsGFDm44PAAAA1BbmFwBQd/BMfQBwUN9//71yc3P15JNPOswNt/T7KvtnnnnG5mN/8803kqTAwEAK+gAAAKhXmF8AQN1BUR8AHNSuXbvk4uKip59+urZTsapdu3YpJCREffr0sem4mZmZevnllyVJDz74oE3HBgAAAGob8wsAqDt4/A4AAFexbt06zZo1Sz/88IMKCgrUvHlz7d27V9dff31tpwYAAAAAAOohVuoDAHAVJ06c0Pfff69mzZopOjpan3/+OQV9AKiHlixZouDgYLm7uyssLEw7d+6s0HmfffaZXFxcKvVSSQAAAOBqWKkPAAAAAFeRkpKi6OhoLVmyROHh4Vq+fLn+8Y9/aN++fQoMDCz3vNzcXHXu3FmtW7fWL7/8ovT0dNslDQAAAIdFUR8AAAAArqJbt27q3Lmzli5dam5r166dHnroIc2ePbvc8x599FG1adNGzs7O2rhxI0V9AAAAWIVLbSdgLy5fvqzMzEw1adJEBoOhttMBAABADTOZTDpz5oz8/f3l5MRTK+urwsJC7dmzR5MmTbJoj4yM1K5du8o9b+XKlTp06JDWrFmjWbNmXXOcgoICFRQUmPcvX76s3377Td7e3sw/AAAA6oHKzD8o6ldQZmamAgICajsNAAAA2Njx48fVsmXL2k4DtSQnJ0dFRUXy8fGxaPfx8VF2dnaZ5xw8eFCTJk3Szp075eJSsSnX7NmzNWPGjGrnCwAAAPtWkfkHRf0KatKkiaTiX6qnp2ctZwMAAICalpeXp4CAAPN9IOq3K1fLm0ymMlfQFxUV6bHHHtOMGTPUtm3bCsefPHmyxo8fb97Pzc1VYGAg8w8AAIB6ojLzD4r6FVRyw+7p6clNNQAAQD3Co0/qN6PRKGdn51Kr8k+ePFlq9b4knTlzRl999ZX27t2rp556SlLxo3RMJpNcXFy0bds23XPPPaXOc3Nzk5ubW6l25h8AAAD1S0XmHzwcFAAAAADK4erqqrCwMKWmplq0p6amqmfPnqX6e3p66ttvv1V6erp5i42N1U033aT09HR169bNVqkDAADAQbFSHwAAAACuYvz48YqOjlaXLl3Uo0cPJSYmKiMjQ7GxsZKKH51z4sQJrV69Wk5OTurQoYPF+S1atJC7u3updgAAAKAqKOoDAABUQVFRkS5evFjbaaCaXF1d5eTEl1dxdQMHDtSpU6cUHx+vrKwsdejQQZs3b1arVq0kSVlZWcrIyKjlLAEAgCNj/uEYrDX/MJhMJpMV8nF4eXl58vLyUm5uLs+0BACgHjOZTMrOztbp06drOxVYgZOTk4KDg+Xq6lrqGPd/qE38+wMAABLzD0djrfkHK/UBAAAqoeSGukWLFmrYsCEvUbVjly9fVmZmprKyshQYGMjfEgAAAHUO8w/HYc35B0V9AACACioqKjLfUHt7e9d2OrCC5s2bKzMzU5cuXVKDBg1qOx0AAADAjPmH47HW/IMHiAIAAFRQyTMsGzZsWMuZwFpKvvZaVFRUy5kAAAAAlph/OB5rzT9YqV9J6enpaty4cbViGI1GBQYGWikjAABga3zl1XHwt0Rdx/wDAABwz+o4rPW3pKhfSXfeeWe1Y3h4eOjAgQPcWAMAAAC4KuYfAAAAuBJF/Up68MEH5efnV+Xzc3JytGHDBuXk5HBTDQAAAOCqmH8AAADgShT1K8nb21v+/v61nQYAALBjRUXSzp1SVpbk5ydFREjOzrWdFYC6iPkHAACoLuYfjocX5QIAANjQhg1SUJB0993SY48V/zcoqLi9JhgMhqtuMTEx5n4bN24sdX5MTIweeuihcvdPnjypkSNHKjAwUG5ubvL19VVUVJR2795dbk7Tp083j+/k5CR/f38NHjxYx48ft+gXFBSkhISEUucnJCQoKCioVLzY2FiLfunp6TIYDDp69Gi5uQAAAACOjPmHY84/6mRRf8mSJQoODpa7u7vCwsK0c+fOcvumpaUpPDxc3t7e8vDwUEhIiBYsWGDRJykpqcx/RBcuXKjpSwEAADDbsEF65BHp558t20+cKG6viRvrrKws85aQkCBPT0+LtoULF1Yrfv/+/fX1119r1apV+vHHH7Vp0ybddddd+u233656XmhoqLKysvTzzz8rJSVF3377rQYMGFDlPNzd3bVixQr9+OOPVY4BAAAAOBLmH79ztPlHnXv8TkpKiuLi4rRkyRKFh4dr+fLl6t27t/bt21fmMyAbNWqkp556SrfccosaNWqktLQ0jRw5Uo0aNdKTTz5p7ufp6akffvjB4lx3d/cavx4AAACp+CuvY8dKJlPpYyaTZDBIcXFS377W/Sqsr6+v+WcvLy8ZDAaLtuo4ffq00tLStH37dvPLPFu1aqWuXbte81wXFxdzHv7+/hoxYoSefvpp5eXlydPTs9K53HTTTWrRooWee+45rV27ttLnAwAAAI6E+YclR5t/1LmV+vPnz9ewYcM0fPhwtWvXTgkJCQoICNDSpUvL7N+pUycNGjRIoaGhCgoK0pAhQxQVFVVqdX/JP6A/bgAAALayc2fpFTJ/ZDJJx48X97MXjRs3VuPGjbVx40YVFBRUOU52drY2bNggZ2dnOVdjRjFnzhytX79eX375ZZVjAAAAAI6A+Uf5HGH+UaeK+oWFhdqzZ48iIyMt2iMjI7Vr164Kxdi7d6927dpl/rSmRH5+vlq1aqWWLVvqgQce0N69e68ap6CgQHl5eRYbAABAVWVlWbdfTRg0aJD5Rrlke/PNN8vt7+LioqSkJK1atUpNmzZVeHi4nn32WX3zzTfXHOvbb79V48aN1bBhQ/n5+Wn79u0aPXq0GjVqVOX8O3furAEDBmjSpElVjgEAAAA4AuYflhxt/lGnivo5OTkqKiqSj4+PRbuPj4+ys7Ovem7Lli3l5uamLl26aPTo0Ro+fLj5WEhIiJKSkrRp0yYlJyfL3d1d4eHhOnjwYLnxZs+eLS8vL/MWEBBQvYsDAAD1mp+fdfvVhAULFig9Pd1i+/Of/3zVc/r376/MzExt2rRJUVFR2r59uzp37qykpKSrnnfTTTcpPT1dX375pV544QV17NhRL7zwQrWvYdasWdq5c6e2bdtW7VgAAACAvWL+YcnR5h91qqhfwmAwWOybTKZSbVfauXOnvvrqKy1btkwJCQlKTk42H+vevbuGDBmiW2+9VREREVq7dq3atm2rV199tdx4kydPVm5urnm78m3IAAAAlRERIbVsWfzsyrIYDFJAQHG/2uLr66vWrVtbbE2aNLnmee7u7rr//vs1bdo07dq1SzExMXr++eeveo6rq6tat26t0NBQPfvss+rYsaP+9re/WfTx9PRUbm5uqXNPnz4tLy+vMuPeeOONGjFihCZNmiRTWQ8QBQAAAOoB5h+WHG3+UaeK+kajUc7OzqVW5Z88ebLU6v0rBQcH6+abb9aIESM0btw4TZ8+vdy+Tk5Ouu222666Ut/NzU2enp4WGwAAQFU5O0sLFxb/fOWNdcl+QoJ1X1JVW9q3b6+zZ89W6pypU6cqOTlZ//3vf81tISEhZT6f8ssvv9RNN91Ubqxp06bpxx9/1Ntvv12pHAAAAABHwfzj6ux9/lGnivqurq4KCwtTamqqRXtqaqp69uxZ4Tgmk+mqL0swmUxKT0+XX21+vwQAANQ7/fpJ77wjXX+9ZXvLlsXt/frVTl5VderUKd1zzz1as2aNvvnmGx05ckTr1q3T3Llz1bdv30rFuuGGG9S3b19NmzbN3DZ+/Hh99NFHio+P1759+7Rv3z7NnDlTW7Zs0TPPPFNuLB8fH40fP16LFi2q8rUBAAAA9o75R/nsff7hYrORKmj8+PGKjo5Wly5d1KNHDyUmJiojI0OxsbGSih+Lc+LECa1evVqStHjxYgUGBiokJESSlJaWpnnz5mnMmDHmmDNmzFD37t3Vpk0b5eXladGiRUpPT9fixYttf4EAAKBe69dP6ttX2rmz+KVUfn7FX3m1xxUyjRs3Vrdu3bRgwQIdOnRIFy9eVEBAgEaMGKFnn3220vGeeeYZhYeH64svvlC3bt3UvXt3bd26VfHx8UpISJAkhYaGauvWrerWrdtVY02YMEFLly7VhQsXqnJpAAAAgENg/lE+e55/GEx18GGjS5Ys0dy5c5WVlaUOHTpowYIFuuOOOyRJMTExOnr0qLZv3y5JevXVV7V8+XIdOXJELi4u5ucYjRw5Uk5OxV9EGDdunDZs2KDs7Gx5eXmpU6dOmj59unr06FHhnPLy8uTl5aWYmBgFBQVV+doyMzOVmJioPXv2qHPnzlWOAwAAbO/ChQs6cuSIgoOD5e7uXtvpwAqu9jctuf/Lzc3lUYywOeYfAACA+Yfjsdb8o86t1JekUaNGadSoUWUeu/JNxmPGjLFYlV+WBQsWaMGCBdZKDwAAAAAAAACAWlGnnqkPAAAAAAAAAADKR1EfAAAAAAAAAAA7QVEfAAAAAAAAAAA7QVEfAAAAAAAAAAA7QVEfAAAAAAAAAAA7QVEfAAAAAAAAAAA7QVEfAAAAAAAAAAA7QVEfAAAAAAAAAAA7QVEfAACgHoiJiZHBYDBv3t7e6tWrl7755ptSfZ988kk5Ozvr7bffLnXs7Nmzmjhxom644Qa5u7urefPmuuuuu/TBBx+Y+9x1110WY5VssbGx5j4Gg0EbN24sM9ft27fLYDDo9OnTFvsdOnRQUVGRRd+mTZsqKSnJvB8UFFTm2HPmzKnEbwsAAABAdTD/qNn5B0V9AAAAW5k+XZo5s+xjM2cWH69BvXr1UlZWlrKysvSvf/1LLi4ueuCBByz6nDt3TikpKZowYYJWrFhRKkZsbKw2btyo1157TQcOHNCWLVvUv39/nTp1yqLfiBEjzGOVbHPnzq1W/ocOHdLq1auv2S8+Pr7U2GPGjKnW2AAAAIDdYf5Rrfzr8vzDpUajAwAA4HfOztK0acU/T536e/vMmcXt8fE1Orybm5t8fX0lSb6+vpo4caLuuOMO/frrr2revLkkad26dWrfvr0mT54sPz8/HT16VEFBQeYY77//vhYuXKg+ffpIKl6ZEhYWVmqshg0bmseyljFjxuj555/XoEGD5O7uXm6/Jk2aWH1sAAAAwO4w/6iWujz/YKU+AACArUydWnzjPG3a7ytm/nhD/ccb7RqWn5+vN998U61bt5a3t7e5fcWKFRoyZIi8vLzUp08frVy50uI8X19fbd68WWfOnLFZriXi4uJ06dIlvfbaazYfGwAAALA7zD+qpS7PPyjqAwAA2NIfb6zd3Gx6Q/3BBx+ocePGaty4sZo0aaJNmzYpJSVFTk7Ft4QHDx7U559/roEDB0qShgwZopUrV+ry5cvmGImJidq1a5e8vb112223ady4cfrss89KjbVkyRLzWCXbqlWrqpV/w4YN9fzzz2v27NnKzc0tt9/EiRNLjb19+/ZqjQ0AAADYJeYfVVaX5x8U9QEAAGxt6lTJ1VUqLCz+r41WyNx9991KT09Xenq6vvjiC0VGRqp37946duyYpOJVMlFRUTIajZKkPn366OzZs/r444/NMe644w4dPnxY//rXv9S/f399//33ioiI0MwrntU5ePBg81gl28MPP1ztaxg2bJiMRqNeeumlcvtMmDCh1NjdunWr9tgAAACAXWL+UWV1df5BUR8AAMDWZs78/Ya6sLD8l1dZWaNGjdS6dWu1bt1aXbt21YoVK3T27Fm9/vrrKioq0urVq/Xhhx/KxcVFLi4uatiwoX777bdSL6xq0KCBIiIiNGnSJG3btk3x8fGaOXOmCgsLzX28vLzMY5Vsnp6e1b4GFxcXzZo1SwsXLlRmZmaZfYxGY6mxPTw8qj02AAAAYJeYf1RZXZ1/UNQHAACwpT8+w7KgoPQzLm3IYDDIyclJ58+fNz+ncu/evRYrTNatW6eNGzfq1KlT5cZp3769Ll26pAsXLtgk77/85S8KDQ3VjBkzbDIeAAAAYLeYf1RbXZx/uNR2AgAAAPVGWS+lKvnvtGmW+zWgoKBA2dnZkqT//e9/eu2115Sfn68HH3xQCQkJ+tOf/qRbb73V4pzQ0FDFxcVpzZo1Gjt2rO666y4NGjRIXbp0kbe3t/bt26dnn31Wd999t8VKmHPnzpnHKuHm5qbrrrvOvH/kyBGlp6db9GndunWFrmXOnDmKiooq89iZM2dKjd2wYUOrrNQBAAAA7AbzD4edf1DUBwAAsJWiorJfSlWyX1RUo8Nv2bJFfn5+kqQmTZooJCRE69atU7t27fThhx/qrbfeKnWOwWBQv379tGLFCo0dO1ZRUVFatWqVnn32WZ07d07+/v564IEHNK1kUvD/vf7663r99dct2qKiorRlyxbz/vjx40uN98knn1ToWu655x7dc8892rZtW6lj06ZNK5XPyJEjtWzZsgrFBgAAABwC8w+HnX8YTCaTqcaiO5C8vDx5eXkpJiZGQUFBVY6TmZmpxMRE7dmzR507d7ZeggAAoMZduHBBR44cUXBwsNzd3Ws7HVjB1f6mJfd/ubm5rPKHzTH/AAAAzD8cj7XmHzxTHwAAAAAAAAAAO1Eni/pLliwxf1oRFhamnTt3lts3LS1N4eHh8vb2loeHh0JCQrRgwYJS/davX6/27dvLzc1N7du317vvvluTlwAAAAAAAAAAgNXVuaJ+SkqK4uLiNGXKFO3du1cRERHq3bu3MjIyyuzfqFEjPfXUU9qxY4f279+v5557Ts8995wSExPNfXbv3q2BAwcqOjpaX3/9taKjozVgwAB98cUXtrosAAAAAAAAAACqrc4V9efPn69hw4Zp+PDhateunRISEhQQEKClS5eW2b9Tp04aNGiQQkNDFRQUpCFDhigqKspidX9CQoLuv/9+TZ48WSEhIZo8ebLuvfdeJSQk2OiqAAAAAAAAAACovjpV1C8sLNSePXsUGRlp0R4ZGaldu3ZVKMbevXu1a9cu3Xnnnea23bt3l4oZFRV11ZgFBQXKy8uz2AAAAAAAAAAAqE11qqifk5OjoqIi+fj4WLT7+PgoOzv7que2bNlSbm5u6tKli0aPHq3hw4ebj2VnZ1c65uzZs+Xl5WXeAgICqnBFAAAAAAAAAABYT50q6pcwGAwW+yaTqVTblXbu3KmvvvpKy5YtU0JCgpKTk6sVc/LkycrNzTVvx48fr+RVAAAAAAAAAABgXS61ncAfGY1GOTs7l1pBf/LkyVIr7a8UHBwsSbr55pv1yy+/aPr06Ro0aJAkydfXt9Ix3dzc5ObmVpXLAAAAAAAAAACgRtSplfqurq4KCwtTamqqRXtqaqp69uxZ4Tgmk0kFBQXm/R49epSKuW3btkrFBAAAAAAAAACgttWplfqSNH78eEVHR6tLly7q0aOHEhMTlZGRodjYWEnFj8U5ceKEVq9eLUlavHixAgMDFRISIklKS0vTvHnzNGbMGHPMsWPH6o477tBLL72kvn376r333tPHH3+stLQ0218gAABwOKYL56WLF203YIMGMrh72G48AAAAAHUG8w/UuaL+wIEDderUKcXHxysrK0sdOnTQ5s2b1apVK0lSVlaWMjIyzP0vX76syZMn68iRI3JxcdGNN96oOXPmaOTIkeY+PXv21Ntvv63nnntOU6dO1Y033qiUlBR169bN5tcHAAAci+nCeV3ekSrTubM2G9PQsJGc7ri/UjfWMTExOn36tDZu3FjqWFBQkI4dO1aqffbs2Zo0aZKOHj2q4OBgNW/eXIcOHVKTJk3MfTp27KiHHnpI06dPlyQdPnxYU6ZM0aeffqrffvtNRqNRYWFhevnll9W2bVsdPXpUM2fO1L///W9lZ2fL399fQ4YM0ZQpU+Tq6lrp3wUAAABQnzD/YP4h1cGiviSNGjVKo0aNKvNYUlKSxf6YMWMsVuWX55FHHtEjjzxijfQAAAB+d/Fi8Q21SwOpgQ1uCi8WFo938aJkxdUy8fHxGjFihEXbH2+eJenMmTOaN2+eZsyYUWaMwsJC3X///QoJCdGGDRvk5+enn3/+WZs3b1Zubq4k6cCBA7p8+bKWL1+u1q1b67vvvtOIESN09uxZzZs3z2rXA1jbkiVL9PLLLysrK0uhoaFKSEhQREREmX3T0tI0ceJEHThwQOfOnVOrVq00cuRIjRs3zsZZAwAAh8P8w6w+zz/qZFEfAADA7jRwlcHNrcaHMUnSJet/1bZJkyby9fW9ap8xY8Zo/vz5Gj16tFq0aFHq+L59+3T48GH9+9//Nn/LslWrVgoPDzf36dWrl3r16mXev+GGG/TDDz9o6dKldn1TDceWkpKiuLg4LVmyROHh4Vq+fLl69+6tffv2KTAwsFT/Ro0a6amnntItt9yiRo0aKS0tTSNHjlSjRo305JNP1sIVAAAAh8P8o17PP+rUi3IBAABQdw0aNEitW7dWfHx8mcebN28uJycnvfPOOyoqKqpw3NzcXDVr1sxaaQJWN3/+fA0bNkzDhw9Xu3btlJCQoICAAC1durTM/p06ddKgQYMUGhqqoKAgDRkyRFFRUdq5c6eNMwcAALBfzD/KR1EfAAAAmjhxoho3bmyxbd++3aKPwWDQnDlzlJiYqEOHDpWKcf3112vRokWaNm2arrvuOt1zzz2aOXOmDh8+XO64hw4d0quvvqrY2FhrXxJgFYWFhdqzZ48iIyMt2iMjI7Vr164Kxdi7d6927dqlO++8s9w+BQUFysvLs9gAAAAcFfOP6qGoDwAAAE2YMEHp6ekWW7du3Ur1i4qK0u23366pU6eWGWf06NHKzs7WmjVr1KNHD61bt06hoaFKTU0t1TczM1O9evXSX/7yFw0fPtzq1wRYQ05OjoqKiuTj42PR7uPjo+zs7Kue27JlS7m5ualLly4aPXr0Vf+dz549W15eXuYtICDAKvkDAADURcw/qoeiPgAAAGQ0GtW6dWuLzcOj7BdhzZkzRykpKdq7d2+Zx5s0aaI///nPeuGFF/T1118rIiJCs2bNsuiTmZmpu+++Wz169FBiYqLVrwewNoPBYLFvMplKtV1p586d+uqrr7Rs2TIlJCQoOTm53L6TJ09Wbm6ueTt+/LhV8gYAAKiLmH9UDy/KBQAAQKV07dpV/fr106RJk67Z12AwKCQkxOIxJSdOnNDdd9+tsLAwrVy5Uk5OrDNB3WU0GuXs7FxqVf7JkydLrd6/UnBwsCTp5ptv1i+//KLp06dr0KBBZfZ1c3OTmw1edgcAAGBvmH+URlEfAACgnsjNzVV6erpFW8kLos6cOVOqaNmwYUN5enqWGeuFF15QaGioXFx+v51MT0/X888/r+joaLVv316urq769NNP9cYbb2jixImSilfI3HXXXQoMDNS8efP066+/ms/39fW1xmUCVuXq6qqwsDClpqbq4YcfNrenpqaqb9++FY5jMplUUFBQEykCAADUScw/ag5FfQAAAGu4WCiTjcapqu3bt6tTp04WbU888YQkadq0aZo2bZrFsZEjR2rZsmVlxmrbtq2GDh1q8dXVli1bKigoSDNmzNDRo0dlMBjM++PGjZMkbdu2TT/99JN++ukntWzZ0iKmyWST3yBQaePHj1d0dLS6dOli/sp2RkaG+QVrkydP1okTJ7R69WpJ0uLFixUYGKiQkBBJUlpamubNm6cxY8bU2jUAAAAHw/yjXs8/KOoDAABUR4MGMjRsJNO5s9KlizYZ0tCwRLb05wAAmgxJREFUkdSgQaXOSUpKUlJSUpXGCwoKKvOGd/ny5Vq+fLl532g0auHChVeNFRMTo5iYmCrlAdSWgQMH6tSpU4qPj1dWVpY6dOigzZs3q1WrVpKkrKwsZWRkmPtfvnxZkydP1pEjR+Ti4qIbb7xRc+bM0ciRI2vrEgAAgKNg/mHer8/zD4r6AAAA1WBw95DTHfdLF21zQy2p+EbeveyXSAGoGaNGjdKoUaPKPHblhHXMmDGsygcAADWC+QckivoAAADVZnD3kLjJBQAAAGADzD9g/6/6BQAAAAAAAACgnqCoDwAAAAAAAACAnaCoDwAAAAAAAACAnaCoDwAAAAAAAACAnaCoDwAAAAAAAACAnaCoDwAAAAAAAACAnaCoDwAAAAAAAACAnXCp7QQAAADsXUZGhnJycmw2ntFoVGBgoM3GAwAAAFB3MP8ARX0AAIBqyMjIUEhIiM6fP2+zMT08PHTgwIFK31hnZ2frhRde0IcffqgTJ06oRYsW6tixo+Li4nTvvfcqKChIx44dU3Jysh599FGLc0NDQ7Vv3z6tXLlSMTExkqSgoCDFxcUpLi7OvH/s2DFzjjfccIPGjBmjkSNHmuMUFBQoPj5ea9asUXZ2tlq2bKkpU6Zo6NChVf+FAAAAAPUE8w/mHxJFfQAAgGrJycnR+fPn1a9fPxmNRpuMt2HDBuXk5FTqpvro0aMKDw9X06ZNNXfuXN1yyy26ePGitm7dqtGjR+vAgQOSpICAAK1cudLipvrzzz9Xdna2GjVqdM1x4uPjNWLECOXn5yspKUmxsbFq2rSpBg4cKEkaMGCAfvnlF61YsUKtW7fWyZMndenSpUr+FgAAAID6ifmHpfo6/6iTRf0lS5bo5ZdfVlZWlkJDQ5WQkKCIiIgy+27YsEFLly5Venq6CgoKFBoaqunTpysqKsrcJykpSX/9619LnXv+/Hm5u7vX2HUAAID6w2g0yt/fv7bTKNeoUaNkMBj0n//8x+LmODQ01GKVyuDBg7VgwQIdP35cAQEBkqQ33nhDgwcP1urVq685TpMmTeTr6ytJmjVrltauXauNGzdq4MCB2rJliz799FMdPnxYzZo1k1S8ugYAAABA5TD/KFZf5x917kW5KSkpiouL05QpU7R3715FRESod+/eysjIKLP/jh07dP/992vz5s3as2eP7r77bj344IPau3evRT9PT09lZWVZbBT0AQBAffDbb79py5YtGj16dJmrXZo2bWr+2cfHR1FRUVq1apUk6dy5c0pJSany11Pd3d118eJFSdKmTZvUpUsXzZ07V9dff73atm2rv//97zb96jAAAACAmsX8o+bVuaL+/PnzNWzYMA0fPlzt2rVTQkKCAgICtHTp0jL7JyQk6P/+7/902223qU2bNnrxxRfVpk0bvf/++xb9DAaDfH19LTYAAID64KeffpLJZFJISEiF+g8dOlRJSUkymUx65513dOONN6pjx46VGvPSpUtKSkrSt99+q3vvvVeSdPjwYaWlpem7777Tu+++q4SEBL3zzjsaPXp0ZS8JAAAAQB3F/KPm1amifmFhofbs2aPIyEiL9sjISO3atatCMS5fvqwzZ86Yv1JRIj8/X61atVLLli31wAMPlFrJf6WCggLl5eVZbAAAAPbIZDJJKl7kUBF/+tOflJ+frx07duiNN96o1CqZiRMnqnHjxvLw8NDo0aM1YcIE84uqLl++LIPBoDfffFNdu3ZVnz59NH/+fCUlJTnEahkAAAAAzD9soU4V9XNyclRUVCQfHx+Ldh8fH2VnZ1coxiuvvKKzZ89qwIAB5raQkBAlJSVp06ZNSk5Olru7u8LDw3Xw4MFy48yePVteXl7mreSZTgAAAPamTZs2MhgM2r9/f4X6u7i4KDo6Ws8//7y++OILDR48uMJjTZgwQenp6Tp27Jjy8/M1d+5cOTkV33L6+fnp+uuvl5eXl7l/u3btZDKZ9PPPP1fuogAAAADUScw/al6dKuqXuPJTHJPJVKFPdpKTkzV9+nSlpKSoRYsW5vbu3btryJAhuvXWWxUREaG1a9eqbdu2evXVV8uNNXnyZOXm5pq348ePV/2CAAAAalGzZs0UFRWlxYsX6+zZs6WOnz59ulTb0KFD9emnn6pv37667rrrKjyW0WhU69at5e/vX+r+LTw8XJmZmcrPzze3/fjjj3JyclLLli0rfkEAAAAA6izmHzWvThX1jUajnJ2dS63KP3nyZKnV+1dKSUnRsGHDtHbtWt13331X7evk5KTbbrvtqiv13dzc5OnpabEBAADYqyVLlqioqEhdu3bV+vXrdfDgQe3fv1+LFi1Sjx49SvVv166dcnJytHLlSqvl8Nhjj8nb21t//etftW/fPu3YsUMTJkzQ0KFD5eHhYbVxAAAAANQu5h81y6W2E/gjV1dXhYWFKTU1VQ8//LC5PTU1VX379i33vOTkZA0dOlTJycn605/+dM1xTCaT0tPTdfPNN1slbwAAgJycnDo9TnBwsP773//qhRde0DPPPKOsrCw1b95cYWFhWrp0aZnneHt7VyfVUho3bqzU1FSNGTNGXbp0kbe3twYMGKBZs2ZZdRwAAADA0TH/uDZHnn/UqaK+JI0fP17R0dHq0qWLevToocTERGVkZCg2NlZS8WNxTpw4odWrV0sqLug//vjjWrhwobp3725e5e/h4WF+XtKMGTPUvXt3tWnTRnl5eVq0aJHS09O1ePHi2rlIAADgMIxGozw8PLRhwwabjenh4SGj0Vjp8/z8/PTaa6/ptddeK/P40aNHr3r+lV+TvbL/tc6Xit91lJqaes1+AAAAAEpj/lHx8yXHnX/UuaL+wIEDderUKcXHxysrK0sdOnTQ5s2b1apVK0lSVlaWMjIyzP2XL1+uS5cuafTo0Ro9erS5/YknnlBSUpKk4n8ATz75pLKzs+Xl5aVOnTppx44d6tq1q02vDQAAOJ7AwEAdOHDAZitlpOIb+cDAQJuNBwAAAKBuYP4BqQ4W9SVp1KhRGjVqVJnHSgr1JbZv337NeAsWLNCCBQuskBkAAEBpgYGB3OQCAAAAsAnmH6hTL8oFAAAAAAAAAADlo6gPAAAAAAAAAICdoKgPAAAAAAAAAICdoKgPAABQSZcvX67tFGAlJpOptlMAAAAAror5h+Ow1vyjTr4oFwAAoC5ydXWVk5OTMjMz1bx5c7m6uspgMNR2Wqgik8mkX3/9VQaDQQ0aNKjtdAAAAAALzD8cizXnHxT1AQAAKsjJyUnBwcHKyspSZmZmbacDKzAYDGrZsqWcnZ1rOxUAAADAAvMPx2Ot+QdFfQAAgEpwdXVVYGCgLl26pKKiotpOB9XUoEEDCvoAAACos5h/OBZrzT8qXdRftGiRunfvrq5du5rbTp48qezsbN1yyy2l+r/33nt677339MYbb1QvUwAAgDqi5OuSPLIFqBuYowAAAEfG/ANXqvSLcuPi4rRlyxaLtqVLl6pTp05l9k9PT9eqVauqlh0AAAAAXANzFAAAANQnlS7qAwAAAAAAAACA2kFRHwAAAAAAAAAAO0FRHwAAAAAAAAAAO0FRHwAAAAAAAAAAO0FRHwAAAAAAAAAAO+FSlZO+++47rV271mJfktatWyeTyVSqLwAAAADUJOYoAAAAqC+qVNRfv3691q9fb94vuUl+9NFHS/U1mUwyGAxVTA8AgP/H3r3HRVmnfRz/DiAHD2A6Cp4A85DH0jAVEas1cXW3Na3VDlKuWvpgB6XaJNMUSzsquonplpJrGZpYWZZRq4lpbbHSSS0zDdNhcSxFVEBwnj9cZhsBhTnAzPB5v17zepp7fvd1Xzf1vPa+rvnN7wcAwKVRowAAAKC+qHFT//HHH3dFHgAAAABgF2oUAAAA1Cc09QEAAAB4NGoUAAAA1CdslAsAAAAAAAAAgIewa039i8nJydGWLVskSQMHDtQ111zj7EsAAAAAQLVRowAAAMCb1Him/rZt23TnnXfq008/rfDZY489pqioKD300EN66KGH1L9/f9133301Tio1NVXt27dXYGCgoqKilJWVVeXYjIwMDRkyRC1atFBwcLCio6O1efPmCuPWr1+vbt26KSAgQN26ddOGDRtqnBcAAAAA91MbNQoAAADgLmrc1E9PT9e6devUrVs3m+NbtmzRvHnz5Ovrq/j4eE2ePFlGo1Gpqal68803axR/6tSpmjFjhnbt2qXY2FgNGzZMubm5lY7ftm2bhgwZok2bNik7O1vXX3+9brzxRu3atcs6ZufOnRozZozi4+P15ZdfKj4+XqNHj9Znn31W09sHAAAA4GZcXaMAAAAA7qTGTf2dO3eqX79+Cg4Otjm+bNkyGQwGvfjii0pLS9OSJUuUlZWlBg0aKC0trdrxFyxYoAkTJmjixInq2rWrUlJS1K5dOy1durTS8SkpKfrrX/+qa665Rp06ddK8efPUqVMnbdy40WbMkCFDlJSUpC5duigpKUmDBw9WSkpKTW8fAAAAgJtxdY0CAAAAuJMaN/WPHDmizp07Vzi+ZcsWBQcHa9y4cdZjnTt31vDhw/XFF19UK3ZJSYmys7MVFxdnczwuLk47duyoVoxz587p5MmTatasmfXYzp07K8QcOnToRWMWFxeroKDA5gUAAADA/biyRgEAAADcTY2b+r/++quMRqPNsZ9//llHjx7VwIED5eNjG7Jjx44ym83Vim02m1VWVqbQ0FCb46GhocrLy6tWjOeff16nTp3S6NGjrcfy8vJqHHP+/PkKCQmxvtq1a1et6wMAAACoXa6sUQAAAAB3U+OmfpMmTXTkyBGbY9nZ2ZKkqKioCuMNBoMCAwNrdA2DwWDz3mKxVDhWmTVr1mj27NlKT09Xy5YtHYqZlJSkEydOWF+HDh2qwR0AAAAAqC21UaMAAAAA7sKvpidceeWVeuedd3Tq1Ck1atRIkrRhwwYZDAYNGjSowvj9+/erdevW1YptNBrl6+tbYQZ9fn5+hZn2F0pPT9eECRO0bt063XDDDTafhYWF1ThmQECAAgICqpU3AAAAgLrjyhoFAAAAcDc1nqk/fvx4/fLLL7r22mu1ePFi3X///Vq9erXatWun6667zmZsWVmZtm3bpp49e1Yrtr+/v6KiopSZmWlzPDMzUwMGDKjyvDVr1mjcuHF67bXX9Ic//KHC59HR0RVifvDBBxeNCQAAAMAzuLJGKZeamqr27dsrMDBQUVFRysrKqnJsRkaGhgwZohYtWig4OFjR0dHavHmzPbcGAAAAVFDjmfpjx47VRx99pFdeeUW7du2SxWJRkyZN9Pe//73CWpXvvvuuzGazhg4dWu34iYmJio+PV58+fRQdHa3ly5crNzdXkydPlnR+WZzDhw9r1apVks439O+8804tWrRI/fv3t87IDwoKUkhIiCTpgQce0KBBg/T0009rxIgReuutt/Thhx9q+/btNb19AAAAAG7G1TVKenq6pk6dqtTUVMXExGjZsmUaNmyYdu/erfDw8Arjt23bpiFDhmjevHlq2rSpVq5cqRtvvFGfffaZevfu7fD9AgAAoH6rcVNfklauXKkJEyZo586datasmYYOHaq2bdtWGBcQEKCFCxdqxIgR1Y49ZswYHTt2TMnJyTKZTOrRo4c2bdqkiIgISZLJZFJubq51/LJly1RaWqopU6ZoypQp1uN33XWX0tLSJEkDBgzQ66+/rscee0wzZ85Uhw4dlJ6ern79+tlz+wAAAADcjCtrlAULFmjChAmaOHGiJCklJUWbN2/W0qVLNX/+/ArjU1JSbN7PmzdPb731ljZu3EhTHwAAAA6zq6kvSQMHDtTAgQMvOmbo0KE1mgFTLiEhQQkJCZV+Vt6oL7d169Zqxbzlllt0yy231DgXAAAAAJ7BFTVKSUmJsrOzNX36dJvjcXFx2rFjR7VinDt3TidPnlSzZs2qHFNcXKzi4mLr+4KCgmrnCAAAgPqlxmvqAwAAAEB9YTabVVZWptDQUJvjoaGh1qU/L+X555/XqVOnNHr06CrHzJ8/XyEhIdZXu3btHMobAAAA3qvGM/XXrl1r14Uu9gALAAAAAPaqjRrFYDDYvLdYLBWOVWbNmjWaPXu23nrrLbVs2bLKcUlJSUpMTLS+LygocGpjf8+ePQ7HMBqNle4hAAAAgNpV46b+rbfeWq2H13LlD7s09QEAAAC4gitrFKPRKF9f3wqz8vPz8yvM3r9Qenq6JkyYoHXr1umGG2646NiAgAAFBARcOvkaKiwslMFg0NixYx2OFRQUpL1799LYBwAAqGN2ranv5+en4cOHq1evXk5OBwAAAABqzlU1ir+/v6KiopSZmamRI0daj2dmZl50s901a9Zo/PjxWrNmjf7whz84NaeaKCoqksVi0ahRo2Q0Gu2OYzablZGRIbPZTFMfAACgjtW4qX/TTTfp3Xff1dtvv62ffvpJ48eP1x133KHLLrvMFfl5LX7+CgAAADiHq2uUxMRExcfHq0+fPoqOjtby5cuVm5uryZMnSzq/dM7hw4e1atUqSecb+nfeeacWLVqk/v37W2f5BwUFKSQkxCk51ZTRaFTr1q3r5NoAAABwrho39ctnZ6xatUppaWm6//779fDDD+umm27S+PHjNWTIEFfk6TX4+SsAAADgXK6uUcaMGaNjx44pOTlZJpNJPXr00KZNmxQRESFJMplMys3NtY5ftmyZSktLNWXKFE2ZMsV6/K677lJaWppDuQAAAAB2Lb9jNBqVmJioxMRE/etf/9LLL7+stWvXau3atWrTpo3GjRuncePG6fLLL3d2vh6Pn78CAAAAzufqGiUhIUEJCQmVfnZho37r1q12XQMAAACoDh9HA/Tt21fLli2TyWRSWlqaOnbsqCeffFKdO3fWhx9+6IwcvVL5z1/tfTnyhQAAAADgzahRAAAA4M3smqlfmcDAQMXFxclkMun777/XkSNHdPr0aWeFRxVYmx8AAACoHDUKAAAAvJHDTf2ysjK98847WrFihd577z2VlZWpV69eSkpK0uDBg52RIyrB2vwAAABA5ahRAAAA4M3sburv3r1bK1as0OrVq5Wfn6/mzZsrISFB48eP15VXXunMHFEJ1uYHAAAAbFGjAAAAoD6ocVN/+fLlWrFihT7//HMZDAbFxcVp/PjxGjFihBo0aOCKHHER5WvzAwAAAPUVNQoAAADqkxo39SdPnqwGDRroxhtv1F133aU2bdpIknbt2nXR8/r27WtfhgAAAABwEdQotYc9vQAAAOqeXcvvnD17Vhs3btTGjRurfU5ZWZk9lwIAAACAS6JGcS329AIAAHAfNW7q33XXXa7IAwAAAADsQo3ieuzpBQAA4D5q3NRfuXKlK/IAAAAAALtQo9Qe9vQCAACoez51nQAAAAAAAAAAAKieGs/UT0hIsOtCqampdp0HAAAAABdDjQIAAID6pMZN/RdffLHaYw0Gg/WfeWAGAAAA4ArUKAAAAKhPatzU37JlS7XG5ebmKjk5Wfv377d5cAYAAAAAZ6JGAQAAQH1S46b+tddee9HPf/31V82bN09LlixRUVGRoqOj9fTTT9udIAAAAABcDDUKAAAA6hOnbZRbVFSkp556Sh06dNDzzz+vyMhIZWRk6JNPPtHAgQNrFCs1NVXt27dXYGCgoqKilJWVVeVYk8mk22+/XVdccYV8fHw0derUCmPS0tJkMBgqvIqKimp6mwAAAAA8hDNrFAAAAMBdONzUt1gseumll9SpUyc9+uijatiwoZYvX65vvvlGN910U43jpaena+rUqZoxY4Z27dql2NhYDRs2TLm5uZWOLy4uVosWLTRjxgxdddVVVcYNDg6WyWSyeQUGBtY4PwAAAADuzdk1CgAAAOBOHGrqv/nmm+revbsmTZqkwsJCzZs3Tz/88IMmTpwoHx/7Qi9YsEATJkzQxIkT1bVrV6WkpKhdu3ZaunRppeMjIyO1aNEi3XnnnQoJCakyrsFgUFhYmM0LAAAAgHdxRY0CAAAAuBO7nmq3b9+umJgY3XzzzTpw4ICmTZumH3/8UdOnT3do9ntJSYmys7MVFxdnczwuLk47duywO64kFRYWKiIiQm3bttUf//hH7dq166Lji4uLVVBQYPMCAAAA4J5cVaMAAAAA7qbGG+X+6U9/0rvvvisfHx/dddddSk5OVtu2bZ2SjNlsVllZmUJDQ22Oh4aGKi8vz+64Xbp0UVpamnr27KmCggItWrRIMTEx+vLLL9WpU6dKz5k/f77mzJlj9zUBAAAA1A5X1igAAACAu6lxU/+dd96RwWBQeHi48vLydM8991zyHIPBoHfffbfa1zAYDDbvLRZLhWM10b9/f/Xv39/6PiYmRldffbX+9re/afHixZWek5SUpMTEROv7goICtWvXzu4c3N2ePXscOt9oNCo8PNxJ2QAAAADVVxs1CgAAAOAuatzUl8432Q8cOKADBw5Ua3x1G/JGo1G+vr4VZuXn5+dXmL3vCB8fH11zzTXat29flWMCAgIUEBDgtGu6q8LCQhkMBo0dO9ahOEFBQdq7dy+NfQAAANQJV9UoAAAAgLupcVO/ug/J9vD391dUVJQyMzM1cuRI6/HMzEyNGDHCadexWCzKyclRz549nRbTUxUVFclisWjUqFEyGo12xTCbzcrIyJDZbKapDwAAgFrnyhoFAAAAcDc1bupHRES4Ig+rxMRExcfHq0+fPoqOjtby5cuVm5uryZMnSzq/LM7hw4e1atUq6zk5OTmSzs86P3r0qHJycuTv769u3bpJkubMmaP+/furU6dOKigo0OLFi5WTk6MlS5a49F48idFoVOvWres6DQAAAKDGXF2jAAAAAO7EruV3XGnMmDE6duyYkpOTZTKZ1KNHD23atMn6oG4ymZSbm2tzTu/eva3/nJ2drddee00RERE6ePCgJOn48eO65557lJeXp5CQEPXu3Vvbtm1T3759a+2+AAAAAADnsacXAACA/dyuqS9JCQkJSkhIqPSztLS0CscsFstF4y1cuFALFy50RmoAAAAAADuxpxcAAIDj3LKpDwAAAADwPs7c0ysrK0tdu3Z1KB9m/AMAAE9EUx8AAAAAUKsc2dPLWbP9JWb8AwAAz0RTHwAAAADgMZwx21/634x/s9lMUx8AAHgUmvoAAAAAAI/jyGx/AAAAT+ZT1wkAAAAAAAAAAIDqoakPAAAAAAAAAICHoKkPAAAAAAAAAICHoKkPAAAAAAAAAICHoKkPAAAAAAAAAICHoKkPAAAAAAAAAICHoKkPAAAAAAAAAICH8KvrBAAAAAAAqCt79uxxOIbRaFR4eLgTsgEAALg0mvoAAAAAgHqnsLBQBoNBY8eOdThWUFCQ9u7dS2MfAADUCpr6cBpmuAAAAADwFEVFRbJYLBo1apSMRqPdccxmszIyMpSVlaWuXbs6lFNxcbECAgIciiFRVwEA4O1o6sNhzHABAAAA4KmMRqNat25t9/nOrIcMBoMsFovDcairAADwbjT14TBnz3Axm808fAIAAADwCM6qh/bt26ctW7ZQVwEAgEuiqQ+ncXSGCwAAAAB4KkfrIbPZ7JQ4AADA+9HUh9thbX4AAAAAAAAAqBxNfbgN1uYHAAAAAAAAgIujqQ+3wdr8AAAAAAAAAHBxPnWdQGVSU1PVvn17BQYGKioqSllZWVWONZlMuv3223XFFVfIx8dHU6dOrXTc+vXr1a1bNwUEBKhbt27asGGDi7KHo8rXkLT35cgXAgAAAAAAAADgztyuqZ+enq6pU6dqxowZ2rVrl2JjYzVs2DDl5uZWOr64uFgtWrTQjBkzdNVVV1U6ZufOnRozZozi4+P15ZdfKj4+XqNHj9Znn33mylsBAAAAAAAAAMCp3G75nQULFmjChAmaOHGiJCklJUWbN2/W0qVLNX/+/ArjIyMjtWjRIknSihUrKo2ZkpKiIUOGKCkpSZKUlJSkjz/+WCkpKVqzZo2L7gQAAAAAgLqxZ88eh843Go0sZwoAgJtyq6Z+SUmJsrOzNX36dJvjcXFx2rFjh91xd+7cqWnTptkcGzp0qFJSUqo8p7i4WMXFxdb3BQUFdl8fdcPRh1iJB1kAAAAAnqWwsFAGg0Fjx451KE5QUJD27t1LPQQAgBtyq6a+2WxWWVmZQkNDbY6HhoYqLy/P7rh5eXk1jjl//nzNmTPH7mui7jjrIVbiQRYAAADnpaam6tlnn5XJZFL37t2VkpKi2NjYSseaTCY9+OCDys7O1r59+3T//fdfdEIR4ExFRUWyWCwaNWqU3fuNmc1mZWRkKCsrS127dnUoHyZKAQDgfG7V1C9nMBhs3lsslgrHXB0zKSlJiYmJ1vcFBQVq166dQzmgdjjjIVbiQRYAAADnle/7lZqaqpiYGC1btkzDhg3T7t27K33G++2+XwsXLqyDjIHzNUjr1q3tOpeJUgAAuDe3auobjUb5+vpWmEGfn59fYaZ9TYSFhdU4ZkBAgAICAuy+JuqeIw+xEg+yAAAAOM8V+34B7szZE6XMZjO1EAAATuRWTX1/f39FRUUpMzNTI0eOtB7PzMzUiBEj7I4bHR2tzMxMm3X1P/jgAw0YMMChfOHdeJAFAACAq/b9uhB7esEdOTpRCgAAuIZbNfUlKTExUfHx8erTp4+io6O1fPly5ebmavLkyZLOL4tz+PBhrVq1ynpOTk6OpPMzq48ePaqcnBz5+/urW7dukqQHHnhAgwYN0tNPP60RI0borbfe0ocffqjt27fX+v3B8/AgCwAAUH+5at+vC7GnFwAAAKrL7Zr6Y8aM0bFjx5ScnCyTyaQePXpo06ZNioiIkHR+06nc3Fybc3r37m395+zsbL322muKiIjQwYMHJUkDBgzQ66+/rscee0wzZ85Uhw4dlJ6ern79+tXafQEAAADwXK7Y9+u32NMLAAAA1eV2TX1JSkhIUEJCQqWfpaWlVThmsVguGfOWW27RLbfc4mhqAAAAAOoRV+37dSH29II327Nnj8MxjEYjy5kCAPBfbtnUBwAAAAB34Kp9v4D6oLCwUAaDQWPHjnU4VlBQkPbu3UtjHwAA0dQHao2js1OYmQIAAFA3XLHvF1AfFBUVyWKxaNSoUTIajXbHMZvNysjIUFZWlrp27epQTsXFxQ7/KobaDABQ12jqAy7mrNkpzEwBAACoG67Y96u6mvgY1Ejn7M69qZ+vwho3UrAXxXGnXLw1jrNzubxlC4WG2b9cle+Z02rVpLEemjzJ7hjlDAZDtZbwvRh/f3+99NJLDi/BVVJSLH9/x5fdatasmdq0aeNwHABA3bKcLKj2WJr6gIs5Y3aKM2emMKsEAACg5lyx71d1DG/irxYqsvv8XmGXacANA9U52F8NvSSOO+XirXHcKRdJ6nVZQ0UNjlFEeIQCAu1vghcUFCgvL8+hOKdOndLhw4eVu2q5ci89vFb4+Pjo+uuuV8OGQQ7FCQgIVKPGjZyUFQCgpspOn672WJr6QC0xGo1q3bq1XeeyFiUAAED9dNYinZbB7vNPlpXp2OkzOnXOInlJHHfKxVvjuFMuv43Txt9fAQ0b2h2n5NRph+Oc+W+MTp06KSjI/ib6r7/+qkOHDjkcp6DgpA4ePKC177xjd4xyvr5+Gj/+L2rSJNjhWAAAO5ScrfZQmvqAB3DHtSiZ8Q8AAOB6JRaLzjrQDC06Z1FhyVkVWyR/L4njTrl4axx3ysXd4pTH8AkMkn/jxnbnolOnnRKn7L9xunbtqoYOfOFx+vRp7dmzR6fOlirYwT0HAAB28vOv/lAXpgHAyRyZ7S85d8Z/QECA1q9fr1atWjkUh42qAAAAAMAxDRs2VJMmDnzJ8F/mo0edkktISIjDcQAAVaOpD9Qjzprxn5ubq82bN+uPf/yjwzk5Y6MqZ33BwJcDAAAAAOqjkpISSVLGhg0Ox/Lz89O9995LYx8AXIimPlAPOTrj32w2O+XLgX379mnLli0OxXHmFwzsNwAAAACgPiotLZUkpy3jc/r0aZr6AOBCNPUB2M0ZXw44GsdZXzCw3wAAAACA+s5Zy/gAAFyLpj4Ar+BO+w0w4x8AAAAAAACuQlMfAOS8/QbKZ/ybzWaa+gAAAAAAAHA6mvoA8BuOzvgHAAAAgPrOfPSoQ+c3bNiQNfkB4CJo6gMAAAAAAMBhJSUlkqSMDRsciuPr66sxo0ercZMmDsUpKy2Vr5/jrS++ZADgbmjq11ATH4Ma6Zzd5zf181VY40YK9qI47pSLt8Zxp1zcLY475SJJwT4GhTVupANffyW/ojN2x5GkkpJi+fsHOBTDWXGclUuzZs3Upk0bh+MAQG2wnCyo6xQAAPAopaWlkqSuXbuqYcOGdsU4ceKEfvjhB722Zo0zU3OIs75k4MsBAM5CU7+GhjfxVwsV2X1+r7DLNOCGgeoc7K+GXhLHnXLx1jjulIu7xXGnXCSpIMhHXW4YqONvvq7P7Y7ivXx9fTXyppFq1LhRXacCAJdUdvp0XacAAIBHatiwoZo0aWzXuaf/+7+/jnwxIEnHjh3TwYMHHY7jzC8ZnPHlAL8+ACDR1K+xsxbptAx2n3+yrEzHTp/RqXMWyUviuFMu3hrHnXJxtzjulIskHS8p0bHTZ9SpUycFBQXZHefXX3/VoUOH3CKOs3I5c+aM9u3bp1MWixoF0dQH4AFKztZ1BgAA1FuOfDEg/e/LAWfFcacvB5yBXx8Ano2mfg2VWCw660DDr+icRYUlZ1Vskfy9JI475eKtcdwpF3eL4065/DaOT2CQ/Bvb/+CoU6fdJ46Tcim2SIUlZ5X/63Gd82tgdxyJ2SkAaomff11nAAAA3IQ7fDngrb8+kKjNgJqiqQ8AqBXO2jTLmfz8/HTvvffy8AjUM2VlUtbXlynvWIDCmhcrtuev8vWt66wAAEB94IylidzhCwbJuV8OUJsBNUNTHwBQK5yxaZbkvNkpp0+f1p49e3T69GkeHIF6ZMO2lpr2Qlf9fDTQeqxtiyItvHePRg7Kr8PMgMr5GwxqIIvd5wf6GNTYv4ECDPKaOO6Ui7fGcadc3C2OO+XirXHcKRd3i+PsXC5r1NCh/c7OFZ1RY/8GTluqtajghIIDAy99AuCtSkuqPZSmPgCgVrnL2pjlzEePOnQ+PxMFPMeGbS01+vFeFUrgw0cDNPrxXlo7J4fGPtxOA4PU0IHGTRNfXzVvGKRGPgavieNOuXhrHHfKxd3iuFMu3hrHnXJxtzjulMtv4xgbNVTDhvY39U/7GPRLwyAV5ufLr6TY7jiSFBAQ6NAXFUCdKq3+nl5u2dRPTU3Vs88+K5PJpO7duyslJUWxsbFVjv/444+VmJiob7/9Vq1bt9Zf//pXTZ482fp5Wlqa/vKXv1Q478yZMwrkG0AAqJectRyQs9aQZJ8AwLXKyqRpL3T9b9lqu3eKRQYZZNG0F7roTzH5LMUDt7LpZInCL7O/ZtmT96s2fbhdY8MiFdrwMq+I4065eGscd8rF3eK4Uy7eGsedcnG3OO6UizPj/Gg6ojc/+kSWD7fbHaNcYGCgsrKy1KZNG4djAbXNt6Cg2mPdrqmfnp6uqVOnKjU1VTExMVq2bJmGDRum3bt3Kzw8vML4AwcOaPjw4br77ru1evVqffLJJ0pISFCLFi108803W8cFBwfru+++szmXhj4A1F/OWA7ImWtIOgtfMgCVy/r6Mpsldy5kkUE/Hw1S1teX6bpev9ZiZsDFnTxn0Sn52H3+8dIy5RWeUsE5ixp7SRx3ysVb47hTLu4Wx51y8dY47pSLu8Vxp1ycGec/p07LdLJQo0aNktFotDuO2WxWRkaG8k+fUdsmwXbHAeqKoQY/nHG7pv6CBQs0YcIETZw4UZKUkpKizZs3a+nSpZo/f36F8S+++KLCw8OVkpIi6Xxz5osvvtBzzz1n09Q3GAwKCwurlXsAAHgOZ2xU5S77BLjjlwxseAV3kXcswKnjAAAA4FxGo1GtW7d2OM6ePXsczqOyicWAO3Grpn5JSYmys7M1ffp0m+NxcXHasWNHpefs3LlTcXFxNseGDh2ql19+WWfPnlWDBg0kSYWFhYqIiFBZWZl69eqluXPnqnfv3lXmUlxcrOLi/63jVVCDnz8AAOoXd9knwN2+ZGAzYriTsObVW5+1uuMAAADgXgoLC2UwGDR27FiH4gQEBGj9+vVq1aqVQ3H4cgCu5FZNfbPZrLKyMoWGhtocDw0NVV5eXqXn5OXlVTq+tLRUZrNZrVq1UpcuXZSWlqaePXuqoKBAixYtUkxMjL788kt16tSp0rjz58/XnDlznHNjAADUInf5kgFwJ7E9f1XbFkU6fDRAlgvW1Jckgyxq06JIsT1ZegcAAMATFRUVyWKxOLSMT25urjZv3qw//vGPDucTFBSkvXv30tiHS7hVU7+cwXDB5mUWS4Vjlxr/2+P9+/dX//79rZ/HxMTo6quv1t/+9jctXry40phJSUlKTEy0vi8oKFC7du1qdiMAAEDmo0cdOp/1/eEMvr7Swnv3aPTjvWSQxaaxb/jv9rkL793LJrkAAAAezpFlfMxms8NfDJTHycjIUFZWlrp27Wp3HIkZ/6icWzX1jUajfH19K8zKz8/PrzAbv1xYWFil4/38/NS8efNKz/Hx8dE111yjffv2VZlLQECAAgJYUxUAAHuVlJRIkjI2bKjjTM5jfX+MHJSvtXNyNO2Frjab5rZpUaSF9+7VyEH5dZgdAAAA3IWj6/s7aykgieWAUDm3aur7+/srKipKmZmZGjlypPV4ZmamRowYUek50dHR2rhxo82xDz74QH369LGup38hi8WinJwc9ezZs+Y5GgxqoBpsRXyBQB+DGvs3UIBBXhPHnXLx1jjulIu7xXGnXLw1jjvl4m5x3CkXd4zjd65Mjf0bqFOnTgoKCrIrxq+//qpDhw45FEOSzpw5o3379qmo4ISCAwMvfQK81k39DunGPoe0/ZvmMv0SqFbNijSwxzH5+kqWC5fTLy2pkxwBAADg2ZyxFJDEckComls19SUpMTFR8fHx6tOnj6Kjo7V8+XLl5uZq8uTJks4vi3P48GGtWrVKkjR58mS98MILSkxM1N13362dO3fq5Zdf1po1a6wx58yZo/79+6tTp04qKCjQ4sWLlZOToyVLltQ4vwYGqaEDDY4mvr5q3jBIjXwMXhPHnXLx1jjulIu7xXGnXLw1jjvl4m5x3CkXd45jbNRQDRva15D3KynRaQdjSNJpH4N+aRgkv5Ji6cwpu+PAO/hKurbzb/47qKp3X3q2NtIBAACAl3J0xr+zlwMym8009b2E2zX1x4wZo2PHjik5OVkmk0k9evTQpk2bFBERIUkymUzKzc21jm/fvr02bdqkadOmacmSJWrdurUWL16sm2++2Trm+PHjuueee5SXl6eQkBD17t1b27ZtU9++fWuc36aTJQq/zP4ZfnvyftWmD7drbFikQhte5hVx3CkXb43jTrm4Wxx3ysVb47hTLu4Wx51y8dY4zsrlPwUntPrD7Wp6063q1NKxh9hmzZqpTZs2DsWAZ/AtKKjrFAAAAACHvxwot2fPHofz4EsB9+B2TX1JSkhIUEJCQqWfpaWlVTh27bXX6t///neV8RYuXKiFCxc6JbeT5yw6JR+7zz9eWqa8wlMqOGdRYy+J4065eGscd8rF3eK4Uy7eGsedcnG3OO6Ui7fGcVYuRwpO6j+nTuuWcX+xO0Y5Z61pWVxc7PD+PTxUu5bB/h+qAAAAAG7DWWv8s4SP+3DLpj4AAIAzueOalgaDQRaLY11jHqpraPZsyddXmjmz4mdz50plZefHAAAAAF7EGfUQS/i4F5r6AACg3nCXNS337dunLVu28FBd23x9pVmzzv/zbxv7c+eeP56cXDd5AQAAALXAWcv4oO7R1AcAAKghZ3w54Iw4kuPrYpbnUS++GChv5P+2sf/bhn5lM/gBAAAAwAFlZVJWlmQySa1aSbGx5+cbOYKmPgAAgAdy1rqYkvP2CfCILwd+29h/4gmppISGPgAAAACXyMiQHnhA+vnn/x1r21ZatEgaNcr+uDT1AQAAPJA77hPgMV8OzJz5v4a+vz8NfQAAAABOl5Eh3XKLdOFWaocPnz/+xhv2N/Zp6gMAAHgwd9knwJlfDrh8A+C5c//X0C8pOf+exj4AAAAAJykrOz9D/8KGvnT+mMEgTZ0qjRhh31I8NPUBAADgNl8OuHwD4AvX0C9/L9HYBwAAAC6BPb2qJytLmvDzbJXJV0+oYp0xwzJXvofKlJU1W9ddV/P4NPUBAADgNM7Y/NdlKtsUt7LNcwEAAADYcOaeXi7/Za4bMJmkMvlqrs7XGb9t7D+muZqrWZqpZJlM9sWnqQ8AAID6oays8k1xy9+XldV+TgAAAIAHcNaeXi7/Za6baNVKuv2/jfzfNvZ/29B/QjO1xc7tyGjqAwAAoH6YPbvqz5ihDwAAAFySW/8y143Exkpt20pPHp4pWc439h/TEwpQiWYqWU8aZqpd2/Pj7OHj3HQBAAAAAAAAAKi/fH2lRYvO//OThpkqlr8CVKJi+etJw/kJRSkp9m2SKzFTHwAAAAAAAABQi5yx4W5xcbECAgIcjuOqjXtHjZLeeEP68S9zFVBQYm3sP9Nkri5fOVOjRtkfm6Y+AAAAAAAAAMDlnLnhrsFgkMVicTiOKzfuHfXtXKlglg78JVmfDpmp/plz9dDKWdK3kkbZvwQoTX0AAAAAAAAAgMs5a8Pdffv2acuWLe69ce/cudKsWVJystrPnKn2knTbTKm9zh+X7N7bi6Y+AAAAAAAAAKDWOLrhrtlsdkoclyork5KTKzbuy9+XldkdmqY+AAAAAAAAAADONHt21Z/ZOUO/nI9DZwMAAAAAAAAAgFpDUx8AAAAAAAAAAA9BUx8AAAAAAAAAAA9BUx8AAAAAAAAAAA9BUx8AAAAAAAAAAA/hlk391NRUtW/fXoGBgYqKilJWVtZFx3/88ceKiopSYGCgLr/8cr344osVxqxfv17dunVTQECAunXrpg0bNrgqfQAAAABexhU1CgAAAGAPt2vqp6ena+rUqZoxY4Z27dql2NhYDRs2TLm5uZWOP3DggIYPH67Y2Fjt2rVLjz76qO6//36tX7/eOmbnzp0aM2aM4uPj9eWXXyo+Pl6jR4/WZ599Vlu3BQAAAMBDuaJGAQAAAOzldk39BQsWaMKECZo4caK6du2qlJQUtWvXTkuXLq10/Isvvqjw8HClpKSoa9eumjhxosaPH6/nnnvOOiYlJUVDhgxRUlKSunTpoqSkJA0ePFgpKSm1dFcAAAAAPJUrahQAAADAXn51ncBvlZSUKDs7W9OnT7c5HhcXpx07dlR6zs6dOxUXF2dzbOjQoXr55Zd19uxZNWjQQDt37tS0adMqjLlYU7+4uFjFxcXW9ydOnJAk5eXl1eSWKjh69KgkyWQyqaSkxCviuFMu3hrHnXJxtzjulIu3xnGnXNwtjjvl4q1x3CkXd4vjTrk4M86xY8ckSYWFhSooKLA7jjOUX99isdRpHqhbrqpRLkT94Zm5eGscd8rF3eK4Uy7eGsedcnG3OO6Ui7fGcadc3C2OO+XizDgeW39Y3Mjhw4ctkiyffPKJzfEnn3zS0rlz50rP6dSpk+XJJ5+0OfbJJ59YJFmOHDlisVgslgYNGlheffVVmzGvvvqqxd/fv8pcHn/8cYskXrx48eLFixcvXvX8dejQIXsebeElXFWjXIj6gxcvXrx48eLFi5dUvfrDrWbqlzMYDDbvLRZLhWOXGn/h8ZrGTEpKUmJiovX9uXPn9Msvv6h58+YXPQ8AAADewWKx6OTJk2rdunVdpwI34Ioa5beoPwAAAOq3mtQfbtXUNxqN8vX1rfAT0/z8fIWGhlZ6TlhYWKXj/fz81Lx584uOqSqmJAUEBCggIMDmWNOmTat7KwAAAPACISEhdZ0C6pirapQLUX8AAACguvWHW22U6+/vr6ioKGVmZtocz8zM1IABAyo9Jzo6usL4Dz74QH369LGuVVnVmKpiAgAAAIDkuhoFAAAAsJdbNfUlKTExUS+99JJWrFihPXv2aNq0acrNzdXkyZMlnf9Z6p133mkdP3nyZP30009KTEzUnj17tGLFCr388st66KGHrGMeeOABffDBB3r66ae1d+9ePf300/rwww81derU2r49AAAAAB7GFTUKAAAAYC+3Wn5HksaMGaNjx44pOTlZJpNJPXr00KZNmxQRESHp/I7Gubm51vHt27fXpk2bNG3aNC1ZskStW7fW4sWLdfPNN1vHDBgwQK+//roee+wxzZw5Ux06dFB6err69etX6/cHAAAAwLO4okYBAAAA7GWwlO/YBAAAAAAAAAAA3JrbLb8DAAAAAAAAAAAqR1MfAAAAAAAAAAAPQVMfAAAAAAAAAAAPQVMfAAAAAAAAAAAPQVMfAAAAAAAAAAAPQVMfAAAAAAAAAAAPQVMfAAAAAAAAAAAPQVMfAAAAAAAAAAAPQVMfAAAAAAAAAAAPQVMfAAAAAAAAAAAPQVMfAAAAAAAAAAAPQVMfAAAAAAAAAAAPQVMfAAAAAAAAAAAPQVMfAAAAAAAAAAAPQVMfAAAAAAAAAAAPQVMfAAAAAAAAAAAPQVMfAAAAAAAAAAAPQVMfAAAAAAAAAAAPQVMfAAAAAAAAAAAPQVMfAAAAAAAAAAAPQVMfAAAAAAAAAAAPQVMfAAAAAAAAAAAPQVMfAAAAAAAAAAAPQVMfAAAAAAAAAAAPQVMfAAAAAAAAAAAPQVMfAAAAAAAAAAAPQVMfAAAAAAAAAAAPQVMfAAAAAAAAAAAPQVMfAAAAAAAAAAAPQVMfAAAAAAAAAAAPQVMfAAAAAAAAAAAPQVMfAAAAAAAAAAAPQVMfAAAAAAAAAAAPQVMfAAAAAAAAAAAPQVMfAAAAAAAAAAAPQVMfAAAAAAAAAAAPQVMfAAAAAAAAAAAPQVMfAAAAAAAAAAAPQVMfAAAAAAAAAAAPQVMfAAAAAAAAAAAPQVMfAAAAAAAAAAAPQVMfAAAAAAAAAAAPQVMfAAAAAAAAAAAPQVMfAAAAAAAAAAAPQVMfAAAAAAAAAAAPQVMfAAAAAAAAAAAPQVMfAAAAAAAAAAAPQVMfAAAAAAAAAAAPQVMfQL0TGRkpg8Egg8GgN998s8pxN9xwgwwGg9LS0myOp6WlWc/39/fXsWPHqoxRWlqqli1bWsfPnj270nGbN2/WqFGj1KZNG/n7+6tp06a64oordOONN+r555/X/v37bcYfPHjQGvNSr4MHD1bzL3Npu3fv1qRJk9S5c2cFBQWpUaNGat++va677jrNnDlTO3bsqHBO+d/7wr9jVcaNG1fhHho0aKBWrVrpT3/6k9577z2n3c/WrVut17jQddddd9F/Z+Xuu+8+a4zMzEyn5QYAAAD3RU1hP2+rKcrV9O//WyUlJVq6dKluuOEGhYWFyd/fX6Ghofrd736nJUuWqLi4uFr3OnXq1CrHPfHEEzIYDBo3bpwDdwnAXfjVdQIAUJdmz56tESNGVNrUrY6zZ88qPT1dCQkJlX6+efNmHT169KIx7r33Xi1ZskSS1KhRI3Xq1EkNGzbUTz/9pHfeeUfvvPOOTCaTnnvuuUrP79OnjwICAqqMHxgYWM27ubhXX31V48ePV0lJiRo0aKDw8HA1a9ZM+fn5+vjjj/Xxxx/rvffe0xdffOGU67Vs2VKdOnWSJBUVFen777/Xxo0btXHjRiUlJWnevHlOuY4jzp49q9dff936/h//+IeGDBlShxkBAACgtlFTVJ+31hSO/P2//fZbjRgxwtr0j4yMVK9evXTkyBFt2bJFW7Zs0YIFC/T222+re/fuF81j2bJl+utf/6rWrVs75b4AuC9m6gOot3x9ffXll19q/fr1dp3fqVMnGQwG/eMf/6hyTPlnV1xxRaWfr1mzRkuWLJGPj48WLVqkY8eO6dtvv9Xnn3+u/Px8ffvtt5oxY4ZatmxZ5TXWrVun7du3V/kKCwuz6/5+6+DBg5owYYJKSko0fvx4/fzzz/rhhx/0r3/9SwcPHpTJZNILL7ygbt26OXytcsOGDbPewxdffCGz2ayHHnpIkjR//nzt3LnTadey1/vvvy+z2aymTZtKkjIyMnTq1Km6TQoAAAC1hpqi+ry1pnDk779//37FxsZq//79uv766/XNN9/owIED+te//qWff/5Zn332ma6++mr9+OOP1nFV8fX1VVFRkVtMfgLgejT1AdRbt912myRpzpw5slgsNT4/PDxcgwYN0qeffqoffvihwucnT57U22+/rfbt2ysmJqbSGK+88ookafz48br//vsrzI7p1q2bnnjiCf31r3+tcX7O9Prrr6u4uFhXXHGF/v73v1d4IA0LC9OUKVO0atUql+Xg7++vZ555Rr169bLmVNfKC6wpU6aoe/fuOnXqlDZs2FDHWQEAAKC2UFNUn7fWFI78/ceOHatff/1VgwcP1vvvv19hJn7fvn21detWXXnllfr1118VHx9fZR5jxoyRj4+PXnrpJf38888O3xcA90ZTH0C9NX78eEVGRuqbb77R2rVr7YoxduxYSdLq1asrfPbGG2/ozJkzuuOOO6r8Ke6PP/4oSdaHSndVnmfPnj3l41N3/9NhMBg0cOBASdK+ffvqLA9JOnHihDZu3ChJuv3223X77bdL0kVnWQEAAMC7UFNUn7fWFPb+/T/88EN9+umnatCggV5++WX5+/tXOq5JkyZ68cUXJUk7d+7URx99VOm4rl276tZbb1VxcbGefPLJGuUCwPPQ1AdQbzVo0EAzZsyQdH5mzblz52oc489//rMCAwP16quvVvis/KG8/CG9MsHBwZKkf/3rXzW+dm0qzzMnJ0dnz56t01zsmQHlCmvXrlVRUZGuuuoqdevWTbfffrsMBoM++ugjmUymuk4PAAAAtYCaovq8taaw9+9f/iXQ8OHDFRERcdGx0dHRuuqqq2zOq8ysWbPk6+urFStW6KeffqpRPgA8C019APXauHHjdPnll2vPnj12/fQyJCREN954o3744Qeb9Rh//vlnbd26VX379q1y7UtJ+v3vfy/p/Ozu//u//9Pnn3+usrKymt+Ii5Xn+cMPP2jYsGF67733dPr06VrPw2Kx6JNPPpEkdezYsdav/1vlM/LvuOMOSec3tBowYIDKysr02muv1WVqAAAAqEXUFNXjrTWFvX//HTt2SJKuvfbaal1n0KBBknTRfQCuuOIK3X777SopKWG2PuDlaOoDqNf8/Pw0c+ZMSVJycrJdD7/ls2Z+u+zKq6++qnPnzl10Ro0kPfLII4qKipLFYtGLL76ovn37Kjg4WAMHDtT06dP1xRdfXPL67du3l8FgqPTlrJ/g3nDDDbrnnnskSR999JGGDx+ukJAQXXXVVZo8ebLeeecdlxcOJSUl+utf/6qcnBxJ0ujRo116vYs5ePCgtm/fLoPBoFtvvdV6nCV4AAAA6h9qiurx1prC3r//4cOHJUkdOnSo1nXKx11qvfzy2fppaWk6cOBADe4EgCehqQ+g3ouPj1enTp303XffVfqT10sZNmyYjEaj1q5da/0Z6erVq+Xn52fT8K1MkyZNtH37dj3//PPq2rWrJOn06dP65JNP9PTTT+uaa67RTTfdpOPHj1cZo0+fPoqJian01bt37xrfT1WWLVum9evX69prr5Wvr69KS0v11VdfadmyZbrxxht11VVX6euvv3ba9d577z0NHDhQAwcOVJ8+fWQ0GvXcc89JkqZNm2ZdB7MurF69WhaLRbGxsWrXrp31+OjRo9WgQQN9+eWXTv1bAAAAwL1RU1SPN9YU9v79T548KUlq1KhRta5TPq78vKp07NhR8fHxOnv2rObOnVvDuwHgKWjqA6j3fH19rTNr5s6dq9LS0hqd36BBA40ePVrHjh3Tpk2blJOTo2+++UZDhw5VixYtLnl+YGCgEhMTtXv3bh0+fFgZGRmaNm2a2rdvL0l66623NGrUqCrPX7dunbZv317pa+XKlTW6l0sZNWqUtm7dql9++UWZmZmaO3eu+vbtK0n69ttvdcMNN+jo0aNOuVZ+fr4++eQTffLJJ8rJyVFgYKCGDRumDRs2aMGCBU65hr3K1zYtn5lfzmg0Ki4uThKz9QEAAOoTaorq88aawp6/f5MmTSRJp06dqtY1yseVn3cxs2bNkp+fn/7xj39o//79NbkVAB6Cpj4A6Hxz9oorrtAPP/xgVzM2Pj5e0vlmb3nDt/xYTbRu3VojR47UggUL9P333+vBBx+UJG3ZssW67qM7CA4O1g033KDHHntMn332mdatWycfHx/l5+dr+fLlTrnGXXfdJYvFIovFotLSUuXn52vTpk266aabnBLfXv/617/03XffqUGDBvrzn/9c4fPyNfZfe+01uzZKAwAAgGeipqgZb60pqvv3b9OmjSRVu+lePq78vItp3769xo0bp9LSUiUnJ9f0FgB4AJr6AKDzM2tmzZolyb6ZNf3791enTp20ceNGrV69WsHBwfrTn/7kUE5+fn565plnFBYWJul8M9ld3XLLLbr55psluXeezrBq1SpJ0tmzZ9W8efMKa46Wz94/fPiw/vnPf9ZlqgAAAKhF1BSO8caa4mJ//wEDBkiSPv7442rF2rZtmyQpOjq6WuMfe+wxNWjQQK+++qq+//77mqQNwAPQ1AeA/7r11lvVrVs3HThwQGlpaTU+/4477lBxcbH+85//6Oabb1ZQUJDDOfn4+CgiIkLS+U2d3Nnll18uyf3zdMTZs2eVnp4uSWrevLlCQ0MrfTVu3FgSS/AAAADUN9QUjvHGmqKqv3/5r343bdqkn3766aIxPv30U3355ZeSpDFjxlTruhERERo/frzKysqYrQ94IZr6APBfPj4+evzxxyVJTzzxhHWDquqKj4/X4MGDNXjwYN19993VOic/P/+inx8/fly7d++WJHXq1KlG+TjTpfKUpB07dkiq2zxd7b333pPZbFajRo108OBB5eXlVfpav369JCkjI0OnT5+u46wBAABQW6gpquatNYW9f/8hQ4aoX79+Onv2rCZMmFDlfysnT57UpEmTJEn9+vXT4MGDq53bjBkz5O/vrzVr1mjPnj3VPg+A+6OpDwC/8ec//1k9e/bUTz/9VOP1Ji+//HJ9+OGH+vDDD6v9k8jhw4frjjvu0D//+c8KD3E5OTkaMWKETp48qVatWmno0KE1yqcq48aNk8Fg0Lhx46p9zrx58xQbG6s1a9bo5MmTNp+ZTCZNnjxZWVlZMhgMuuuuu5ySZ01FRkbKYDDYNSOquspn3o8cOdI6G78ygwcPVqtWrVRYWKgNGza4LB8AAAC4H2qKynlrTeHI3/8f//iHmjZtqo8++khDhw7Vt99+a/P5559/ruuuu05fffWVmjZtWuNfArdr104TJ07UuXPnrL84BuAd/Oo6AQBwJwaDQY8//rhuueUWlZWVufx6ZWVleu211/Taa68pMDBQHTt2VGBgoI4cOaIjR45Ikpo2baq1a9eqUaNGlcb485//rICAgCqvMX/+fMXGxjqUp8Fg0Pbt27V9+3b5+PioQ4cOuuyyy3T06FEdOnRIpaWl8vX11YIFCxQVFVVpjPvuu08PPfRQldfYunWrevTo4VCernT8+HFt3LhR0qU3LPP19dWtt96qhQsX6h//+Id181wAAAB4P2qKynlrTeHI379Tp07atm2bRowYoS1btqhHjx6KjIxUixYtZDKZ9PPPP0s6/2XDW2+9ZdcvGB599FGtWLFCRUVFjt8sALdBUx8ALjBq1Cj16tVLOTk5Lr/WBx98oM2bN+u9997TN998oyNHjuj48eNq3Lix+vXrp6FDh2rKlClq2bJllTG++OKLi17j2LFjNu/z8vIkSb169ap2nvPmzdOQIUP03nvv6bPPPtPhw4d18OBBBQQEqHPnzho0aJD+7//+T1deeWWVMQoLC1VYWFjl5zXdSOy3ysrKZDabJUlXXXVVjc6TpAYNGlT5mb+/vyRp3bp1Ki4uVlhYWLV+8jp27FgtXLhQH374ofLy8qybYwEAAMD7UVNU5K01haN//549e2rPnj166aWXlJGRoa+//lqHDx9W06ZNdd1112nUqFG6++67FRgYaNd9tWnTRvfcc48WL15s1/kA3JPBYrFY6joJAEDtOHfunJo1ayaLxaKff/5ZTZo0qeuUnOLf//63oqKidP311+uf//xntc/LyMjQzTffrBYtWlRYC/PKK6/U119/rSVLlighIcHZKQMAAAAeiZoCAOoea+oDQD3y7bff6sSJE7rnnnu85uFbknWt0gcffLBG53311VeSpK5du9ocLyoq0r59+yr9DAAAAKjPqCkAoO7R1AeAemTHjh3y8/PT/fffX9epONWOHTvUpUsXDR8+vNrn7NmzR8uXL5ck3XjjjdbjFotFjz76qIqKitSsWTPFxMQ4PV8AAADAU1FTAEDdY/kdAEC9snjxYi1btkzff/+9SktL1blzZ/373/+WxWLRkCFDtG/fPuuaocuXL9fdd99dxxkDAAAAAAD8DzP1AQD1yo8//qjvv/9erVu3VkJCgrKystSoUSOVlpbq008/VUlJiQYOHKg33niDhj4AAAAAAHA7zNQHAAAAAAAAAMBDMFMfAAAAAAAAAAAP4VfXCdgrNTVVzz77rEwmk7p3766UlBTFxsZWOnbr1q26/vrrKxzfs2ePunTpUq3rnTt3TkeOHFGTJk1kMBgcyh0AAADuz2Kx6OTJk2rdurV8fJgLg9pF/QEAAFC/1KT+8Mimfnp6uqZOnarU1FTFxMRo2bJlGjZsmHbv3q3w8PAqz/vuu+8UHBxsfd+iRYtqX/PIkSNq166dQ3kDAADA8xw6dEht27at6zRQz1B/AAAA1E/VqT88ck39fv366eqrr9bSpUutx7p27aqbbrpJ8+fPrzC+fKb+r7/+qqZNm9p1zRMnTqhp06Y6dOiQzRcDAAAA8E4FBQVq166djh8/rpCQkLpOB/UM9QcAAED9UpP6w+Nm6peUlCg7O1vTp0+3OR4XF6cdO3Zc9NzevXurqKhI3bp102OPPVbpkjzliouLVVxcbH1/8uRJSVJwcDAP1QAAAPUIS5+gLpT/d0f9AQAAUL9Up/7wuMVBzWazysrKFBoaanM8NDRUeXl5lZ7TqlUrLV++XOvXr1dGRoauuOIKDR48WNu2bavyOvPnz1dISIj1xU9fAQAAAAAAAAB1zeNm6pe78BsLi8VS5bcYV1xxha644grr++joaB06dEjPPfecBg0aVOk5SUlJSkxMtL4v//kDAAAAAAAAAAB1xeOa+kajUb6+vhVm5efn51eYvX8x/fv31+rVq6v8PCAgQAEBAXbnCQAAvFtZWZnOnj1b12nAQf7+/vLx8bgfrwIAAKCeof7wDs6qPzyuqe/v76+oqChlZmZq5MiR1uOZmZkaMWJEtePs2rVLrVq1ckWKAADAi1ksFuXl5en48eN1nQqcwMfHR+3bt5e/v39dpwIAAABUQP3hXZxVf3hcU1+SEhMTFR8frz59+ig6OlrLly9Xbm6uJk+eLOn80jmHDx/WqlWrJEkpKSmKjIxU9+7dVVJSotWrV2v9+vVav359Xd4GAADwQOUP1C1btlTDhg3ZRNWDnTt3TkeOHJHJZFJ4eDj/LgEAAOB2qD+8hzPrD49s6o8ZM0bHjh1TcnKyTCaTevTooU2bNikiIkKSZDKZlJubax1fUlKihx56SIcPH1ZQUJC6d++ud999V8OHD6+rWwAAAB6orKzM+kDdvHnzuk4HTtCiRQsdOXJEpaWlatCgQV2nAwAAAFhRf3gfZ9UfBovFYnFiXl6roKBAISEhOnHihIKDg+s6HQAAUAeKiop04MABRUZGKigoqK7TgROcOXNGBw8eVPv27RUYGGjzGc9/qEv89wcAAKg/vI+z6g+PnKlfl3JyctS4cWOHYhiNRoWHhzspIwAAUNv4yav34N8l3B31BwAA4JnVezjr3yVN/Rq69tprHY4RFBSkvXv38mANAAAAuIHU1FQ9++yzMplM6t69u1JSUhQbG1vp2O3bt+uRRx7R3r17dfr0aUVERGjSpEmaNm2adUxaWpr+8pe/VDj3zJkzFWZkXQr1BwAAAC5EU7+GbrzxRrVq1cru881mszIyMmQ2m3moBgAAAOpYenq6pk6dqtTUVMXExGjZsmUaNmyYdu/eXenzeqNGjXTvvffqyiuvVKNGjbR9+3ZNmjRJjRo10j333GMdFxwcrO+++87m3Jo29CXqDwAAAFREU7+GmjdvrtatW9d1GgAAwIOVlUlZWZLJJLVqJcXGSr6+dZ0VUD8tWLBAEyZM0MSJEyVJKSkp2rx5s5YuXar58+dXGN+7d2/17t3b+j4yMlIZGRnKysqyaeobDAaFhYU5nB/1BwAAcBT1h/fxqesEAAAA6pOMDCkyUrr+eun228//38jI88ddwWAwXPQ1btw467g333yzwvnjxo3TTTfdVOX7/Px8TZo0SeHh4QoICFBYWJiGDh2qnTt3VpnT7Nmzrdf38fFR69atdccdd+jQoUM24yIjI5WSklLh/JSUFEVGRlaIN3nyZJtxOTk5MhgMOnjwYJW5oH4rKSlRdna24uLibI7HxcVpx44d1Yqxa9cu7dixo8IyOYWFhYqIiFDbtm31xz/+Ubt27bponOLiYhUUFNi8AAAAHEX94Z31B019AACAWpKRId1yi/Tzz7bHDx8+f9wVD9Ymk8n6SklJUXBwsM2xRYsWORT/5ptv1pdffqlXXnlF33//vd5++21dd911+uWXXy56Xvfu3WUymfTzzz8rPT1dX3/9tUaPHm13HoGBgXr55Zf1/fff2x0D9Y/ZbFZZWZlCQ0NtjoeGhiovL++i57Zt21YBAQHq06ePpkyZYp3pL0ldunRRWlqa3n77ba1Zs0aBgYGKiYnRvn37qow3f/58hYSEWF/t2rVz7OYAAEC9R/3xP95Wf7D8DgAAQC0oK5MeeECyWCp+ZrFIBoM0dao0YoRzfwr72+U/QkJCnLYkiCQdP35c27dv19atW62zlCMiItS3b99Lnuvn52fNo3Xr1rr77rt1//33q6CgQMHBwTXO5YorrlDLli312GOPae3atTU+H/WbwWCweW+xWCocu1BWVpYKCwv16aefavr06erYsaNuu+02SVL//v3Vv39/69iYmBhdffXV+tvf/qbFixdXGi8pKUmJiYnW9wUFBTT2AQCA3ag/bHlb/cFMfQAAgFqQlVVxhsxvWSzSoUPnx3mKxo0bq3HjxnrzzTdVXFxsd5y8vDxlZGTI19dXvg5UFE899ZTWr1+vzz//3O4YqF+MRqN8fX0rzMrPz8+vMHv/Qu3bt1fPnj119913a9q0aZo9e3aVY318fHTNNddcdKZ+QECAgoODbV4AAAD2ov6omjfUHzT1AQAAaoHJ5NxxrnDbbbdZH5TLX6+++mqV4/38/JSWlqZXXnlFTZs2VUxMjB599FF99dVXl7zW119/rcaNG6thw4Zq1aqVtm7dqilTpqhRo0Z253/11Vdr9OjRmj59ut0xUL/4+/srKipKmZmZNsczMzM1YMCAasexWCwXLSwtFotycnLUqlUru3MFAACoCeoPW95Wf9DUBwAAqAXV7eXVZc9v4cKFysnJsXn96U9/uug5N998s44cOaK3335bQ4cO1datW3X11VcrLS3touddccUVysnJ0eeff64nn3xSvXr10pNPPunwPTzxxBPKysrSBx984HAs1A+JiYl66aWXtGLFCu3Zs0fTpk1Tbm6udeOzpKQk3XnnndbxS5Ys0caNG7Vv3z7t27dPK1eu1HPPPaexY8dax8yZM0ebN2/Wjz/+qJycHE2YMEE5OTkVNlMDAABwFeoPW95Wf7CmPgAAQC2IjZXatj2/KVVl61oaDOc/j42t/dzKhYWFqWPHjjbHmjRpouPHj1/0vMDAQA0ZMkRDhgzRrFmzNHHiRD3++OMaN25clef4+/tbr9W9e3ft27dP//d//6d//OMf1jHBwcE6ceJEhXOPHz+ukJCQSuN26NBBd999t6ZPn66XX375onkDkjRmzBgdO3ZMycnJMplM6tGjhzZt2qSIiAhJ5zd7y83NtY4/d+6ckpKSdODAAfn5+alDhw566qmnNGnSJOuY48eP65577lFeXp5CQkLUu3dvbdu2rVrrvQIAADgD9Yctb6s/mKkPAABQC3x9pUWLzv/zhftvlr9PSXHuJlV1pVu3bjp16lSNzpk5c6bWrFmjf//739ZjXbp0qXR9ys8//1xXXHFFlbFmzZql77//Xq+//nqNckD9lZCQoIMHD6q4uFjZ2dkaNGiQ9bO0tDRt3brV+v6+++7TN998o1OnTunEiRP697//rf/7v/+Tj8//SquFCxfqp59+UnFxsfLz87V582ZFR0fX5i0BAIB6jvrj4jy9/qCpDwAAUEtGjZLeeENq08b2eNu254+PGlU3ednr2LFj+t3vfqfVq1frq6++0oEDB7Ru3To988wzGjFiRI1iXX755RoxYoRmzZplPZaYmKj33ntPycnJ2r17t3bv3q25c+fq/fff14MPPlhlrNDQUCUmJmrx4sV23xsAAADg6ag/qubp9QfL7wAAANSiUaOkESOkrKzzm1K1anX+J6+eOEOmcePG6tevnxYuXKj9+/fr7Nmzateune6++249+uijNY734IMPKiYmRp999pn69eun/v37a/PmzUpOTlZKSoqk8z+V3bx5s/r163fRWA8//LCWLl2qoqIie24NAAAA8ArUH1Xz5PrDYLFUtqoSLlRQUKCQkBCNGzdOkZGRdsc5cuSIli9fruzsbF199dXOSxAAALhcUVGRDhw4oPbt2yswMLCu04ETXOzfafnz34kTJxQcHFxHGaK+ov4AAADUH97HWfUHy+8AAAAAAAAAAOAhaOoDAAAAAAAAAOAhaOoDAAAAAAAAAOAhaOoDAAAAAAAAAOAhaOoDAAAAAAAAAOAhaOoDAAAAAAAAAOAhaOoDAAAAAAAAAOAhaOoDAAAAAAAAAOAhaOoDAAAAAAAAAOAhaOoDAADUA+PGjZPBYLC+mjdvrt///vf66quvKoy955575Ovrq9dff73CZ6dOndIjjzyiyy+/XIGBgWrRooWuu+46vfPOO9Yx1113nc21yl+TJ0+2jjEYDHrzzTcrzXXr1q0yGAw6fvy4zfsePXqorKzMZmzTpk2VlpZmfR8ZGVnptZ966qka/LUAAAAAOIL6w7X1B019AACA2jJ7tjR3buWfzZ17/nMX+v3vfy+TySSTyaSPPvpIfn5++uMf/2gz5vTp00pPT9fDDz+sl19+uUKMyZMn680339QLL7ygvXv36v3339fNN9+sY8eO2Yy7++67rdcqfz3zzDMO5b9//36tWrXqkuOSk5MrXPu+++5z6NoAAACAx6H+cCh/d64//FwaHQAAAP/j6yvNmnX+n2fO/N/xuXPPH09OdunlAwICFBYWJkkKCwvTI488okGDBuno0aNq0aKFJGndunXq1q2bkpKS1KpVKx08eFCRkZHWGBs3btSiRYs0fPhwSednpkRFRVW4VsOGDa3Xcpb77rtPjz/+uG677TYFBgZWOa5JkyZOvzYAAADgcag/HOLO9Qcz9QEAAGrLzJnnH5xnzfrfjJnfPlD/9kHbxQoLC/Xqq6+qY8eOat68ufX4yy+/rLFjxyokJETDhw/XypUrbc4LCwvTpk2bdPLkyVrLtdzUqVNVWlqqF154odavDQAAAHgc6g+HuHP9QVMfAACgNv32wTogoFYfqN955x01btxYjRs3VpMmTfT2228rPT1dPj7nHwn37dunTz/9VGPGjJEkjR07VitXrtS5c+esMZYvX64dO3aoefPmuuaaazRt2jR98sknFa6VmppqvVb565VXXnEo/4YNG+rxxx/X/PnzdeLEiSrHPfLIIxWuvXXrVoeuDQAAAHgk6g+7uXP9QVMfAACgts2cKfn7SyUl5/9vLc2Quf7665WTk6OcnBx99tlniouL07Bhw/TTTz9JOj9LZujQoTIajZKk4cOH69SpU/rwww+tMQYNGqQff/xRH330kW6++WZ9++23io2N1dwL1uq84447rNcqf40cOdLhe5gwYYKMRqOefvrpKsc8/PDDFa7dr18/h68NAAAAeCTqD7u5a/1BUx8AAKC2zZ37vwfqkpKqN69yskaNGqljx47q2LGj+vbtq5dfflmnTp3S3//+d5WVlWnVqlV699135efnJz8/PzVs2FC//PJLhQ2rGjRooNjYWE2fPl0ffPCBkpOTNXfuXJWUlFjHhISEWK9V/goODnb4Hvz8/PTEE09o0aJFOnLkSKVjjEZjhWsHBQU5fG0AAADAI1F/2M1d6w+a+gAAALXpt2tYFhdXXOOyFhkMBvn4+OjMmTPWdSp37dplM8Nk3bp1evPNN3Xs2LEq43Tr1k2lpaUqKiqqlbz//Oc/q3v37pozZ06tXA8AAADwWNQfDnPH+sOvrhMAAACoNyrblKr8/86aZfveBYqLi5WXlydJ+vXXX/XCCy+osLBQN954o1JSUvSHP/xBV111lc053bt319SpU7V69Wo98MADuu6663TbbbepT58+at68uXbv3q1HH31U119/vc1MmNOnT1uvVS4gIECXXXaZ9f2BAweUk5NjM6Zjx47VupennnpKQ4cOrfSzkydPVrh2w4YNnTJTBwAAAPAY1B9eW38wUx8AAKC2lJVVvilV+eZVZWUuvfz777+vVq1aqVWrVurXr58+//xzrVu3Tl27dtW7776rm2++ucI5BoNBo0aNsv4EdujQoXrllVcUFxenrl276r777tPQoUO1du1am/P+/ve/W69V/rrttttsxiQmJqp37942ry+++KJa9/K73/1Ov/vd71RaWlrhs1mzZlW49l//+tfq/plQD6Wmpqp9+/YKDAxUVFSUsrKyqhy7fft2xcTEqHnz5goKClKXLl20cOHCCuPWr1+vbt26KSAgQN26ddOGDRtceQsAAAAVUX/YjPGm+sNgsVgsLr2ClygoKFBISIjGjRunyMhIu+McOXJEy5cvV3Z2tq6++mrnJQgAAFyuqKhIBw4csDb/4Pku9u+0/PnvxIkTzPL3Yunp6YqPj1dqaqpiYmK0bNkyvfTSS9q9e7fCw8MrjN+1a5f27t2rK6+8Uo0aNdL27ds1adIkLVy4UPfcc48kaefOndYN3EaOHKkNGzZo1qxZ2r59e7U3TaP+AAAA1B/ex1n1BzP1AQAAANRbCxYs0IQJEzRx4kR17dpVKSkpateunZYuXVrp+N69e+u2225T9+7dFRkZqbFjx2ro0KE2s/tTUlI0ZMgQJSUlqUuXLkpKStLgwYOVkpJSS3cFAAAAb+axTf2a/ET2tz755BP5+fmpV69erk0QAAAAgFsrKSlRdna24uLibI7HxcVpx44d1Yqxa9cu7dixQ9dee6312M6dOyvEHDp06EVjFhcXq6CgwOYFAAAAVMYjm/rp6emaOnWqZsyYoV27dik2NlbDhg1Tbm7uRc87ceKE7rzzTg0ePLiWMgUAAADgrsxms8rKyhQaGmpzPDQ0tMJmZxdq27atAgIC1KdPH02ZMkUTJ060fpaXl1fjmPPnz1dISIj11a5dOzvuCAAAAPWBRzb1a/oT2XKTJk3S7bffrujo6FrKFAAAAIC7MxgMNu8tFkuFYxfKysrSF198oRdffFEpKSlas2aNQzGTkpJ04sQJ6+vQoUM1vAsAAADUF351nUBNlf9Edvr06TbHL/UT2ZUrV2r//v1avXq1nnjiiUtep7i4WMXFxdb3/PwVAAAA8C5Go1G+vr4VZtDn5+dXmGl/ofbt20uSevbsqf/85z+aPXu2brvtNklSWFhYjWMGBAQoICDAntsAAABAPeNxM/Xt+Ynsvn37NH36dL366qvy86ve9xj8/BUAAADwbv7+/oqKilJmZqbN8czMTA0YMKDacSwWi82EoOjo6AoxP/jggxrFBAAAAKricTP1y1X356xlZWW6/fbbNWfOHHXu3Lna8ZOSkpSYmGh9X1BQQGMfAAAA8DKJiYmKj49Xnz59FB0dreXLlys3N1eTJ0+WdL4uOHz4sFatWiVJWrJkicLDw9WlSxdJ0vbt2/Xcc8/pvvvus8Z84IEHNGjQID399NMaMWKE3nrrLX344Yfavn177d8gAAAAvI7HNfVr+hPZkydP6osvvtCuXbt07733SpLOnTsni8UiPz8/ffDBB/rd735X4Tx+/goAAAB4vzFjxujYsWNKTk6WyWRSjx49tGnTJkVEREiSTCaTcnNzrePPnTunpKQkHThwQH5+furQoYOeeuopTZo0yTpmwIABev311/XYY49p5syZ6tChg9LT09WvX79avz8AAAB4H49r6v/2J7IjR460Hs/MzNSIESMqjA8ODtbXX39tcyw1NVX//Oc/9cYbb1jXwgQAAABQPyUkJCghIaHSz9LS0mze33fffTaz8qtyyy236JZbbnFGegAAAIANj2vqSzX7iayPj4969Ohhc37Lli0VGBhY4TgAAIA9LEVnpLNna++CDRrIEBhUe9cDAAAA4DaoP+CRTf2a/kQWAADAVSxFZ3RuW6Ysp0/V2jUNDRvJZ9CQGj1Yjxs3TsePH9ebb75Z4bPIyEj99NNPFY7Pnz9f06dP18GDB9W+fXu1aNFC+/fvV5MmTaxjevXqpZtuukmzZ8+WJP3444+aMWOGPv74Y/3yyy8yGo2KiorSs88+q86dO+vgwYOaO3eu/vnPfyovL0+tW7fW2LFjNWPGDPn7+9f4bwEAAADUJ9Qf1B+Shzb1pZr9RPZCs2fPtv6LBwAAcMjZs+cfqP0aSA1q4aHwbMn56509KzlxtkxycrLuvvtum2O/fXiWzu9V9Nxzz2nOnDmVxigpKdGQIUPUpUsXZWRkqFWrVvr555+1adMmnThxQpK0d+9enTt3TsuWLVPHjh31zTff6O6779apU6f03HPPOe1+AAAAAK9E/WFVn+sPj23qAwAAuJUG/jIEBLj8MhZJKnX+T22bNGmisLCwi4657777tGDBAk2ZMkUtW7as8Pnu3bv1448/6p///Kf1F5QRERGKiYmxjvn973+v3//+99b3l19+ub777jstXbrUox+qAQAAgFpF/VGv6w+fuk4AAAAAnuG2225Tx44dlZycXOnnLVq0kI+Pj9544w2VlZVVO+6JEyfUrFkzZ6UJAAAAwAtQf1SNpj4AAAD0yCOPqHHjxjavrVu32owxGAx66qmntHz5cu3fv79CjDZt2mjx4sWaNWuWLrvsMv3ud7/T3Llz9eOPP1Z53f379+tvf/ubJk+e7OxbAgAAAOCmqD8cQ1MfAAAAevjhh5WTk2Pz6tevX4VxQ4cO1cCBAzVz5sxK40yZMkV5eXlavXq1oqOjtW7dOnXv3l2ZmZkVxh45ckS///3v9ec//1kTJ050+j0BAAAAcE/UH46hqQ8AAAAZjUZ17NjR5hUUVPlGWE899ZTS09O1a9euSj9v0qSJ/vSnP+nJJ5/Ul19+qdjYWD3xxBM2Y44cOaLrr79e0dHRWr58udPvBwAAAID7ov5wDE19AAAA1Ejfvn01atQoTZ8+/ZJjDQaDunTpolOnTlmPHT58WNddd52uvvpqrVy5Uj4+PJICAAAAqBz1R0V+dZ0AAAAAaseJEyeUk5Njc6x8g6iTJ08qLy/P5rOGDRsqODi40lhPPvmkunfvLj+//z1O5uTk6PHHH1d8fLy6desmf39/ffzxx1qxYoUeeeQRSednyFx33XUKDw/Xc889p6NHj1rPDwsLc8ZtAgAAAHAD1B+uQ1MfAADAGc6WyFJL17HX1q1b1bt3b5tjd911lyRp1qxZmjVrls1nkyZN0osvvlhprM6dO2v8+PE2P11t27atIiMjNWfOHB08eFAGg8H6ftq0aZKkDz74QD/88IN++OEHtW3b1iamxVIrf0EAAADA81F/1Ov6w2Dx5OxrUUFBgUJCQjRu3DhFRkbaHefIkSNavny5srOzdfXVVzsvQQAA4HJFRUU6cOCA2rdvr8DAQEmSpeiMzm3LlOX0qUuc7TyGho3kM2iIDIGVrzmJ6qvs32m58ue/EydOVDljCHAV6g8AAED94X2cVX8wUx8AAMABhsAg+QwaIp09W3sXbdCAB2oAAACgHqL+gERTHwAAwGGGwCCJh1wAAAAAtYD6A56/1S8AAAAAAAAAAPUETX0AAAAAAAAAADwETX0AAAAAAAAAADwETX0AAAAAAAAAADwETX0AAAAAAAAAADwETX0AAAAAAAAAADwETX0AAAAAAAAAADyEX10nAAAA4Olyc3NlNptr7XpGo1Hh4eG1dj3A26WmpurZZ5+VyWRS9+7dlZKSotjY2ErHZmRkaOnSpcrJyVFxcbG6d++u2bNna+jQodYxaWlp+stf/lLh3DNnzigwMNBl9wEAAOoH6g/Q1AcAAHBAbm6uunTpojNnztTaNYOCgrR3794aP1jn5eXpySef1LvvvqvDhw+rZcuW6tWrl6ZOnarBgwcrMjJSP/30k9asWaNbb73V5tzu3btr9+7dWrlypcaNGydJioyM1NSpUzV16lTr+59++sma4+WXX6777rtPkyZNssYpLi5WcnKyVq9erby8PLVt21YzZszQ+PHj7f+DAA5IT0/X1KlTlZqaqpiYGC1btkzDhg3T7t27K/3/sW3btmnIkCGaN2+emjZtqpUrV+rGG2/UZ599pt69e1vHBQcH67vvvrM5l4Y+AABwFPUH9YdEUx8AAMAhZrNZZ86c0ahRo2Q0GmvlehkZGTKbzTV6qD548KBiYmLUtGlTPfPMM7ryyit19uxZbd68WVOmTNHevXslSe3atdPKlSttHqo//fRT5eXlqVGjRpe8TnJysu6++24VFhYqLS1NkydPVtOmTTVmzBhJ0ujRo/Wf//xHL7/8sjp27Kj8/HyVlpbW8K8AOM+CBQs0YcIETZw4UZKUkpKizZs3a+nSpZo/f36F8SkpKTbv582bp7feeksbN260aeobDAaFhYW5NHcAAFD/UH/Yqq/1B019AAAAJzAajWrdunVdp1GlhIQEGQwG/etf/7J5OO7evbvNLJU77rhDCxcu1KFDh9SuXTtJ0ooVK3THHXdo1apVl7xOkyZNrI3MJ554QmvXrtWbb76pMWPG6P3339fHH3+sH3/8Uc2aNZN0fnYNUFdKSkqUnZ2t6dOn2xyPi4vTjh07qhXj3LlzOnnypPW/6XKFhYWKiIhQWVmZevXqpblz59o0/S9UXFys4uJi6/uCgoIa3AkAAKhvqD/Oq6/1BxvlAgAAeLlffvlF77//vqZMmVLpbJemTZta/zk0NFRDhw7VK6+8Ikk6ffq00tPT7f55amBgoM6ePStJevvtt9WnTx8988wzatOmjTp37qyHHnqoVn86DPyW2WxWWVmZQkNDbY6HhoYqLy+vWjGef/55nTp1SqNHj7Ye69Kli9LS0vT2229rzZo1CgwMVExMjPbt21dlnPnz5yskJMT6Ki9qAQAAPA31h+vR1AcAAPByP/zwgywWi7p06VKt8ePHj1daWposFoveeOMNdejQQb169arRNUtLS5WWlqavv/5agwcPliT9+OOP2r59u7755htt2LBBKSkpeuONNzRlypSa3hLgVAaDwea9xWKpcKwya9as0ezZs5Wenq6WLVtaj/fv319jx47VVVddpdjYWK1du1adO3fW3/72typjJSUl6cSJE9bXoUOH7L8hAACAOkT94Xo09QEAALycxWKRVLFxWZU//OEPKiws1LZt27RixYoazZJ55JFH1LhxYwUFBWnKlCl6+OGHrRtVnTt3TgaDQa+++qr69u2r4cOHa8GCBUpLS/OK2TLwPEajUb6+vhVm5efn51eYvX+h9PR0TZgwQWvXrtUNN9xw0bE+Pj665pprLjpTPyAgQMHBwTYvAAAAT0T94Xo09QEAALxcp06dZDAYtGfPnmqN9/PzU3x8vB5//HF99tlnuuOOO6p9rYcfflg5OTn66aefVFhYqGeeeUY+PucfOVu1aqU2bdooJCTEOr5r166yWCz6+eefa3ZTgBP4+/srKipKmZmZNsczMzM1YMCAKs9bs2aNxo0bp9dee01/+MMfLnkdi8WinJwctWrVyuGcAQAA3B31h+vR1AcAAPByzZo109ChQ7VkyRKdOnWqwufHjx+vcGz8+PH6+OOPNWLECF122WXVvpbRaFTHjh3VunXrCjNzYmJidOTIERUWFlqPff/99/Lx8VHbtm2rf0OAEyUmJuqll17SihUrtGfPHk2bNk25ubmaPHmypPPL4tx5553W8WvWrNGdd96p559/Xv3791deXp7y8vJ04sQJ65g5c+Zo8+bN+vHHH5WTk6MJEyYoJyfHGhMAAMCbUX+4Hk19AACAeiA1NVVlZWXq27ev1q9fr3379mnPnj1avHixoqOjK4zv2rWrzGazVq5c6bQcbr/9djVv3lx/+ctftHv3bm3btk0PP/ywxo8fr6CgIKddB6iJMWPGKCUlRcnJyerVq5e2bdumTZs2KSIiQpJkMpmUm5trHb9s2TKVlpZqypQpatWqlfX1wAMPWMccP35c99xzj7p27aq4uDgdPnxY27ZtU9++fWv9/gAAAOoC9Ydr+dV1AgAAAN7AbDa79XXat2+vf//733ryySf14IMPymQyqUWLFoqKitLSpUsrPad58+aOpFpB48aNlZmZqfvuu099+vRR8+bNNXr0aD3xxBNOvQ5QUwkJCUpISKj0s7S0NJv3W7duvWS8hQsXauHChU7IDAAAoHLUH5fmzfUHTX0AAAAHGI1GBQUFKSMjo9auGRQUJKPRWOPzWrVqpRdeeEEvvPBCpZ8fPHjwoudf+DPZC8df6nxJ6tKlS4X1ywEAAABUD/VH9c+XvLf+oKkPAADggPDwcO3du7fWZspI5x/kw8PDa+16AAAAANwD9QckmvoAAAAOCw8P5yEXAAAAQK2g/gAb5QIAAAAAAAAA4CFo6gMAAAAAAAAA4CFo6gMAAAAAAAAA4CFo6gMAANTQuXPn6joFOInFYqnrFAAAAICLov7wHs6qP9goFwAAoJr8/f3l4+OjI0eOqEWLFvL395fBYKjrtGAni8Wio0ePymAwqEGDBnWdDgAAAGCD+sO7OLP+8Nimfmpqqp599lmZTCZ1795dKSkpio2NrXTs9u3b9cgjj2jv3r06ffq0IiIiNGnSJE2bNq2WswYAAJ7Mx8dH7du3l8lk0pEjR+o6HTiBwWBQ27Zt5evrW9epAAAAADaoP7yPs+oPj2zqp6ena+rUqUpNTVVMTIyWLVumYcOGaffu3QoPD68wvlGjRrr33nt15ZVXqlGjRtq+fbsmTZqkRo0a6Z577qmDOwAAAJ7K399f4eHhKi0tVVlZWV2nAwc1aNCAhj4AAADcFvWHd3FW/eGSpv7ixYvVv39/9e3b13osPz9feXl5uvLKKyuMf+utt/TWW29pxYoV1Yq/YMECTZgwQRMnTpQkpaSkaPPmzVq6dKnmz59fYXzv3r3Vu3dv6/vIyEhlZGQoKyuLpj4AAKix8p9LsmQL4Hquri0AAADcHfUHLuSSjXKnTp2q999/3+bY0qVLbRrrv5WTk6NXXnmlWrFLSkqUnZ2tuLg4m+NxcXHasWNHtWLs2rVLO3bs0LXXXlvlmOLiYhUUFNi8AAAAANQuV9YWAAAAgCdySVPflcxms8rKyhQaGmpzPDQ0VHl5eRc9t23btgoICFCfPn00ZcoU60z/ysyfP18hISHWV7t27ZySPwAAAAAAAAAA9vK4pn65C3d6tlgsl9z9OSsrS1988YVefPFFpaSkaM2aNVWOTUpK0okTJ6yvQ4cOOSVvAAAAAAAAAADs5XEb5RqNRvn6+laYlZ+fn19h9v6F2rdvL0nq2bOn/vOf/2j27Nm67bbbKh0bEBCggIAA5yQNAAAAAAAAAIATeNxMfX9/f0VFRSkzM9PmeGZmpgYMGFDtOBaLRcXFxc5ODwAAAAAAAAAAl/G4mfqSlJiYqPj4ePXp00fR0dFavny5cnNzNXnyZEnnl845fPiwVq1aJUlasmSJwsPD1aVLF0nS9u3b9dxzz+m+++6rs3sAAAAAAAAAAKCmXNbU/+abb7R27Vqb95K0bt06WSyWCmNrYsyYMTp27JiSk5NlMpnUo0cPbdq0SREREZIkk8mk3Nxc6/hz584pKSlJBw4ckJ+fnzp06KCnnnpKkyZNsvf2AAAAANQSV9YWAAAAgKcxWC58CnYCHx+fSjeylSpucFv+mcFgUFlZmbNTcZqCggKFhIRo3LhxioyMtDvOkSNHtHz5cmVnZ+vqq692XoIAAABwqvLnvxMnTig4OLiu06m3vLG2qA7qDwAAgPqlJvWHS2bqP/74464ICwAAAKCeobYAAAAAbNHUBwAAAOC2qC0AAAAAWz51nQAAAAAA1KXU1FS1b99egYGBioqKUlZWVpVjMzIyNGTIELVo0ULBwcGKjo7W5s2bK4xbv369unXrpoCAAHXr1k0bNmxw5S0AAACgHqmTpn5OTo4WLlyohQsX6vPPP6+LFAAAAAB4AUdri/T0dE2dOlUzZszQrl27FBsbq2HDhik3N7fS8du2bdOQIUO0adMmZWdn6/rrr9eNN96oXbt2Wcfs3LlTY8aMUXx8vL788kvFx8dr9OjR+uyzz+y+TwAAAKCcS5r627Zt05133qlPP/20wmePPfaYoqKi9NBDD+mhhx5S//79dd9997kiDQAAAAAeztW1xYIFCzRhwgRNnDhRXbt2VUpKitq1a6elS5dWOj4lJUV//etfdc0116hTp06aN2+eOnXqpI0bN9qMGTJkiJKSktSlSxclJSVp8ODBSklJqVFuAAAAQGVc0tRPT0/XunXr1K1bN5vjW7Zs0bx58+Tr66v4+HhNnjxZRqNRqampevPNN12RCgAAAAAP5sraoqSkRNnZ2YqLi7M5HhcXpx07dlQrxrlz53Ty5Ek1a9bMemznzp0VYg4dOvSiMYuLi1VQUGDzAgAAACrjkqb+zp071a9fPwUHB9scX7ZsmQwGg1588UWlpaVpyZIlysrKUoMGDZSWluaKVAAAAAB4MFfWFmazWWVlZQoNDbU5Hhoaqry8vGrFeP7553Xq1CmNHj3aeiwvL6/GMefPn6+QkBDrq127dtW6PgAAAOoflzT1jxw5os6dO1c4vmXLFgUHB2vcuHHWY507d9bw4cP1xRdfuCIVAAAAAB6sNmoLg8Fg895isVQ4Vpk1a9Zo9uzZSk9PV8uWLR2KmZSUpBMnTlhfhw4dqsEdAAAAoD5xSVP/119/ldFotDn2888/6+jRoxo4cKB8fGwv27FjR5nNZlekAgAAAMCDubK2MBqN8vX1rTCDPj8/v8JM+wulp6drwoQJWrt2rW644Qabz8LCwmocMyAgQMHBwTYvAAAAoDIuaeo3adJER44csTmWnZ0tSYqKiqow3mAwKDAw0BWpAAAAAPBgrqwt/P39FRUVpczMTJvjmZmZGjBgQJXnrVmzRuPGjdNrr72mP/zhDxU+j46OrhDzgw8+uGhMAAAAoLr8XBH0yiuv1DvvvKNTp06pUaNGkqQNGzbIYDBo0KBBFcbv379frVu3dkUqAAAAADyYq2uLxMRExcfHq0+fPoqOjtby5cuVm5uryZMnSzq/LM7hw4e1atUqSecb+nfeeacWLVqk/v37W2fkBwUFKSQkRJL0wAMPaNCgQXr66ac1YsQIvfXWW/rwww+1fft2h/4WAAAAgOSimfrjx4/XL7/8omuvvVaLFy/W/fffr9WrV6tdu3a67rrrbMaWlZVp27Zt6tmzpytSAQAAAODBXF1bjBkzRikpKUpOTlavXr20bds2bdq0SREREZIkk8mk3Nxc6/hly5aptLRUU6ZMUatWrayvBx54wDpmwIABev3117Vy5UpdeeWVSktLU3p6uvr16+fYHwMAAACQi2bqjx07Vh999JFeeeUV7dq1SxaLRU2aNNHf//73CmtevvvuuzKbzRo6dKgrUgEAAADgwWqjtkhISFBCQkKln6Wlpdm837p1a7Vi3nLLLbrllltqlAcAAABQHS5p6kvSypUrNWHCBO3cuVPNmjXT0KFD1bZt2wrjAgICtHDhQo0YMcJVqQAAAADwYNQWAAAAwP+4rKkvSQMHDtTAgQMvOmbo0KHM0gcAAABwUdQWAAAAwHkuWVMfAAAAAAAAAAA4n0tm6q9du9au80aPHu3kTAAAAAB4MmoLAAAAwJZLmvq33nqrDAZDtcdbLBYZDAYevAEAAADYoLYAAAAAbLlsTX0/Pz8NHz5cvXr1ctUlAAAAANQD1BYAAADA/7ikqX/TTTfp3Xff1dtvv62ffvpJ48eP1x133KHLLrvMFZcDAAAA4KWoLQAAAABbLtkoNyMjQ4cPH9azzz6r0tJS3X///WrdurVuu+02ZWZmuuKSAAAAALwQtQUAAABgyyVNfUkyGo1KTEzUV199pU8//VR33nmn3n//ff3+979XeHi4Zs2apR9//NFVlwcAAADgJagtAAAAgP9xWVP/t/r27atly5bJZDIpLS1NHTt21JNPPqnOnTvrww8/rI0UAAAAAHgBagsAAADUdy7bKLcygYGBiouLk8lk0vfff68jR47o9OnTtZkCAAAAAC9AbQEAAID6qlaa+mVlZXrnnXe0YsUKvffeeyorK1OvXr2UlJSkwYMH10YKAAAAALwAtQUAAADqO5c29Xfv3q0VK1Zo9erVys/PV/PmzZWQkKDx48fryiuvdOWlAQAAAHgRagsAAADgPJc09ZcvX64VK1bo888/l8FgUFxcnMaPH68RI0aoQYMGrrgkAAAAAC9EbQEAAADYcklTf/LkyWrQoIFuvPFG3XXXXWrTpo0kadeuXRc9r2/fvq5IBwAAAICHorZwjj179jgcw2g0Kjw83AnZAAAAwBEuW37n7Nmz2rhxozZu3Fjtc8rKylyVDgAAAAAPRW1hv8LCQhkMBo0dO9bhWEFBQdq7dy+NfQAAgDrmkqb+XXfd5YqwAAAAAOoZagvHFBUVyWKxaNSoUTIajXbHMZvNysjIkNlspqkPAABQx1zS1F+5cqUrwgIAAACoZ6gtnMNoNKp169Z1nQYAAACcwKeuEwAAAAAAAAAAANXjkpn6CQkJdp2Xmprq5EzcFxtVAQAAAJdGbQEAAADYcklT/8UXX6z2WIPBYP3n+vDgzUZVAAAAQPVRWwAAAAC2XNLU37JlS7XG5ebmKjk5Wfv377d5APdmbFQFAAAAVF9t1Bapqal69tlnZTKZ1L17d6WkpCg2NrbSsSaTSQ8++KCys7O1b98+3X///UpJSbEZk5aWpr/85S8Vzj1z5owCAwNrlBsAAABwIZc09a+99tqLfv7rr79q3rx5WrJkiYqKihQdHa2nn37aFam4LTaqAgAAAC7N1bVFenq6pk6dqtTUVMXExGjZsmUaNmyYdu/eXenkmeLiYrVo0UIzZszQwoULq4wbHBys7777zuYYDX0AAAA4Q61ulFtUVKSnnnpKHTp00PPPP6/IyEhlZGTok08+0cCBA2sUKzU1Ve3bt1dgYKCioqKUlZVV5diMjAwNGTJELVq0UHBwsKKjo7V582ZHbwcAAABAHXFWbbFgwQJNmDBBEydOVNeuXZWSkqJ27dpp6dKllY6PjIzUokWLdOeddyokJKTKuAaDQWFhYTYvAAAAwBlqpalvsVj00ksvqVOnTnr00UfVsGFDLV++XN98841uuummGscrn00zY8YM7dq1S7GxsRo2bJhyc3MrHb9t2zYNGTJEmzZtUnZ2tq6//nrdeOON2rVrl4N3BgAAAKA2ObO2KCkpUXZ2tuLi4myOx8XFaceOHQ7lWVhYqIiICLVt21Z//OMfL1l7FBcXq6CgwOYFAAAAVMYly+/81ptvvqlHH31U3333nYKDgzVv3jxNnTrVoZ+e/nY2jSSlpKRo8+bNWrp0qebPn19h/IVrXM6bN09vvfWWNm7cqN69e9udhzvYs2ePwzGMRiPr8gMAAMDtObu2MJvNKisrU2hoqM3x0NBQ5eXl2Z1nly5dlJaWpp49e6qgoECLFi1STEyMvvzyS3Xq1KnSc+bPn685c+bYfU0AAADUHy5r6m/fvl2PPPKIPv30U/n7+2vatGmaMWOGLrvsMofils+mmT59us3xmsymOXfunE6ePKlmzZpVOaa4uFjFxcXW9+42U6awsFAGg0Fjx451OFZQUJD27t1LYx8AAABuyVW1RbkLN9a1WCw13mz3t/r376/+/ftb38fExOjqq6/W3/72Ny1evLjSc5KSkpSYmGh9X1BQoHbt2tmdAwAAALyXS5r6f/rTn/Tuu+/Kx8dHd911l5KTk9W2bVunxHbGbJrnn39ep06d0ujRo6sc4+4zZYqKimSxWDRq1CgZjUa745jNZmVkZMhsNtPUBwAAgNtxZW1hNBrl6+tboY7Iz8+vUG84wsfHR9dcc4327dtX5ZiAgAAFBAQ47ZoAAADwXi5p6r/zzjsyGAwKDw9XXl6e7rnnnkueYzAY9O6771b7GvbOplmzZo1mz56tt956Sy1btqxynKfMlDEajWrdunVdpwEAAAC4hCtrC39/f0VFRSkzM1MjR460Hs/MzNSIESMcyvu3LBaLcnJy1LNnT6fFBAAAQP3lsuV3LBaLDhw4oAMHDlRrfHV/3urIbJr09HRNmDBB69at0w033HDRscyUAQAAANyDq2oLSUpMTFR8fLz69Omj6OhoLV++XLm5uZo8ebKk85N9Dh8+rFWrVlnPycnJkXR+ScyjR48qJydH/v7+6tatmyRpzpw56t+/vzp16qSCggItXrxYOTk5WrJkSbXzAgAAAKrikqZ+dR+27WHvbJo1a9Zo/PjxWrNmjf7whz+4LD8AAAAAzuPK2kKSxowZo2PHjik5OVkmk0k9evTQpk2bFBERIUkymUzKzc21Oad3797Wf87OztZrr72miIgIHTx4UJJ0/Phx3XPPPcrLy1NISIh69+6tbdu2qW/fvi69FwAAANQPLmnqlz8Au0pNZ9OsWbNGd955pxYtWqT+/ftbZ/kHBQUpJCTEpbkCAAAAsJ+rawtJSkhIUEJCQqWfpaWlVThmsVguGm/hwoVauHChM1IDAAAAKnDZ8juuVNPZNMuWLVNpaammTJmiKVOmWI/fddddlT6kAwAAAAAq2rNnj8MxjEajwsPDnZANAABA/eSRTX2pZrNptm7d6vqEAAAAAMBLFRYWymAwaOzYsQ7HCgoK0t69e2nsAwAA2Mljm/oAAAAAgNpRVFQki8WiUaNGyWg02h3HbDYrIyNDZrOZpj4AAICdaOoDAAAAAKrFaDSqdevWdZ0GAABAveZT1wkAAAAAAAAAAIDqoakPAAAAAAAAAICHoKkPAAAAAAAAAICHYE19SJL27Nnj0PlGo5GNrgAAAAAAAADAxWjq13OFhYUyGAwaO3asQ3GCgoK0d+9eGvsAAAAAAAAA4EI09eu5oqIiWSwWjRo1Skaj0a4YZrNZGRkZMpvNNPUBAAAAAAAAwIVo6kPS+eVzWrduXddpAAAAAAAAAAAugo1yAQAAAAAAAADwEDT1AQAAAAAAAADwEDT1AQAAAAAAAADwEDT1AQAAAAAAAADwEGyUC6fZs2ePwzGMRqPCw8OdkA0AAAAAAAAAeB+a+nBYYWGhDAaDxo4d63CsoKAg7d27l8Y+AAAA4MUcnRDEZCAAAFCf0dSHw4qKimSxWDRq1CgZjUa745jNZmVkZMhsNvOADgAAAHghZ00IYjIQAACoz2jqw2mMRqNat25d12kAAAAAcFPOmBDEZCAAAFDf0dQHAAAAANQqJgQBAADYj6Y+3A4b7gIAAAC4FOoGAABQX9HUh9tgw10AAADUhdTUVD377LMymUzq3r27UlJSFBsbW+lYk8mkBx98UNnZ2dq3b5/uv/9+paSkVBi3fv16zZw5U/v371eHDh305JNPauTIkS6+k/rBmXVDQECA1q9fr1atWjkUhy8HAABAbaKpD7fBhrsAAACobenp6Zo6dapSU1MVExOjZcuWadiwYdq9e3elz5LFxcVq0aKFZsyYoYULF1Yac+fOnRozZozmzp2rkSNHasOGDRo9erS2b9+ufv36ufqWvJ6z6obc3Fxt3rxZf/zjHx3OiUlFAACgNtHUh9thfU0AAADUlgULFmjChAmaOHGiJCklJUWbN2/W0qVLNX/+/ArjIyMjtWjRIknSihUrKo2ZkpKiIUOGKCkpSZKUlJSkjz/+WCkpKVqzZo2L7qT+cbRuMJvNTCoCAAAeiaY+AAAAgHqppKRE2dnZmj59us3xuLg47dixw+64O3fu1LRp02yODR06tNJlesoVFxeruLjY+r6goMDu66NmmFQEAAA8DU19eC02zgIAAMDFmM1mlZWVKTQ01OZ4aGio8vLy7I6bl5dX45jz58/XnDlz7L4mAAAA6g+a+vA6bLgLAACAmjAYDDbvLRZLhWOujpmUlKTExETr+4KCArVr105NfAxqpHN259HUz1dhjRsp2IviuFMukhTsY1BY40byKzojy0l+YQEAAOxTk+cImvrwOs7ecDcrK0tdu3Z1KKfi4mIFBATUeQyJXx8AAACUMxqN8vX1rTCDPj8/v8JM+5oICwurccyAgIBKn/WGN/FXCxXZnUuvsMs04IaB6hzsr4ZeEsedcpGk08H+6nLDQIXt2aWy/Fy74wAAgPqt7PTpao+lqQ+v5ejamM6c8W8wGGSxWOo8hsSvDwAAAMr5+/srKipKmZmZGjlypPV4ZmamRowYYXfc6OhoZWZm2qyr/8EHH2jAgAE1jnXWIp2W/b8aOFlWpmOnz+jUOYvkJXHcKRdJOnXOomOnz6jUP0AKamR3HAAAUM+VnK32UJr6QBWcNeN/37592rJli0NxnBFD+t+vD8xmM019AAAASYmJiYqPj1efPn0UHR2t5cuXKzc3V5MnT5Z0flmcw4cPa9WqVdZzcnJyJJ2fBHL06FHl5OTI399f3bp1kyQ98MADGjRokJ5++mmNGDFCb731lj788ENt3769xvmVWCw660DDueicRYUlZ1Vskfy9JI475SJJxRapsOSs8n89rnN+DeyOI0llpaXy9XO8THdGnIYNGyokJMThXAAAQDX5+Vd/qAvTALyCozP+zWazw3GcEQMAAAAVjRkzRseOHVNycrJMJpN69OihTZs2KSIiQpJkMpmUm2u7pErv3r2t/5ydna3XXntNEREROnjwoCRpwIABev311/XYY49p5syZ6tChg9LT09WvX79auy/UnpKSEklSxoYNdZyJc/n5+enee++lsQ8AgBuiqQ/UQ3v27HE4BmvzAwAAb5GQkKCEhIRKP0tLS6twrDpLIt5yyy265ZZbHE0NHqC0tFSS1LVrVzVs2NDuOMeOHdPBgwfdIs7p06e1Z88enT59mqY+AABuiKY+UI84c58A1uYHAAAA/qdhw4Zq0qSx3eef/u/meO4SBwAAuC+a+kA94qx9AlibHwAAAAAAAKgbNPVrqImPQY10zu7zm/r5KqxxIwV7URx3ysVb4zg7l8tbtlBoWKjdcYJ9DApr3Eh+RWdkOVlgdxwAANwZ/xsHoL4zHz3qcAw23AUAwPlo6tfQ8Cb+aqEiu8/vFXaZBtwwUJ2D/dXQS+K4Uy7eGsedcpGk08H+6nLDQAXu3Kqje3bZHUeSAgIC1ahxI4diAADgCmX/XcICAOobZ27+y4a7AAA4H039GjprkU7LYPf5J8vKdOz0GZ06Z5G8JI475eKtcdwpF0n6tahEx06f0ZsffGB3jHI+Pr4a8acb1aix/et9BgUFqUmTYIdzAQDARsnZus4AAOqEszb/ZcNdAABcg6Z+DZVYLDrrQDO06JxFhSVnVWyR/L0kjjvl4q1x3CkXSTp19qwKS846/JB/4sQJ/fDDD/rH2nV2x5CY/QMAcBE//7rOAADqlLM223XGMj5lpaXy9XO8hcFyQAAAb+CxTf3U1FQ9++yzMplM6t69u1JSUhQbG1vpWJPJpAcffFDZ2dnat2+f7r//fqWkpNRuwoAXcvQh//R/lzVw5MsBZv8AAAAA7smZy/g4CxOCAADewCOb+unp6Zo6dapSU1MVExOjZcuWadiwYdq9e7fCw8MrjC8uLlaLFi00Y8YMLVy4sA4yBnAxzpoBBAAAAMB9OGsZn2PHjungwYMsBwQAwH95ZFN/wYIFmjBhgiZOnChJSklJ0ebNm7V06VLNnz+/wvjIyEgtWrRIkrRixYpazRVA7eAnvQAAAIB7ctYvfN1lOSCe9wEAdc3jmvolJSXKzs7W9OnTbY7HxcVpx44dTrtOcXGxiouLre8LCgqcFhuA87jjT3p9fX01ZvRoNW7SxKE4FAsA/r+9u4+Nolz7OP6bLt1teRGhawrlQEWDAYRELCov6SMnxhKICaEYm5NQEwVM0z+UboyhahHaQwiRQEV5kQAhRFCSA57E52keKCcVa2lMRMrJo8WQiKynbg9sPViqsoUyzx91q7WL0p3Z7szu95NMdGZnLq75B+a+5p7rBgAA9rFr7EALHwBAsrmuqB8Oh9XT06Pc3Nx+x3Nzc9Xe3m7bn7Nx40atX7/etngAEsNpn/RGF/899O67cceIYrAAAAAA2MeOsQMtfAAATuC6on6UYRj99k3THHDMisrKSgUCgb79zs5OTZw40bb4AOzllE967Vj8NxqHwQIAAABgPzva+NjR/pMvcwEA8XJdUd/v98vj8QyYlX/p0qUBs/et8Pl88vl8tsUDkF6c0u8zmguDBQAA3MlrGMqUGff1WRmGRnoz5TOUMnGclEuqxnFSLk6LY1y/rpHeTB3/n/+OO48oj2eYnn32GY0adYflWACAFHCj+7ZPdV1R3+v1qqCgQPX19Vq6dGnf8fr6ei1ZsiSJmQGAfexcK8COHv92LSLMYsQAAAxOpiENt1DEHOXxKGd4tkZkGCkTx0m5pGocJ+XitDgRmcoZnq38SfnyZcU/ETByLaKLwYu6fPGirt9p7bnW58vSiJEjLMUAADjAjeu3farrivqSFAgEVFpaqtmzZ2vu3LnavXu3gsGgysrKJPW2zmlra9OBAwf6rmlpaZEkdXV16fLly2ppaZHX69X06dOTcQsA8LvsWivAzh7/TsJ6AwCAdFF3tVuTxmTFfX1r+39Ud+JjLR93t3KHj0mJOE7KJVXjOCkXp8Xpi7H8buWOjT+Xr0Jf6e//aJJ54uO4Y0R5vV7t2bPHcveCsWPHasKECZbzAQDEx9PZedvnurKoX1JSoo6ODlVXVysUCmnGjBmqq6tTfn6+JCkUCikYDPa7ZtasWX3/f/r0aR06dEj5+fn6+uuvhzJ1ABgUJ/T4t2sRYbviRNcbCF68KP9dd8UdR2LGPwDA+a7eNPWDMuK+/sqNHrV3/aDOm6ZGpkgcJ+WSqnGclIvT4tiVy79/+FGhq10qLi6W3++PO04wGNSxY8dUVLws7hhRPp9PR44c0fjx4y3F8fv9mjRpkuV8ACDdGIP4iMyVRX1JKi8vV3l5eczf9u/fP+CYacb/iR4AuJ2VlwN2LyJsNY7TWhPxYgAAAADx8vv9ysvLi/v6cDgs0zRteznwxBNPxB0jKjs7W+fOnaOwDwAJ5NqiPgAgPTmtNRGtgAAAAJBsTnk5EA6HdfToUTU2NmratGlxx4lEIvL54l+zIIqvBgCkKor6AABXckJromgroB9//JGiPgAAAFzP6suBrq4uGYah5cuXW8rDMAxbOi7QUghAqqKoP0hew1Cm4v+HJSvD0EhvpnyGUiaOk3JJ1ThOysVpcZyUS6rGcVIuiYgzZsRwjRg5Iq4YPkMa6c3UlX+3K2MQq9TH0nPjhjzDrP+znJ2drVGj7rAcB4CkG93JzgAAAFe5du2a5Rn/58+fV0NDAy2FAOB3UNQfpExDGm6hiDTK41HO8GyNyDBSJo6TcknVOE7KxWlxnJRLqsZxUi5Oi3Ojp0c5w7P1yckP487DbhkZGfrzgj9r+PBsS3F8vqy4X3YAKcPiyzoAANKVlRn/4XDYcoxoHCe1FJKY8Q/APhT1B6nuarcmjcmK+/rW9v+o7sTHWj7ubuUOH5MScZyUS6rGcVIuTovjpFxSNY6TcnFanNa2C6o78bEWL16ssWPHxp3LhQtfqanplOU4bW1t+vAfH8o8/lHcMaK8Xq/27Nmj3NxcS3G6uyPyeq31Qx07dqwmTJhgKQYQD09nZ7JTwBDZsWOHXn/9dYVCId1///2qra1VYWHhLc8/efKkAoGAPv/8c+Xl5emll15SWVlZ3+/79+/XM888M+C6n376SVlZ8Y8lAACD55SWQpI97YBYbwCARFF/0K7eNPWDMuK+/sqNHrV3/aDOm6ZGpkgcJ+WSqnGclIvT4jgpl1SN46RcnBYnGmPYnWM0clz8D+bmpcu2xIlcuqzQ1S7bPlUuKl4Wd4woO/qh0gsVyWJYb+ULFzh8+LBWr16tHTt2aP78+Xr77be1aNEiffHFFzH/zrhw4YIWL16sVatW6Z133lFTU5PKy8t11113admyX/7evOOOO/Tll1/2u5aCPgC4jx0thST72gGx3gAAiaI+AAApxymfKtvRD9XOXqgMXADEsmXLFq1YsUIrV66UJNXW1urYsWPauXOnNm7cOOD8Xbt2adKkSaqtrZXUu+D6p59+qs2bN/cr6huGoXHjxg3JPQAAEs8Jz9isNwAgiqI+AACIyY6Bi9U4dr1gYOACIJbu7m6dPn1aa9as6Xe8qKhIp06dinlNc3OzioqK+h1buHCh9u7dq+vXryszM1NSb7uG/Px89fT06IEHHlBNTY1mzZp1y1wikYgikUjffiftnwAgJaXiegPhcJhnY2CIUdQHAACO57SBCwulAakhHA6rp6dnwPohubm5am9vj3lNe3t7zPNv3LihcDis8ePHa+rUqdq/f79mzpypzs5OvfHGG5o/f77Onj2rKVOmxIy7ceNGrV+/3p4bAwDgNlh9xo5qbW21JReejYHbR1EfAACkDSctlMaM/+Tp6ZEaG6VQSBo/XioslDyeZGeFZDIMo9++aZoDjv3R+b8+PmfOHM2ZM6fv9/nz5+vBBx/Um2++qW3btsWMWVlZqUAg0Lff2dmpiRMnDu5GAAAYQk5bRFji5QDSB0V9AACA22TXQml8qpw8R49KL7wg/etfvxz705+kN96QiouTlxeSw+/3y+PxDJiVf+nSpQGz8aPGjRsX8/xhw4YpJycn5jUZGRl66KGHdP78+Vvm4vP55PP5BnkHAAAkj9MWEZbseTnAiwG4AUV9AACAQbLrU2UMraNHpSeflH6eVN2nra33+N/+RmE/3Xi9XhUUFKi+vl5Lly7tO15fX68lS5bEvGbu3Ln64IMP+h07fvy4Zs+e3ddP/7dM01RLS4tmzpxpX/IAADiEU1pl2vVygK8G4AYU9QEAAJDyenp6Z+j/tqAv9R4zDGn1amnJElrxpJtAIKDS0lLNnj1bc+fO1e7duxUMBlVWViapty1OW1ubDhw4IEkqKyvTW2+9pUAgoFWrVqm5uVl79+7Vu+++2xdz/fr1mjNnjqZMmaLOzk5t27ZNLS0t2r59e1LuEQAAN3DCywE7vxqg3SaiEtH+k6I+AAAAUl5jY/+WO79lmtI33/Set2DBkKUFBygpKVFHR4eqq6sVCoU0Y8YM1dXVKT8/X5IUCoUUDAb7zp88ebLq6upUUVGh7du3Ky8vT9u2bdOyZcv6zrly5Yqee+45tbe3a/To0Zo1a5Y++ugjPfzww0N+fwAApBsrLwfs+mog2m6zsbFR06ZNizuOxIx/t0tU+0+K+gAAAEnS2tpq6fpIJGJLD+50GCiEQvaeh9RSXl6u8vLymL/t379/wLFHH31Un3322S3jbd26VVu3brUrPQAAMMSsfjVg5yLCzPh3r0S2/6SoDwAAMMTsesg3DENmrH4yg5QOA4XbbYlqsXUqAAAAYNsiwnbO+LdjQlA6TAayS6Lbf1LUBwAAGGJ2POSfP39eDQ0Ntg0UwuFwSj+gFxb2fuba1hb7wdowen8vLBz63AAAAJCanDTj344JQekwGcguiW7/SVEfAAAgSaz2+7QaI514PL19K598sreA/+vxjGH0/re2lkVyAQAA4Bx2zfi3Y0IQ6wQMTqLbf1LUBwAAQFoo/uc6/V+JRws/rhqwUNX/zq/R9H/2SMXrkpQdAAAAEJvViTx2TAhinYDBSXT7T4r6AAAASA8ej6a/t1YX10kfPVqlUKj3Ifq/TtYoY91aqbo62RkCAAAAjmT3OgG0/7TW/pOiPgAAANJDVZUkKWPtWi2o/nm/pkaKFvR//h0AAABAbLT/vD2Jbv9JUR8AAADpI1q4X7tW+utfpe5uCvoAAAAAbJfI9p8ZdiQIAAAAuEZVleT19hb0vV4K+gAAAADsF23/ubJGDQ3SoUNSQ4P09YoaTX9vbfzT9EVRHwAAAOmmpuaXgn53d+8+AAAAANipqkqqrlbGurVa0Fijv/xFWtD4q/W8LEwuov0OAAAA1NraajmG3+93/mJXNTW9rXeiD9HRfYkZ+wAAAADslaD2nxT1AQAA0lhXV5cMw9Dy5cstx8rOzta5c+ecW9j/bUFf6v+Q/et9AAAAAAljx6SiSCQin89nOU7CJydVVf1S0Lep/SdFfQAAgDR27do1maap4uJi+f3+uOOEw2EdPXpU4XDYuUX9np7Ys2Ki+z09Q58TAAAAkEbsnFRkGIZM07QcJ+GTk2K1/2SmPgAAAKzy+/3Ky8uzHMfRbXzWrbv1b8zQBwAAABLOrklF58+fV0NDg/MnJyWo/SdFfQAAAFiWVm18AAAAAFhidVJROBy2JU5CJbD9J0V9AAAAWJZWbXwAAAAA4I8ksP0nRX0AAADYxtEzZQAAAABgqCSw/WeGpasBAAAAAAAAAMCQoagPAAAAAAAAAIBLUNQHAAAAAAAAAMAlKOoDAAAAAAAAAOASFPUBAAAAAAAAAHAJivoAAAAAAAAAALiEa4v6O3bs0OTJk5WVlaWCggI1Njb+7vknT55UQUGBsrKydM8992jXrl1DlCkAAAAAJ0vE2OLIkSOaPn26fD6fpk+frvfffz9R6QMAACDNuLKof/jwYa1evVqvvPKKzpw5o8LCQi1atEjBYDDm+RcuXNDixYtVWFioM2fO6OWXX9bzzz+vI0eODHHmAAAAAJwkEWOL5uZmlZSUqLS0VGfPnlVpaameeuopffLJJ0N1WwAAAEhhrizqb9myRStWrNDKlSs1bdo01dbWauLEidq5c2fM83ft2qVJkyaptrZW06ZN08qVK/Xss89q8+bNQ5w5AAAAACdJxNiitrZWjz/+uCorKzV16lRVVlbqscceU21t7RDdFQAAAFLZsGQnMFjd3d06ffq01qxZ0+94UVGRTp06FfOa5uZmFRUV9Tu2cOFC7d27V9evX1dmZuaAayKRiCKRSN/+999/L0lqb2+3lP/ly5clSaFQSN3d3SkRx0m5pGocJ+XitDhOyiVV4zgpF6fFcVIuqRrHSbk4LY6TcrEzTkdHhySpq6tLnZ2dccexQ/TPN00zqXkgcRI1tmhublZFRcWAc36vqM/4w525pGocJ+XitDhOyiVV4zgpF6fFcVIuqRrHSbk4LY6TcrEzjmvHH6bLtLW1mZLMpqamfsc3bNhg3nfffTGvmTJlirlhw4Z+x5qamkxJ5rfffhvzmtdee82UxMbGxsbGxsbGlubbN998Y8+DLBwnUWOLzMxM8+DBg/3OOXjwoOn1em+ZC+MPNjY2NjY2NjY26fbGH66bqR9lGEa/fdM0Bxz7o/NjHY+qrKxUIBDo279586a+++475eTk/O6fAwAAgNRgmqauXr2qvLy8ZKeCBEvE2GKwMRl/AAAApLfBjD9cV9T3+/3yeDwDPkO9dOmScnNzY14zbty4mOcPGzZMOTk5Ma/x+Xzy+Xz9jt15553xJw4AAADXGT16dLJTQAIlamxxq3NuFVNi/AEAAIDbH3+4bqFcr9ergoIC1dfX9zteX1+vefPmxbxm7ty5A84/fvy4Zs+eHbOfPgAAAIDUl6ixxa3OuVVMAAAAYDBcV9SXpEAgoD179mjfvn1qbW1VRUWFgsGgysrKJPV+uvr000/3nV9WVqaLFy8qEAiotbVV+/bt0969e/Xiiy8m6xYAAAAAOEAixhYvvPCCjh8/rk2bNuncuXPatGmTTpw4odWrVw/17QEAACAFua79jiSVlJSoo6ND1dXVCoVCmjFjhurq6pSfny+pd9XjYDDYd/7kyZNVV1eniooKbd++XXl5edq2bZuWLVuWrFsAAAAA4ACJGFvMmzdP7733nl599VVVVVXp3nvv1eHDh/XII48M+f0BAAAg9RhmdFUnAAAAAAAAAADgaK5svwMAAAAAAAAAQDqiqA8AAAAAAAAAgEtQ1AcAAAAAAAAAwCUo6gMAAAAAAAAA4BIU9QEAAAAAAAAAcAmK+gAAAAAAAAAAuARFfQAAAAAAAAAAXIKiPgAAAAAAAAAALkFRHwAAAAAAAAAAl6CoDwAAAAAAAACAS1DUBwAAAAAAAADAJf4fp2Dw5os4h2wAAAAASUVORK5CYII=", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "fig = plt.figure(figsize=(16, 16))\n", "\n", "vert_coord = 0.99\n", "fig.text(\n", " 0.5,\n", " vert_coord,\n", " \"THIS RUN = \" + case_name + \" \" + start_date + \" to \" + end_date,\n", " ha=\"center\",\n", " va=\"center\",\n", " fontsize=14,\n", " color=\"royalblue\",\n", ")\n", "vert_coord = vert_coord - 0.015\n", "if base_case_name is not None:\n", " fig.text(\n", " 0.5,\n", " vert_coord,\n", " \"BASELINE RUN = \"\n", " + base_case_name\n", " + \" \"\n", " + base_start_date\n", " + \" to \"\n", " + base_end_date,\n", " ha=\"center\",\n", " va=\"center\",\n", " fontsize=14,\n", " color=\"red\",\n", " )\n", " vert_coord = vert_coord - 0.015\n", "\n", "fig.text(\n", " 0.5,\n", " vert_coord,\n", " \"Other runs = 1979-01-01 to 2023-12-31\",\n", " ha=\"center\",\n", " va=\"center\",\n", " fontsize=14,\n", ")\n", "vert_coord = vert_coord - 0.015\n", "\n", "fig.text(\n", " 0.5,\n", " vert_coord,\n", " \"Validation data = ERA5 1979-01-01 to 2023-12-31\",\n", " ha=\"center\",\n", " va=\"center\",\n", " fontsize=14,\n", ")\n", "vert_coord = vert_coord - 0.03\n", "\n", "ax = plotnmse(\n", " fig,\n", " nmse_cmip6[\"AM\"],\n", " nmse_cesm2[\"AM\"],\n", " nmse_dat[\"AM\"],\n", " nmse_base_dat[\"AM\"],\n", " 0.3,\n", " 0.7,\n", " vert_coord - 0.16,\n", " vert_coord,\n", " \"NMSE, SLP, AM\",\n", ")\n", "ax = plotnmse(\n", " fig,\n", " nmse_cmip6[\"DJF\"],\n", " nmse_cesm2[\"DJF\"],\n", " nmse_dat[\"DJF\"],\n", " nmse_base_dat[\"DJF\"],\n", " 0.05,\n", " 0.45,\n", " 0.57,\n", " 0.72,\n", " \"NMSE, SLP, DJF\",\n", ")\n", "ax = plotnmse(\n", " fig,\n", " nmse_cmip6[\"MAM\"],\n", " nmse_cesm2[\"MAM\"],\n", " nmse_dat[\"MAM\"],\n", " nmse_base_dat[\"MAM\"],\n", " 0.55,\n", " 0.95,\n", " 0.57,\n", " 0.72,\n", " \"NMSE, SLP, MAM\",\n", ")\n", "ax = plotnmse(\n", " fig,\n", " nmse_cmip6[\"JJA\"],\n", " nmse_cesm2[\"JJA\"],\n", " nmse_dat[\"JJA\"],\n", " nmse_base_dat[\"JJA\"],\n", " 0.05,\n", " 0.45,\n", " 0.37,\n", " 0.52,\n", " \"NMSE, SLP, JJA\",\n", ")\n", "ax = plotnmse(\n", " fig,\n", " nmse_cmip6[\"SON\"],\n", " nmse_cesm2[\"SON\"],\n", " nmse_dat[\"SON\"],\n", " nmse_base_dat[\"SON\"],\n", " 0.55,\n", " 0.95,\n", " 0.37,\n", " 0.52,\n", " \"NMSE, SLP, SON\",\n", ")" ] } ], "metadata": { "kernelspec": { "display_name": "cupid-analysis", "language": "python", "name": "cupid-analysis" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.11.4" }, "papermill": { "duration": 102.850722, "end_time": "2024-12-02T20:46:45.676783", "exception": null, "input_path": "/glade/derecho/scratch/richling/tmp/tmpk3s2sgip.ipynb", "output_path": "/glade/work/richling/cesm3_0_beta04/tools/CUPiD/examples/key_metrics/computed_notebooks/atm/Global_PSL_NMSE_compare_obs_lens.ipynb", "parameters": { "CESM_output_dir": "/glade/campaign/cesm/development/cross-wg/diagnostic_framework/CESM_output_for_testing", "base_case_name": "b.e23_alpha17f.BLT1850.ne30_t232.092", "base_regridded_output": true, "case_name": "b.e30_beta02.BLT1850.ne30_t232.104", "end_date": "0101-01-01", "lc_kwargs": { "threads_per_worker": 1 }, "product": "/glade/work/richling/cesm3_0_beta04/tools/CUPiD/examples/key_metrics/computed_notebooks//atm/Global_PSL_NMSE_compare_obs_lens.ipynb", "regridded_output": false, "serial": false, "start_date": "0001-01-01", "subset_kwargs": {}, "validation_path": "/glade/campaign/cesm/development/cross-wg/diagnostic_framework/nmse_validation/fv0.9x1.25" }, "start_time": "2024-12-02T20:45:02.826061" } }, "nbformat": 4, "nbformat_minor": 5 }