{ "cells": [ { "cell_type": "markdown", "id": "3f230d52-dca7-4ce4-98cc-6267fc04893d", "metadata": { "editable": true, "papermill": { "duration": 0.003334, "end_time": "2025-10-10T22:44:56.427129", "exception": false, "start_time": "2025-10-10T22:44:56.423795", "status": "completed" }, "slideshow": { "slide_type": "" }, "tags": [] }, "source": [ "# Normalized Mean Square Error\n", "\n", "This notebook computes the normalized mean square error of atmospheric surface pressure.\n", "It is compared to ERA5 observations, as well as the CESM2 large ensemble and CMIP6 model output." ] }, { "cell_type": "code", "execution_count": 1, "id": "2292c691-9bd9-44d2-8a3f-cb90dbe2e383", "metadata": { "editable": true, "execution": { "iopub.execute_input": "2025-10-10T22:44:56.434707Z", "iopub.status.busy": "2025-10-10T22:44:56.434318Z", "iopub.status.idle": "2025-10-10T22:45:04.933474Z", "shell.execute_reply": "2025-10-10T22:45:04.932757Z" }, "papermill": { "duration": 8.504638, "end_time": "2025-10-10T22:45:04.934985", "exception": false, "start_time": "2025-10-10T22:44:56.430347", "status": "completed" }, "slideshow": { "slide_type": "" }, "tags": [ "hide-input" ] }, "outputs": [], "source": [ "import glob\n", "import os\n", "\n", "import matplotlib.pyplot as plt\n", "import numpy as np\n", "import xarray as xr\n", "\n", "from nmse_utils import nmse\n", "from averaging_utils import seasonal_climatology_weighted" ] }, { "cell_type": "markdown", "id": "9d67416c-a2d4-403b-85f4-647aa0a816eb", "metadata": { "editable": true, "papermill": { "duration": 0.003174, "end_time": "2025-10-10T22:45:04.944788", "exception": false, "start_time": "2025-10-10T22:45:04.941614", "status": "completed" }, "slideshow": { "slide_type": "" }, "tags": [] }, "source": [ "## Parameters\n", "\n", "These variables are set in `config.yml`" ] }, { "cell_type": "code", "execution_count": 2, "id": "b7486e94-e493-4369-9767-90eb15c0ac3a", "metadata": { "editable": true, "execution": { "iopub.execute_input": "2025-10-10T22:45:04.952193Z", "iopub.status.busy": "2025-10-10T22:45:04.951641Z", "iopub.status.idle": "2025-10-10T22:45:04.956200Z", "shell.execute_reply": "2025-10-10T22:45:04.955654Z" }, "papermill": { "duration": 0.009274, "end_time": "2025-10-10T22:45:04.957004", "exception": false, "start_time": "2025-10-10T22:45:04.947730", "status": "completed" }, "slideshow": { "slide_type": "" }, "tags": [ "parameters", "hide-input" ] }, "outputs": [], "source": [ "CESM_output_dir = \"\"\n", "case_name = \"\"\n", "start_date = \"\"\n", "end_date = \"\"\n", "base_case_output_dir = None\n", "ts_dir = None\n", "base_case_name = None\n", "base_start_date = None\n", "base_end_date = None\n", "obs_data_dir = \"\"\n", "validation_path = \"\"\n", "regridded_output = False\n", "base_regridded_output = None" ] }, { "cell_type": "code", "execution_count": 3, "id": "f4fc1986", "metadata": { "execution": { "iopub.execute_input": "2025-10-10T22:45:04.964271Z", "iopub.status.busy": "2025-10-10T22:45:04.964030Z", "iopub.status.idle": "2025-10-10T22:45:04.970876Z", "shell.execute_reply": "2025-10-10T22:45:04.970336Z" }, "papermill": { "duration": 0.011958, "end_time": "2025-10-10T22:45:04.972137", "exception": false, "start_time": "2025-10-10T22:45:04.960179", "status": "completed" }, "tags": [ "injected-parameters" ] }, "outputs": [], "source": [ "# Parameters\n", "case_name = \"b.e30_beta02.BLT1850.ne30_t232.104\"\n", "base_case_name = \"b.e23_alpha17f.BLT1850.ne30_t232.092\"\n", "CESM_output_dir = \"/glade/campaign/cesm/development/cross-wg/diagnostic_framework/CESM_output_for_testing\"\n", "start_date = \"0001-01-01\"\n", "end_date = \"0101-01-01\"\n", "base_start_date = \"0001-01-01\"\n", "base_end_date = \"0101-01-01\"\n", "obs_data_dir = (\n", " \"/glade/campaign/cesm/development/cross-wg/diagnostic_framework/CUPiD_obs_data\"\n", ")\n", "ts_dir = None\n", "lc_kwargs = {\"threads_per_worker\": 1}\n", "serial = False\n", "regridded_output = False\n", "base_regridded_output = True\n", "validation_path = (\n", " \"atm/analysis_datasets/fv0.9x1.25/seasonal_climatology/nmse_validation/PSL/\"\n", ")\n", "subset_kwargs = {}\n", "product = \"/glade/work/richling/CUPid_pr_test/CUPiD/examples/key_metrics/computed_notebooks//atm/Global_PSL_NMSE_compare_obs_lens.ipynb\"\n" ] }, { "cell_type": "code", "execution_count": 4, "id": "9dfe1566-abe3-4b23-a59c-113334a0458f", "metadata": { "editable": true, "execution": { "iopub.execute_input": "2025-10-10T22:45:04.979446Z", "iopub.status.busy": "2025-10-10T22:45:04.979223Z", "iopub.status.idle": "2025-10-10T22:45:04.982816Z", "shell.execute_reply": "2025-10-10T22:45:04.982312Z" }, "papermill": { "duration": 0.008459, "end_time": "2025-10-10T22:45:04.983803", "exception": false, "start_time": "2025-10-10T22:45:04.975344", "status": "completed" }, "slideshow": { "slide_type": "" }, "tags": [ "hide-input" ] }, "outputs": [], "source": [ "# Want some base case parameter defaults to equal control case values\n", "if base_case_name is not None:\n", " if base_case_output_dir is None:\n", " base_case_output_dir = CESM_output_dir\n", "\n", " if base_start_date is None:\n", " base_start_date = start_date\n", "\n", " if base_end_date is None:\n", " base_end_date = end_date\n", "\n", " if base_regridded_output is None:\n", " base_regridded_output = regridded_output\n", "if ts_dir is None:\n", " ts_dir = CESM_output_dir" ] }, { "cell_type": "markdown", "id": "74c7803f-a8c5-445d-9233-0aa2663c58bd", "metadata": { "editable": true, "papermill": { "duration": 0.004296, "end_time": "2025-10-10T22:45:04.991258", "exception": false, "start_time": "2025-10-10T22:45:04.986962", "status": "completed" }, "slideshow": { "slide_type": "" }, "tags": [] }, "source": [ "## Read in the current case" ] }, { "cell_type": "code", "execution_count": 5, "id": "7f4132b5-db1f-4ae8-92df-07dd531b650e", "metadata": { "editable": true, "execution": { "iopub.execute_input": "2025-10-10T22:45:04.997962Z", "iopub.status.busy": "2025-10-10T22:45:04.997754Z", "iopub.status.idle": "2025-10-10T22:45:05.001594Z", "shell.execute_reply": "2025-10-10T22:45:05.001078Z" }, "papermill": { "duration": 0.008262, "end_time": "2025-10-10T22:45:05.002488", "exception": false, "start_time": "2025-10-10T22:45:04.994226", "status": "completed" }, "slideshow": { "slide_type": "" }, "tags": [ "hide-input" ] }, "outputs": [], "source": [ "def fix_time_dim(dat):\n", " \"\"\"CESM2 output sets time as the end of the averaging interval (e.g. January average is midnight on February 1st);\n", " This function sets the time dimension to the midpoint of the averaging interval.\n", " Note that CESM3 output sets time to the midpoint already, so this function should not change CESM3 data.\"\"\"\n", " if \"time\" not in dat.dims:\n", " return dat\n", " if \"bounds\" not in dat.time.attrs:\n", " return dat\n", " time_bounds_avg = dat[dat.time.attrs[\"bounds\"]].mean(\"nbnd\")\n", " time_bounds_avg.attrs = dat.time.attrs\n", " dat = dat.assign_coords({\"time\": time_bounds_avg})\n", " return xr.decode_cf(dat)" ] }, { "cell_type": "code", "execution_count": 6, "id": "caf05d8b-a711-40fb-b88a-c10472a49d30", "metadata": { "execution": { "iopub.execute_input": "2025-10-10T22:45:05.009261Z", "iopub.status.busy": "2025-10-10T22:45:05.009064Z", "iopub.status.idle": "2025-10-10T22:45:05.014092Z", "shell.execute_reply": "2025-10-10T22:45:05.013533Z" }, "papermill": { "duration": 0.009548, "end_time": "2025-10-10T22:45:05.015093", "exception": false, "start_time": "2025-10-10T22:45:05.005545", "status": "completed" }, "tags": [] }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "/glade/campaign/cesm/development/cross-wg/diagnostic_framework/CESM_output_for_testing/b.e30_beta02.BLT1850.ne30_t232.104/atm/proc/tseries\n" ] } ], "source": [ "if regridded_output:\n", " file_path = f\"{ts_dir}/{case_name}/atm/proc/tseries/regrid\"\n", "else:\n", " file_path = f\"{ts_dir}/{case_name}/atm/proc/tseries\"\n", "print(file_path)" ] }, { "cell_type": "code", "execution_count": 7, "id": "318b8c9a-344f-41d5-87be-593847e4b6f1", "metadata": { "execution": { "iopub.execute_input": "2025-10-10T22:45:05.022678Z", "iopub.status.busy": "2025-10-10T22:45:05.022483Z", "iopub.status.idle": "2025-10-10T22:45:05.026045Z", "shell.execute_reply": "2025-10-10T22:45:05.025517Z" }, "papermill": { "duration": 0.008334, "end_time": "2025-10-10T22:45:05.026882", "exception": false, "start_time": "2025-10-10T22:45:05.018548", "status": "completed" }, "tags": [] }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "/glade/campaign/cesm/development/cross-wg/diagnostic_framework/CESM_output_for_testing/b.e23_alpha17f.BLT1850.ne30_t232.092/atm/proc/tseries/regrid\n" ] } ], "source": [ "if base_case_name is not None:\n", " if base_regridded_output:\n", " base_file_path = f\"{ts_dir}/{base_case_name}/atm/proc/tseries/regrid\"\n", " else:\n", " base_file_path = f\"{ts_dir}/{base_case_name}/atm/proc/tseries\"\n", " print(base_file_path)" ] }, { "cell_type": "code", "execution_count": 8, "id": "ccca8e3a-a52f-4202-9704-9d4470eda984", "metadata": { "editable": true, "execution": { "iopub.execute_input": "2025-10-10T22:45:05.034237Z", "iopub.status.busy": "2025-10-10T22:45:05.034028Z", "iopub.status.idle": "2025-10-10T22:45:33.066286Z", "shell.execute_reply": "2025-10-10T22:45:33.065786Z" }, "papermill": { "duration": 28.037414, "end_time": "2025-10-10T22:45:33.067693", "exception": false, "start_time": "2025-10-10T22:45:05.030279", "status": "completed" }, "slideshow": { "slide_type": "" }, "tags": [ "hide-input" ] }, "outputs": [], "source": [ "dat = (\n", " fix_time_dim(xr.open_mfdataset(f\"{file_path}/*PSL*.nc\", decode_times=False))\n", " .sel(time=slice(start_date, end_date))\n", " .PSL\n", " / 100.0\n", ")\n", "\n", "# Ensure all datasets have the same coordinates as the output data\n", "# (Avoid round-off level differences since all data should be on the same grid)\n", "lon = dat.lon.data\n", "lat = dat.lat.data\n", "\n", "if base_case_name is not None:\n", " base_dat = (\n", " fix_time_dim(\n", " xr.open_mfdataset(f\"{base_file_path}/*PSL*.nc\", decode_times=False)\n", " )\n", " .sel(time=slice(base_start_date, base_end_date))\n", " .assign_coords({\"lon\": lon, \"lat\": lat})\n", " .PSL\n", " / 100.0\n", " )" ] }, { "cell_type": "code", "execution_count": 9, "id": "073a2ad0-81e6-4817-9024-4b9b718fabb4", "metadata": { "editable": true, "execution": { "iopub.execute_input": "2025-10-10T22:45:33.091474Z", "iopub.status.busy": "2025-10-10T22:45:33.091185Z", "iopub.status.idle": "2025-10-10T22:54:07.330256Z", "shell.execute_reply": "2025-10-10T22:54:07.329554Z" }, "papermill": { "duration": 514.258773, "end_time": "2025-10-10T22:54:07.331884", "exception": false, "start_time": "2025-10-10T22:45:33.073111", "status": "completed" }, "slideshow": { "slide_type": "" }, "tags": [ "hide-input" ] }, "outputs": [], "source": [ "# --Compute seasonal and annual means\n", "dat = seasonal_climatology_weighted(dat).load()\n", "\n", "if base_case_name is not None:\n", " base_dat = seasonal_climatology_weighted(base_dat).load()" ] }, { "cell_type": "markdown", "id": "e0527e3e-cd26-46b5-8c1e-08882109e12e", "metadata": { "editable": true, "papermill": { "duration": 0.00412, "end_time": "2025-10-10T22:54:07.342620", "exception": false, "start_time": "2025-10-10T22:54:07.338500", "status": "completed" }, "slideshow": { "slide_type": "" }, "tags": [] }, "source": [ "## Read in validation data and other CMIP models for comparison (precomputed)" ] }, { "cell_type": "code", "execution_count": 10, "id": "126e65b3-2b8c-400c-af02-2ad0b0f82e6e", "metadata": { "editable": true, "execution": { "iopub.execute_input": "2025-10-10T22:54:07.351756Z", "iopub.status.busy": "2025-10-10T22:54:07.351531Z", "iopub.status.idle": "2025-10-10T22:54:14.422065Z", "shell.execute_reply": "2025-10-10T22:54:14.421439Z" }, "papermill": { "duration": 7.077947, "end_time": "2025-10-10T22:54:14.424523", "exception": false, "start_time": "2025-10-10T22:54:07.346576", "status": "completed" }, "slideshow": { "slide_type": "" }, "tags": [ "hide-input" ] }, "outputs": [], "source": [ "# ---ERA5\n", "era5 = xr.open_dataset(\n", " os.path.join(obs_data_dir, validation_path, \"PSL_ERA5.nc\")\n", ").assign_coords({\"lon\": lon, \"lat\": lat})\n", "era5 = era5 / 100.0 # convert to hPa\n", "\n", "# ---CESM2\n", "lens2 = xr.open_dataset(\n", " os.path.join(obs_data_dir, validation_path, \"PSL_LENS2.nc\")\n", ").assign_coords({\"lon\": lon, \"lat\": lat})\n", "lens2 = lens2 / 100.0 # convert to hPa\n", "\n", "# ---CMIP6\n", "modelfiles = sorted(\n", " glob.glob(f\"{os.path.join(obs_data_dir,validation_path)}/CMIP6/*.nc\")\n", ")\n", "datcmip6 = [\n", " xr.open_dataset(ifile).assign_coords({\"lon\": lon, \"lat\": lat}).mean(\"M\")\n", " for ifile in modelfiles\n", "]\n", "datcmip6 = xr.concat(datcmip6, dim=\"model\")\n", "datcmip6 = datcmip6 / 100.0" ] }, { "cell_type": "markdown", "id": "22cc331d-413c-4a87-bd89-812ad118cf8c", "metadata": { "editable": true, "papermill": { "duration": 0.004401, "end_time": "2025-10-10T22:54:14.436735", "exception": false, "start_time": "2025-10-10T22:54:14.432334", "status": "completed" }, "slideshow": { "slide_type": "" }, "tags": [] }, "source": [ "## Compute the NMSE" ] }, { "cell_type": "code", "execution_count": 11, "id": "6857717d-7514-45b5-ba33-a774f38b7c3e", "metadata": { "editable": true, "execution": { "iopub.execute_input": "2025-10-10T22:54:14.444860Z", "iopub.status.busy": "2025-10-10T22:54:14.444652Z", "iopub.status.idle": "2025-10-10T22:54:25.556412Z", "shell.execute_reply": "2025-10-10T22:54:25.555871Z" }, "papermill": { "duration": 11.116919, "end_time": "2025-10-10T22:54:25.557788", "exception": false, "start_time": "2025-10-10T22:54:14.440869", "status": "completed" }, "slideshow": { "slide_type": "" }, "tags": [ "hide-input" ] }, "outputs": [], "source": [ "nmse_dat = []\n", "nmse_cesm2 = []\n", "nmse_cmip6 = []\n", "if base_case_name is not None:\n", " nmse_base_dat = []\n", "else:\n", " nmse_base_dat = {key: None for key in [\"AM\", \"DJF\", \"MAM\", \"JJA\", \"SON\"]}\n", "for ivar in era5.data_vars:\n", " nmse_dat.append(nmse(era5[ivar], dat[ivar]))\n", " nmse_cesm2.append(nmse(era5[ivar], lens2[ivar]))\n", " nmse_cmip6.append(nmse(era5[ivar], datcmip6[ivar]))\n", " if base_case_name is not None:\n", " nmse_base_dat.append(nmse(era5[ivar], base_dat[ivar]))\n", "nmse_dat = xr.merge(nmse_dat)\n", "nmse_cesm2 = xr.merge(nmse_cesm2)\n", "nmse_cmip6 = xr.merge(nmse_cmip6)\n", "if base_case_name is not None:\n", " nmse_base_dat = xr.merge(nmse_base_dat)" ] }, { "cell_type": "markdown", "id": "1014f119-fc3f-428b-99ca-ab9de700148d", "metadata": { "editable": true, "papermill": { "duration": 0.004321, "end_time": "2025-10-10T22:54:25.568409", "exception": false, "start_time": "2025-10-10T22:54:25.564088", "status": "completed" }, "slideshow": { "slide_type": "" }, "tags": [] }, "source": [ "### Set up the plot panel" ] }, { "cell_type": "code", "execution_count": 12, "id": "53494900-0145-4ab2-85b8-5ed6ae347892", "metadata": { "editable": true, "execution": { "iopub.execute_input": "2025-10-10T22:54:25.576414Z", "iopub.status.busy": "2025-10-10T22:54:25.576169Z", "iopub.status.idle": "2025-10-10T22:54:25.582386Z", "shell.execute_reply": "2025-10-10T22:54:25.581665Z" }, "papermill": { "duration": 0.011222, "end_time": "2025-10-10T22:54:25.583304", "exception": false, "start_time": "2025-10-10T22:54:25.572082", "status": "completed" }, "slideshow": { "slide_type": "" }, "tags": [ "hide-input" ] }, "outputs": [], "source": [ "def plotnmse(fig, cmip6, cesm2, cesm3, cesm_baseline, x1, x2, y1, y2, titlestr):\n", " ax = fig.add_axes([x1, y1, x2 - x1, y2 - y1])\n", "\n", " cmip6 = cmip6.sortby(cmip6, ascending=False)\n", " binedges = np.arange(0, cmip6.size, 1)\n", " ax.bar(\n", " binedges,\n", " cmip6,\n", " width=1,\n", " bottom=0,\n", " edgecolor=\"black\",\n", " color=\"gray\",\n", " label=\"CMIP6\",\n", " )\n", "\n", " ax.plot(cmip6.size + 1, cesm3, \"o\", color=\"blue\", label=\"THIS RUN\")\n", " if cesm_baseline is not None:\n", " ax.plot(cmip6.size + 1, cesm_baseline, \"x\", color=\"red\", label=\"BASELINE\")\n", "\n", " ax.fill_between(\n", " np.arange(0, cmip6.size + 3, 1) - 0.5,\n", " np.arange(0, cmip6.size + 3, 1) * 0 + np.array(cesm2.min()),\n", " np.arange(0, cmip6.size + 3, 1) * 0 + np.array(cesm2.max()),\n", " color=\"salmon\",\n", " alpha=0.5,\n", " label=\"LENS2\",\n", " )\n", "\n", " ax.set_xlim(-0.5, cmip6.size + 2 - 0.5)\n", " ax.set_xticks([])\n", " ax.set_ylabel(\"NMSE\", fontsize=14)\n", " ax.set_title(titlestr, fontsize=16)\n", "\n", " ax.legend()\n", "\n", " return ax" ] }, { "cell_type": "code", "execution_count": 13, "id": "56b4cd99-a27e-4f28-86c2-8013e7c7bc78", "metadata": { "editable": true, "execution": { "iopub.execute_input": "2025-10-10T22:54:25.590465Z", "iopub.status.busy": "2025-10-10T22:54:25.590281Z", "iopub.status.idle": "2025-10-10T22:54:27.518304Z", "shell.execute_reply": "2025-10-10T22:54:27.517501Z" }, "papermill": { "duration": 1.933984, "end_time": "2025-10-10T22:54:27.520553", "exception": false, "start_time": "2025-10-10T22:54:25.586569", "status": "completed" }, "slideshow": { "slide_type": "" }, "tags": [ "hide-input" ] }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAABfUAAAQGCAYAAACer1CDAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjUsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvWftoOwAAAAlwSFlzAAAPYQAAD2EBqD+naQABAABJREFUeJzs3XdYU9cbB/Bvwt4bXIiK4B51bxAHjrr3xNXaoVZbf522aJerWlvtslZw1FFHcaG4wL1QcdaFgLJE2TuQnN8fxxsSsiE438/z5EHvPPfk3Jvkvee+R8QYYyCEEEIIIYQQQgghhBBCyAtP/LwLQAghhBBCCCGEEEIIIYQQ/VBQnxBCCCGEEEIIIYQQQgh5SVBQnxBCCCGEEEIIIYQQQgh5SVBQnxBCCCGEEEIIIYQQQgh5SVBQnxBCCCGEEEIIIYQQQgh5SVBQnxBCCCGEEEIIIYQQQgh5SVBQnxBCCCGEEEIIIYQQQgh5SVBQnxBCCCGEEEIIIYQQQgh5SVBQnxBCCCGEEEIIIYQQQgh5SVBQnxBCCCFVYsy8JIyZl/S8i/FcLV6fjoD3HiA1vfR5F4UQQgghhBBCyCvC9HkXgBBCyOsl4L0HBi1/9NfaSE0vxdgvk9G2sSUWz3BXu9zNuGLMWPoIgR1s8MlEF/n0xevTEXE2H6v+54HGdS3k06VShj0n83D4fD4SUkpQXMJgbyOGu7MpmtSzQO/2NvDxNNdZvtC9WVgfnqM0zcJMhOqupujc3Aqje9vDxkr5HrpwPC18LPDjHA+129W0jHA8APDrxx5oWMdCZd05Pz7ClbvF2L6wJpwdTHQew6smr0CGkL1ZuJ0gQUp6KfIKZLC3MYGnhykG+9mha0sriEQilfXyC2VYty8bx2MKkJkjhZO9Cbq1tEZQfweV9/BFEXOnCB+uSMPEfvaY9KajUbYpKWHYcigHh8/n41FGKeysxejQ1ApTBjiqtKfEtBIcu1SA8zeLkPy4FNl5UjjZmaClrwXG9XFA7Wpmeu9XsW0LxGLAwVaMRnUsMLKnHZrXt1Saf+BMHpZsyMC0QQ4YG+ggny6cP/rycDbB5m9rAgB2Rubi7kMJ7j6QID61BDIZsHy2O1r6Wmpc/84DCTZFZOPOAwkycmRwtBOjfi1zjOhhhxY+yusJ75km5a9VglvxxQjdl42b94tRKgW8qptheIAderS10fs4q1pqeik2R+TgVkIx0jKlKCiSwcneBHWrm2FED3u0aqi+DjOypVi7Jwtnrxcit0AGD2dT9GxngzG97WFmqnqu6kO4Dh79tbbKvOw8KU7EFOLMtULEJ0vwJFsKKwsxGnqZY1iAHdo2tlJZ5/jlAhyNzkdsYgkyc6WQMcDD2RStG1piVC87uDkq/6wy5rmR9LgEh87l4+7DEtx5IEF6tlSpzWpy4WYhNkXk4O5DCRgDfGubY2ygvdrjK+9mXDFm/fAIMgaV80sfRy7kY/vRXCSklMDUBGhczwKT33RAAy/Vtg3w+vprdzZi7hShsJihlpsp+nexxaButhCLVduAIdcpoGLntTaGfF4USWTYfTwPdx5IcPehBIlppWAM2PRNDVRzqdjPcUPOmcxcKfafysOdhxLceSBBaroUANSeG9oI19Xy37OqiiHt98rdIpy+Woi7T+s4v4jpLKdMxrDreB72ncxD4uNSWFmI0NLXElMHOqCWu+r5eehcPq7FFuPOAwnikiUoKQU+nuCMPh1tK3R8r3sbJoQQUnl0BSaEEPJMTexnrzJtfXgObKxEGNbd7pmUQSpj+PSXx7h4qwguDibwa2UNB1sTpGdL8eBRCf6NzIWluUivoL6g2xtWqFOd/wjMzJHh3M1C/B2RgzPXC/Hrx9VgblaxwJQ2q8OysHy2+psCr7PsPCn2n8lH4zrm6NLcGnY2YmTlSnHmWiHm//kE/Tvb4KNxyj/0C4tlmPPjI9xLLEHrhpYIaGOD+4kSbD+ai5g7RfjpIw9YWbyYgX1jkskYvvzjMS7cLEKjOubo0tIeyY9LcOBMPqJvFeHX/1VTCjaE7MlG5MUC1K1hhk7NrWBjKcL95BIcOl+A45cLsXimm0ogXpd+nWzg6sj3ISlhSEgtxbnrhTh7vRDfTHdDx2a6A5K2VmKVa01eIcPOyFx4OJsgsINyINzWuuy9XbUtEwDg4mACR1sxMnJkWvd1MqYA8/98AjNTEbq0tIKbkykeZ5biZEwhTl8t1Bj0aeFjgRY+qgFON0fVYE7MnSJ8sioNpiYidG9jDRtLMU7GFOC7kHSkppdiXB/DAq5VJelxKSIv5qNxPQs0rmsBa0sxnmSV4vTVQpy7kYapAx1UypqRLcV7S1PxOFOKzs2tUMvDDNdjixG6l9/A+P49N7VB3co4dqkAK7ZkwtXRBG/4WsDV0RSPs0px4nIhzt8swvQhjhjVS7n9nLxSgNjEEjTwMofL03PgXqIE/0bl4uDZPPz0kQfq1ij7zDDmuXHtXjHWh+dALAa8qpkhM0eqc53D5/PxfWg6HGzF6N3eBiIREHWpAJ+seozPJ7mgZzvNN4OKJTIsXp8Oc3MRioqZXmVU9PeBbPy1OxvuziYY0NUWhcUMkdH5mLXsERbPUA1CxqeUYOYPqSiWMPi3soarownO3yjCyn8ycT9JonK9NvQ6BRh+Xmtj6OdFVq4Mv+/MAsBvINpZi5GTX/H9G3rOJKSUYM3ubIhEQE03U1iai1AkMfx9fZYMbb8HzuQj4mw+LM1FcHcyQX6R7qfjftycgX2n8uFV3QxD/GyRmStD5MV8RP9XiJVzq8m/0wnW7snCowwpHGzFcLY3waMM3eehJq97GyaEEGIcFNQnhBDyTKnrTbw+PAe2VmKj9TTW5ciFAly8VYS2jS3x3btuMDVRDhhlZEvxJNuwH2vd3rBGQJuyH5mSEob3l6YiNrEER6Lz0beCPbk0qeFmipg7xTh/oxDtmugOcr5OqrmaYs8PtWBS7n0tKJLh/aWPsO9UPoZ2t1MKwG09lIN7iSUY3csObw9xkk8XnsTYeijnmbXP5yniXD4u3CxC9zbWmDfZRf5Ew/4zeVi6IQOrw7LwaVBZgK1tY0uMDbSHdy3lG2BHo/Px7dp0/Lg5EyFfVjeoDP0626r0VI+6VICv1zzB1kM5+gX1rVWvJ6nppdgZmYtqLqZa38vv33WDb21zODuY4MdNGdhzMk/rvv7anQUGYOVcD9RXuBF454EE7y5OxYbwbI1BfX3alFTK8MPfGQCAFR96yG82BvV3wIyljxC6Nxt+razV9ix91prXt0DY0loqQfgnWaWYvigV6/ZlY1A3O6WbKKvDspCWIcUHo50wqBu/scsYw5INGYg4m4+Ic8a/ftbyMMP377qhXRNLpbI+6FuC95ek4q/dWejR1hquCr3v545zUXtzNvxUHn74OwPr9mVj/ltu8unGPDea+1hi1f884F3TDBbmYgTO0v7EW26BDD9vzYCDrRh/fFoN7s78OMYGOmD6whT8vDUD7Ztawc5a/Y3Kv3ZnIyNbijG97RGyJ1uvMgoS00oQujcbtdxN8esn1WD7tMfvEH9bvL/kEa+rr6orXZ9XbM5AfiHD9++5oUNTfn5PGcjw6ao07DuVj4A2NnijQdmNAEOvU4Dh57U2hn5eONiIsWQm37+9jQk+WZWGCzeLKrx/Q8+Z2tXM8OMcd/h4msPaUoygBcl4+OjFTQlXkfY72M8WI3vaoXY1M9xOkGDG0kda93H5dhH2ncpHs/oWWDrTXX5u925vg/+tTMOKzRlY8aFyp4m5411Q080U1VxMsSkiG2t2GXZuKHrd2zAhhBDjePW7nBFCCCHl3LxfDAAY0MVWJaAPAM4OJvCtrX8vfXXMzUTytBh3HkgqtS11JvZzgIkY+HNXFhh7sXvc5RbI8MPf6Rj2SSL6fPAQ7y5OxamrBQZv58rdInz+axoG/y8RgbMeYEJwMv7anYUiiXJvMROxSCWgDwDWlmK0bcQDQ8mPywIajDHsO5UPKwsRJvRT7kU8NtABdtZihJ/Or1Q9S2UMmw5kY3xwsrzsWw7lQCZTv019jjV0b5Y8jcv68BwEvPdA/hJy+D98VII/dmbi7YUp8m1NnJ+M1WFZKCxS7WW372mQ4K1Bjkopivp2tIVXNVNEXsxHgcJ6fTraqgQtASCgjQ1quZsiIaUE2XkV780oaNeYv2/G2JYuHZpZGZS2KvlJKVwcTJQC+gBPFeFsb4LMvMr1Zrx0m6dv6dFWOSWYtaUYE/raQyrjvVT1oTjGw65juZi0gLfH0fOSsG5ftsb2eOpKAT766REGfvQQgbMeYMo3Kdh6KAfScsubmYrU9qp3dTRFk7oWKJUCjzLKzr2CIt4ztrqrKQZ2LQtCikQiTBvkCLGorE0aIuC9B7hyt1j+b+G1eH06AKBVA0t0aGalUtbaHmbo3toGpVLgxn3l67amp638WlkDUL6mAMY9N2q4mqJxXQtYmOv30+3YpQLkFTIM8beTB0QB3sN3WIA98goZjl1Sfw2+HluMnZG5mD7USe1TI7ocOJMPqQwY38deHtAHgLo1zNGrvQ2SH5fi0u2yYODDRyW4eq8YLX0t5AF9ADA1EWHqQEcAwL5Tym3A0OsUYPh5rUlFPi+sLMVo08gK9jaV339FzhlnexO08LGEtWXFf/ofOJMnT2kWcTZf6byKuVP2fhZJZAjdm4Wgp9eWQXMT8dkvabgeW6z3virSfht4WaBuDXOY6PlUj9CmpgxwUDq3WzW0RNtGlrh6rxgPH5UordO6oaXRUs28zm2YEEKI8VBQnxBCyGvHzoZ//CU9ruKeak9/D+n7I9MQtdxN0b+zLWITS3D4vOEB8melVArM/ekRbsQWo3d7G/RqZ42Hj0rw1R9PcPi8foFIANh9PBcfrkjDzTgJOjazwhB/O7g6muDvAzn4389pKCnVHXCXlDBcvlMEkYjnIxckppUiPVuKpt4WKil2zM1EaF7fAk+ypJVqL79sy8S2o7lo28gSg/3sIJUxrP43Cyu2ZFb4WFv6WsrTyLTwscDEfvbylxBMOxFTgP1n8lHD1RS929tgQFc72FmLseVgDv63Mg2l0rJ6k5Qw3IqXwNPDVG3gonUjK5SU8lzb+hBumBmj/Uf/x4NGhqTEelbqVDdDRrYUsYnKQeB7DyXIyJHiDQ35jpMe8ycHNkVk48iFfI0BXiE43aaR6nbaPM0tfeWuYT0mf9+ZidB92WhU1wIDuvDA4Lp92Wp7Za/ZlYUv/3iCxEel6PaGNQZ1s4O5mQh//JuFb/56otf+svOk+C9eAktzPt6I4Mb9YpSUAm0aWqqMc+HiYIK6Nc1wK14CSYlhN9Qm9rOHh7OJ/N/Cq3Nz3U95mDyNWZno+Svp7PVCAECdGvo/KWHMc0MdIciqrs0INzbVtZmip2l3Wvha4M0uFXs6omzfqnUt7Pvq3bJriLb23bCOOWytRPJlAONfpwz1LD4vtKmqc0aX+rXMMfRpikTvWmZK55XwPkhKGOb+lIb14TmwNBdhWIA9OrewwpW7xZjz4yMcv6zfd5WKtl9DXLlbDEsLEZp6q6ZAa9PYUr5MVXjd2zAhhBDjofQ7hBBCXhpJj0sRujdL7bwnWfr34O3a0hqbD+Zg7Z4spGaUokNTK/h48l61xlIskcmD1s3U/Gg0hon9HHDwfD5C9mbBv7V1hQeU3H40B3kF+vcm7tPRVu/eaunZUtSuZorFM9zlgawRPewxfWEqft6agU7NrXT2HoxPKcHKfzLhXcsMP8xyV+opJjwC/29ULkb2LJdDvUCG7UdzwBjPB3vuRiHSMqWY2M9eKVVJUhr/4VrTTf0x1XTn0xPTSiuc4uT2Awn+/LyaPJ3HpP4OmPnDI+w9mYee7azlubUNOVYhL3XE2XyNqVx6tbfBiB6qAyeuD89G6N5sRF0skOcmTnpcAhnTXA+1ntZDUlop2jTSfrz/xRcjPoXnH7fVkOJDk/BTeTh/gwdKJSUMDx+V4tyNQvh4mmHqINVjfN7eG+aEz397jJnLHqFLCyu4Pc3PfjKmEM28LfDhWGe16x25UIAjF8qCXBZmIgS96YDR5XK5J6bx3qLq2p6dtRgOtmJ5G9bX3QcSrPmiujw3/IR+UkwITsa/x3Ixsb+DvL1E/8cHqmzXxBLz33KF5dOe4owxrNiSiT0n8nD8cgG6vWGttP3U9FIcOJMHGQPSs6Q4fa0QeQUyzBnjrHS+C0Ej4Rwrr6abKWITS5D8pFQlv7U2k950xJW7xXiUITUobVZBkQzHLxfA3EyEZvXVX7dPxhTgXqIExRKG+JQSXPivCNVdTDBZz/1U5tzQl7ZrmuL1rLw/w7KQniPFkpnqB6TXa99PBxxV16NYvm+FYKG29i0SiVDTzQy3H0hQJJHB0lxs1OtURTyLzwut+6+ic0aX+p7mGG4txs7IXNSvZa72vNp6KAc34yTo2dYan00qSykzrLsd3luSimV/Z6BNI91PDFS0/eqrsFiG9Gwp6tYwU3tjrZab2dNylKjMM4bXvQ0TQggxHgrqE0IIeWkkPy7F+vCcSm/Ht7Y5Pp7ggl+3Z2LXsTzsOsYfg3ZzNEGrhpYY4m9ncPqd45cL8CCV/wDMzJXh7LVCPM7ig9h1bVk1Oe+dHUwwPMAOG/fnYNfxXAwPUB2EWB87juYaNOBbS1/DHkGf/KajUpqj2tXM0KeTDXYdy8OpK4Xo1V7zgI0AsPdELqQyYOYIJ5VHv0f3ssf2I7k4Gl2gGtQvlCm1F1MTYPoQR4zsqTwgc/7TR9xtrNQHGmyeBiDyCyueRmWov51Sfm4rSzEm9HPAgjVPcPBsvjyoX9Fj1cTNUf37NNjPFqF7s3HxVpE8qJ9fyHt22mqoB2s96yGvUIbF69IhFvH6NlT4adUnOBxtxQjsYAt3pxfv0f8WvpZY8aEHFqx5ovTUjLuTCfp0tJEHzgUOtmJMH+KIjs2s4O5sgrwCGWLuFGN1WBZW/5sFG0sRBnQta6PC+2Jjqf6mnTAYrSHG93NQKpeDrQk6t7BGxNl8PHxUgno1+fUv7Om18cMxzvKAPsCDrW8NdsTek3k4Gp2vNqiveO5ZWYjw8QQXlXNdaEtVee4Z4sfNGcjMkWHymw5wsFXf1k5dLUTE2bI22qC2OeZNdVF6AkGTyp4b+hKuaerOZSsLMcRi1Tq9cqcIYcfy8P5wJ72OReO+C2VwtFNfd+reT11twNpK9HQ5Bktz412nKupZfF5o3f8Lds4oOnA2H6YmwFuDlVPKeNcyR58OtthzUr/P/Iq0X0Po3eaKqia14evehgkhhBgPBfUJIYS8NNo2tsTiGep7EN6MK9Y5MJqi3u1t4N/KGtH/FeJ6bDHuPJDgxn0JIs7m49C5fMwa5YSB3ex0b+ip45cLcfxyodK0ri2tMP8tV5VH5I1pdC977D2Rh78P5KBvR1uNP9K02fxtzSooGWdqAjSuq3qDpLm3BXYdy8O9RInOH/g343lak/M3i3Dxluoj9yYmIjx4pNqjrpqLKY7+WhtSGcPjTCmORudj7Z4s3LhfjOBprmrz7lcVdb1+hWn3EsvKXtFj1YQxhgNn8nHgbD7ik0uQXyiDYhr0dAMHhNZFUsIQvPoxHjwqxdSBDvKnCQyx6n8e8oFyJSUMSY9LsHF/DlZty8TDRyX4YLT6nu/Py7kbhfj2ryfo0MwK373jhmouJniUIcXfB7KxZEMG7ieV4L3hZQMR1q1hrjRIs6W5GD3bmcK7lhneWZSK0H3Z6N/ZVm1uemPxVZPGyPVp/vQ8hUDOf3E8RUX4afV57S3MRHiQqnpDoaWvJY7+WhulUobU9FLsPZmHRevTcSuhGDNHvljvn2DNriwcuVCAdo0tMbaP5ptmn0x0wScTXZBXKMO9hxL8tTsL7yxKxYK33dCqgeb2boxzo6oUFsuwZGMGGtc1x2A/4w5K/DI6cCZPPi6JoEsLa5VxM6qKuqfnDHlC7nnIL5Qh5UkpvKqZws1JtZwtfC2w56R+n/mvAuGJHkUtfS2f2Xn/vNswIYSQZ+PF/WZACCGEVDFzMxE6NbdGp+a8l6mkhGHr4RyE7MnGL9sz0aWFtd6Dks2b4oKANjaQShkePCrBHzuzcCKmECF7szFlgKPSskKMX8OYlErzdN0PsLYUY1wfe/yyPQtbDuXIBxZ8UdjbiNUGJ52epjrKVzNYa3m5+XyZvw9U7CkNE7EI1VxMMTbQAWKxCKv/zcLeU3kY9PSmja5eabp6telDXc9VJzsxxCLl/Vb2WMtb+U8mwo7lwd3JBJ2aW8HZ3gRmT7/9rQ/PURqLwOZp78Q8DfVQoKMeJCUMX/3xGJdvF2NsoD3G9XFQu5whzM1EqFvDHJ9PcsGtBAn2nMjDqF72L0xwKydfiu/WPkFNdzN8FuQib+u1q4nxaZCLPG/+ID9b1HTTnsagbg1zNKxjgWv3ipH0uBSeHnx5Gx29RguKZPI2rC9176GQQ16m8Pbn5MsglUHrE1LlB6pWZGoiQi13M7wz1AnFEoZ/o/LQrokV2jexUipHVZ57+li3LxubInLwRgMLLHjbVa9c97ZWYrT0tcSi990RtCAZi9alY9M3NdQOvl4V54Y2QnvIK5SpPHFQWCyDTKZcp3/tzkZ6thQL33er9M0kGyuxQe+nrjZQ8LRXs/XTJ1Uqe53SR8TZfJV86tVcTFHf0/yZfF6oe3pOeELuRTlnyhPq3UnDUxrOBnzmG9p+DaVvm9P0dJQ+yj/RI2jpa/latGFCCCHPxovxi4gQQgh5AZibiTChrwMu/leEq/eKcf1+sUpaCV1MTHgQ8uvpbpj6bQr+PpCDLi2sldL5CD+UcvI1/7gVBs3U50fVwG522BmZix1HczHET/+nCwRVmVM/J18GmYypBIoyc54enx7BSCGYs3d5LZ25eHVp28gSq/8Frtwplgf1hfyxmgaFE/LP1tKQw1gfWblS1PZQDupm5vJe84rvsTGPNTNXil3H81CvphlW/c9DKX1KRrZUJVBb080MYpHmehByGKvL5SwpYfjyj8e4cLMIo3vZYZqRc9+bmIjg42mGlCeluPdQ8sIE9a/HFiOvkKGFj4VKGxeJRGjpa4mbcRLce1iiM6gPAA5PB/EulpQF8HlO40IkppWopAXLLZAhO0+GJvWqpvel0DbDltaq9LbaNLLEruN5uHKnSB7UF3I6axoTIOlxKcQioEYl0sHosm5fNtbty0ZLHwt8964bLMwNv0HSqK4FTl0pRFJaqdIg3EDVnxvq1HQ3xe0HEiQ9LlUJiqq7nsUm8oFVJy1IUbu9Nbv4eB5Du9thxggntcvI9+1miptxEmRkS1Vuisv3rZDLW8jZnagmfzlj/EkdFwcT+YCelblO6evHOR4a5z2LzwttT8+9COeMOsLnVWau+qe/DPnMN7T9GsrKQgwXBxOkpJdCKmMqN/ESH5c8LUfF88kLT/So8zq0YUIIIc8G3X4lhBBCyrG0qHzaC3MzEd4Z6gjG+OCDimytxHB3NkHioxJ58L68m/d5Dyvvmrp/VJqZijB5gCOKJAzrwrMNLuuOo7lYH56j96v8I93alEqBm3ESlelXY/nx1a+lOxjZqA5PxXIzrljHkro9eZpuxkQhTlDL3RQuDia4HluMwmLlmxuSEoar94rh4mCicVA5fVy7p1p2YVr9WmXvsaHHKhZ6V6vpxJ3ypBSMAa0bWioF9IGy+ldkbiZCwzrmePioVO17fPG/QpiZlpVRoBi0HNnTDm8P0R70qyjhJpi2J1yetdKnp2+WhkBW1tPz20yPpiOVMtx9KIFIBLg7lzXQFj68vqP/U03HFH2z8OkyVZPSoWEdc+Tky9QGXA0lP/cUAmiN61rAzBSIvlUExpTf2PRsKeKSStCwjjnMzQy/JgvnhlRLgwndm4V1+7LRwscC37/vpnKe6CtdzXUFeHbnRnna2syFp9MU20z7plbo18lG5dX8aYqwBl7m6NfJBk3UpFJT3bfl030XqswT9t3cx0Jhec1lvRUvkd80E1T0OmUsz+LzQpuqPGd0EU5ddeeUjZUY1V1NkfS4FI/VjPEh9Br31uMz39D2WxHNfSxQVMxwXc1nYfRNYR9V04Ze9zZMCCHEeCioTwgh5LVzNDofl26r/iAGeM/bK3eKYSIGGukRwNCmcwtr+Hia4eKtIly9p/zjtHd7G0hlwB//ZqmU43FmKbYezoVYDPRoq1/u2R5trVG/lhnCT6nmUdVl87c1cfTX2nq/DM0JG7I3C6XSsmN8kFqCA6fzYWMlQucWZYMIl0oZHqSWIOmxcgBxkJ8tTMQ8lUxahuqx5RXIcPdh2Y2Dew8lah9rz8mX4q9dWQCAdo3L9isSidC/sw0Kixk2lLspsikiG7kFMvTvbFOpsRF2RuUqDWZaWCST70sxv7Chx2pnzb/KPc5UDSp7OPMf5DfuF0OmEIR5nFmqcqNJ0L8Lz6f95y7ldrn/TB4SUkvRvbWN0pMFkhKGeb/zoOWIHnZ4Z6juoGV6thQPUks0ph5Q584DCa7H8vOySb2qCXRURKO65hCL+ZgaseXyJ8clS3A0ugBmpsplvnG/WOWcl0oZfv83C48ypGjbyFJpkORWDSxR3dUURy7k457Ce19QJMOG/TkwEQOBHZSvE9l5vI413TTU11B//jTL0g0ZareVkS1FQkrZ+fpffDEkJarX1dT0UmyO4E+GtGtSdv2wsRKje2sbpDwpxe4TZXn7GWNYsysLMlbWJg2l7dwAeEB/fXgOmtW3wPfvaQ/oS0qYxhtt+8/k4Va8BDXdTOW9zoV1nsW5oY5/axvYWInwb1Su0nUkPVuKHUdzYGslgl+rsqfQRveyx9zxLiqvPh15u+ra0gpzx7ugexvdn0d9OtrARAxsPJCjdBxxyRIcOpePGm6mSmMPeHqYoXl9C8TcKcbZ62U3AkqlDGv38Gtk/87KbcDQ65QxPYvPC22q8pzRxc5aDJEIeKLhnArsYINSKbAmTPl9iUuW4MBZ/pnfReEzXxND229FvPm0Ta3dk62Uhu7SrSJc+K8IzetbyFOgVYXXuQ0TQggxHrr9Sggh5LVzM06CnZG5cHU0QfP6FnB3NkVpKUNCagku/lcEGQPeGuwIN8fKf0wG9XfAvN+fIHRPNpbPKQtkjAu0x6VbRThwJh837xejdSNLWFuK8SijFKevFqKwmOGdoY56/6gUiUR4a7AjPln1WCUX7/Pk4mCCvAIZ3vo+FR2aWCK/iOFodD4kpQwfjXNRSjHzJEuKSV+nwMPZRCn9QN0a5vhgtDNWbMlA0IIUtG9qiRqupsgvYkh5Uoord4vQp4Mt5ozlA3AeOJuP8NN5aOljAQ8XU1iZi/AoQ4qz13m9dnvDCj3aKgcERvWyx+mrhdhyKBd3H/I0J7FJEpy/UYT6tcwwqpfmgTP10aC2Od76PhX+ra1hbirCiZgCpKZL0b+zjVKPQ0OPtXY1M7g4mCDyYgEszUVwczQBRDwlk4uDCbq9YYXjlwvxzuJUtGpgicwcKc5eL8IbDSyQ8kT1pkHv9jaIuliAyOgCpD4pRQtfS6Q8KcWJywVwdzLB24MdlZb/cXMGov8rgrO9GFYWIoTuzVLZZvl0TWt2ZSHibD4+nuCMPh1Vg0/hp/Jw/gYP7pWUAslPSnH6agFKpcDkAQ5wUTPOxbFLBXj4SP3NrIA21mjbWHcgSbApIlu+rRtPn5jZfDBHnh+5XycbNKvP3zM3R1OMDbTHxv05eG9JKjo3t+YD5WZKcTKmACWlwPQhjkopJL5d+wQiEQ/0uzqYIK9Qhqv3ivHwUSncnU0we4zyQLImJiLMHeeMT1al4YPljxDQxhrWlmKcjClASroUUwY4qFwn/o3iT99M7GePSW866n3s5bVrYoUJfe2xYX8OJgQno20TK3g4myInX4rktFJcjS3GlAEO8KrOc8RvOpCDa7HF8uuqiZi/f+dvFKKkFBgeYCevO8Fbgx0Rc6cIP2/NxKVbRajlboZrscW4HluMto0tEVjBQTXfaGCJ45cLsWDNE7RvYglzMxHq1TBHh2ZWOHAmD+vD+Q2Rhl7m2HpIdcwAxUEtJSUMM5Y+Qt0aZvCuZQZXR1PkF8pwK74Ydx+WwMpChI8nKL9vxjw3svOk+H1n2fpSKZCdL8Pi9enyaYqpPuysxZg10hkL16Vj+qJUdG9tDbEIiLxUgMwcGT4LcpHf9DA2Tw8zBPV3wNo92Zj2XQr83rBGUTG/7pdKGT4a66wySPnsMc6Y+UMqglc/hl8ra7g6mOD8zSLcTypBv842eKPcAMSGXqcAw85rXSryefHbjkz500b3k/iNsN93ZsrTCo3pbY/a1fT7vK/IOaPYVjKePlmiOO2doY4qqW7Ks7IUo4GXOa7eK8bi9emo5W4KkYh3PvBwNsXoXvY4e70Qh84X4EFqKd5oaInsXCkiLxWgVMrwaZCrXmnlKtJ+r90rQvhp/l4KT05diy2WH6OnBx9XR/BGA0v062yD8FP5eHsh/36SmStD5MV8WFuKVK7DALDvVJ68Z//9JH6DNfx0We76zs2t0KWlfjcbXvc2TAghxDgoqE8IIeS1M7KHHWq4miL6v0LcTpDg9LVCSKUMTvYm6PqGNQZ0tVXqSVgZnZpbo0Ftc8TcLcal20Xy7VqYi7F8tgd2Hc9F5MUCHDybjyIJg4OtGG80sMRQfzuVQIYubRtb4Y0GFrh8u/JpaozF1ARYOssdq8OycPBcPvIKZahXwxzj+9mjc3P9e9q92cUW9WuZYdvRXFy9W4zTVwthYyWGu5MJhgfYK/VU9nvDCvmFMvwXV4xr94pRJGGwtxGjmbcFerW3QUAba5UeaFYWYiyf44H1+7Jx/HIBrtwtgrO9CYYH2GFifwf5j9aKen+EE45dLMC+0/l4klUKNydTvD3YESN6qo6BYMixmohF+PptV6wOy8Kh8/koeDqYakAbG9haifHJBBd4OGfjREwB/o3KhYezKYb3sMOY3vboPfOhyr5NxCJ8M90NWw7l4NC5fN4r0lqMwA42mDLQUSVHtvBUSEaOTONgqsIAj/oSAjMAT/dga80HJB3YzVZjm7n7sAR3H6pPEeNdy8ygoP6Fm0UqAwxeuFn2pE0LHws0q182b8oAR9SraY69J3Jx8VYR8otksLUSo4WPJYb426FjM+V9D+xmhws3ChFzpxg5+VKYiEWo4WaKcX3sMbKnvdpg6xsNLPHTRx5YtzcbUZcKUFoK1KluhskDHNGzXcWC3vqaPMARzX0ssTMyF5dvFSGvUAZ7GzGquZgiqL8Deio8TdSvsy3MzUW4nSBB9K0ilJYyONqZoH0TK/TvYivPpa/IxcEEv3xcDWt3Z+HsjUKcvV4IdydTTHrTAaN72Vd44NY3O9viUXopjl4swN8HciCV8Z7EHZpZydutVAZsO5KrcRtCUN/SQoRJbzog5nYRLt8uRnZeAUxNRPBwMcWwADsMD7CTPxkjMOa5UVjMVAbdLCo3rXz+7l7tbeBgK8amiLKgn4+nOT6daG/Q+VAR4/s6oJqLKXYczcXu43kwffq0yqQ3HdBQTUqROtXN8OvH1fDX7iycv1GEwmIZarqZYcYIJwz2U73xZ+h1CjD8vNamIp8Xxy8XqNxwP3657MmEwA42egdEK3LOqBu0VXFaUH8HOOjRwf+zIBf8uj0Tp64UIL+IgTGeEsjD2RTmZiIs+8AdWw7mIPJiAXYczYGFmQjN61tgXKC93gFnwPD2m/S4VOUYkx+XIvlp3vgWPhZKQX0A+HCMM+rVMMfek3nYGZULKwsxOjazwtSB6jtUXI8tVtnH9ac3UwDAw9lE76D+696GCSGEGIeIqcs9QAghhBBCCCGEEEIIIYSQFw7l1CeEEEIIIYQQQgghhBBCXhIU1CeEEEIIIYQQQgghhBBCXhKUU58QQgghRE/3Hkpw8kqBzuWquZiqHQSWEFIxMXeKEHOnSOdy9WuZ653XmhBCCCGEkJcVBfUJIYQQQvR0L1GicdBLRS18LCioT4gRxdwp0uvcC+xgQ0F9QgghhBDyyqOBcgkhhBBCCCGEEEIIIYSQlwTl1CeEEEIIIYQQQgghhBBCXhIU1CeEEEIIIYQQQgghhBBCXhIU1CeEEEIIIYQQQgghhBBCXhIU1CeEEELIiys+HhCJgEmTnndJXi516vBXZbwqdS+RAPPmAd7egLk5P6aoqOddKkIIIYQQQgipMArqE0LI60gI1pV/2dgAzZsDCxYAeXnat7F2bdl6169rX/bUKWDECKBmTR5Uc3ICGjYExo4F1q1TXjYqSn3ZFF+DByuvIxLx7ekibPudd5SnT5pUtu0LF9Sv6+/P56emlk3TVI+Kr5YtdZdLcfvCSywGHB2Bzp2BP/4AZDLVdUJD+bLz52verqZl6tTh06tVA/Lz1a+rb72+qmJigC+/BDp0ANzdAQsLoF494L33gKQk1eUZA/73P/5e1qgBWFoCHh5Ap07AX38BJSXP+ghefMePA3PnAt27Aw4Oum8ilD9P1L02bFBe54cfgO++A2rXBj7+GAgO1nzDQzhf1J2LXbsCISGq6wjXgT59VOcJ55m+r/h4vt6ePcDMmfz8t7HRfZ4DQHIy8MEHQOPGfB0PD6BLF14fUqnq8trKsWiR+n2kpgLTpgHVq/P27esLfP01v3HyoqjoeVhczI/F15evU706P1bFa76h5s/XfBOppATYsYO390aN+HtmZwe0bw/8+qv69+zKFWDyZP457eLCy+ntDYwcCURHqy6fng6sXg0MHMivXRYWgKsr0LcvEBFRsWPatAlo146X18kJ6NdP/b4Vl+/cGbC15eu0bcvPs/IYA/bvB959lx+fgwNgbQ20aAF8/z1QVGR4WS9c4OVzcuL7bteOl0eTnBzgww8BLy9eV15e/P85OdqPT9/6qMh5rY1MBqxaxevLygpwc+Nt4e5d9ctv3AhMnw60acOPTyRS/17oy9BzZuXKsvZralrxG6zGuGmtr7t3eZ26ufE6bt6c17m672Sxsfz9HDiQf98VifQrZ0QEv17Z2/NrgL+/5vPT0M9MfbzObZgQQl5yps+7AIQQQp4jb29g/Hj+b8aAx4/5j+r58/kPihMnABMT9esKQX3GeKDkxx/VLxcaCkyZwn/A9esH+PgAhYXA/ftAeDj/gRIUpLpe69bAm2+q32ZVBpo/+QQ4etSwdRTrsbxq1Qzb1kcf8eCHVAokJAA7d/KbEJcvA7//bti29PHoEbBsGfDVV8bf9svunXeA8+d5EGr0aP4D8tw54LffgG3b+Pmh2BalUh60aNMG6N+f/zjNzAQOHOCBjm3beJsXU58KubVr+Y09a2sedNcWPAN48MLfX3V6SQmwcCGv2x49lOeFh/Nz6uBBwMxMv3L16MED4gBQWgo8fAjs2sWvZbduAYsX67ed2bOBrCzlaStWANnZ/OZCeY6O/O+yZcCxYzzIU6MGcO+e9v3cv8+DwenpQGAgMGAAr8uwMGDiRH5NU3dDwstLfUBIOHZFqal8Hw8f8hurvr7AyZP8OM6cAfbtezHadkXOQ5kMGDSIf+61bw8MHcoDdCEhwKFD/Lw39FquS2wsMHw4D+IFBPBAYHY2D5q9/z4v765d/HNWcOECL3vHjoCfHw+q3b/P19m+HVi/XvmzaNs2HiSvWZPvo2ZNIDGR30w4cABYupQHCPX1/ffAF1/wc/Wdd/jN/y1beIBPCEwq+ugjYPlyXnfjxvHzLzycB3avX+c33ATFxfw7goUF305gIA/kR0TwfYaF8XPCykq/skZF8W2Ym/Prt4MD/zwdN47fPPv8c+Xl8/N5ncbEAL16AWPG8JsoP/4IREbytm5jU7n6MPS81uWdd4A//+Q38mbO5J/nW7fya93p03y6onnz+PcKV1cegE9IqPi+K3LOzJrF/1avzs/LytwwexZu3uQ3AwsKeKC5Zk3+HXnmTODqVX7DTNGJE7xTjIkJv1Gnz/H9/Tc/Z11d+XdhkQj45x9+k3jjRt5eFRn6manL69yGCSHkVcAIIYS8fuLiGAMYCwxUnVdUxNgbb/D5R4+qX//WLT5/xAjG6tRhzMWFseJi1eXy8xmzs2PM3p6xa9dU50skjB08qDwtMpJve/p0/Y8HYKxBA93Ladp2UBCf7u3N/+7fr7qunx+fl5JSNk1bPRpK3fYZY+zuXcZsbBgTiRiLjVWeFxLC1wkO1rxdTct4eTFmZsZY7dr8PUpLU11X33qtSkIdBwU9+32vXMnYvXuq0xct4mXq1091XmGh6rSSEsa6d+fr7N1r/HKq4+XFX5XxLOr+wgXGrl9nrLSUsTNnKr6/7dv5ugMGqM6rW1f/uhDOl4ULVefdv8/PRQsLxgoKyqYbeh3w8uLLa3P8OGN37jAmkzG2ebPu8/zdd/kyP/2kPD0zs2x/8fHK8wB+3dHXxIl8nV9/LZsmk5VdP9eu1X9bVc3Q83DtWj599Gh+TOWnT5xYsXIEB/P1IyNV5yUm8rrMz1eenpfHWJs2fL1//lGep+64GOPnkKUlY+7uyuU/coQfq1SqvPytW4w5OPDPgKQk/Y7lzh3GTE0Z8/VlLCtLed/W1vzzs6SkbPqFC2Wfq+npysfXti2fd/p02XSJhLHvvuNtVpFEws9rgLElS/Qra0kJ36+FBWOXLpVNz8lhrEkTfhx37iiv89VXfB8ff6x++ldfVa4+GDP8vNbm6FG+fteu/Hub4PBh/n2hWzfVdQ4dKrsOLFzI1w8Jqdj+K3LO7N1b9h1n+nTN54Yuxvh800e3bryM+/aVTZNIGOvRQ/135NhY/jkmfD5YWGgvZ0YGY46OjLm6MvbgQdn05GTGqlXj8zIylNcx1mcmY9SGCSHkFfACdKchhBDyQrGw4I/1Arznvjp//cX/TpzIexilp/MeheVdvw7k5vLtNW2qOt/MjPeIe1EEB/MnCj79lD+B8CKoX5/3HmQMuHTJuNsWi3mvstxc4JtvjLvtqnD9Ok8b4eDAe4kNGMB70hmCMd7TrXNnvg1ra96jd+1a1WVnzOBPYZQ3dy5f79gx1XmWlqrTTE3LUkZVtFdbZCTvJd6gAe91bmvLy12+p6A2iqlA/vwTaNKEl7d2beCzz7Snt7h/n/cqFtJY9OzJe7FWtpxt2vByaHoiSF9r1vC/U6eWTROONy6O9+YTUsuo6+mvj7p1+XEVF/Nzpip17cqfalLspa3N/fv8b79+ytOFFF6A5uu5PnJzee/JevWU05eJRGVPSPz5p37bElIchYYCR47wpwJsbHg6maAg/nmiztWrvMd19eq897WXF+/ZqW55Q89DoeyLFinX+eTJvMft1q2Gv+f+/vz6CvDPQKH9Cek4atbkveitrZXXs7HhKV8A1WuMuuMC+DnUqBGQlqbcczcggD+tUP4JigYNgFGj+BMup0/rdzwhIfyplS++4NdgxX1PnMh7aSs+5RYWxv9++CHg7Kx8fF98wf+t+PSZmRnvPS88raI4/bPP+L/VXXPVOXqUl2fsWOCNN8qm29nxlGqlpcpPrjDGryG2tqpPrX32Gb/u/fWX8vcCQ+sDMPy81kZos99+y7+3CXr04E8oHD8O3LmjvE7Pnvy8MYaKnDP9+1fuiRch1VlCgvI1XV0KmHXreOo84XOoQwfVdI/a3LnD67B7d+XrqpkZT+cGqF7z6tXj+9H3aZJt2/iTXDNnAp6eZdOrVy97ymvbNuV1jPWZCVAbJoSQVwAF9QkhhCiTSMpyz6vLB19ayh/xd3PjjwdPnMinC4F+RcIP+bg49flHXzQ+PsBbb/Fg5d9/P+/SlBECCaZVkDVv4kR+w+WPP8oCgy+i+/d5cLK0lOe0792bp3Ho3Bn47z/9tsEYvwk1dSrw5AkP+EybxtMuTJ2qfxoKkYj/oNb3/ZDJeKoLQP3NLX0sXsx/4LZty282jB/Pj2H6dJ7iwhDLlvFAW8eOPAe7gwMPzAwerP5mVnw8T6/w+DEP2PfqxYOx3bvzR+Wrqpz6Skzkj+pXq8aDRgJ/f36jzsGBv4KD+aui+YcfPABu3wZq1eJjLLxImjThf4V2JsjJ4WOaeHiopjEAeNBozRqeguHPPzXnMT5zht/M6NVLNZhTvTrQrBlPt2FI3vM9e3iwrFo1Htz29uafLYMGqS67ezfP+bxnD39fZ8/m+1y1irfjzEzd+9N0HhYV8bI3aKA+WNS7Nz/2s2f1PzaAtzM/P/7voKCy9jd7tu51hTRR+l5jYmN52/T0VA7OGXMfQu7z3r1V5wUG8r+KQXfh2lC3rurywjR9U90Zs6zCNMWy3r3Lx6QQ8oQrsrQEunXj46go3gwytD6MLSqKl1W4afcs919V54wujo7qr+nBwco3a+fM4edfYiL/bJ82jb9/kyaV3TDTRdv7264dL0tl6/dFaEPPe//Pqw0TQsgrgnLqE0LI6+zevbLeTYzx4FtEBP/xs2QJz5lc3t69/Mf6rFn8B7aPDw+qHDrEcy0r9jby9gZateI9zAMC+A+q9u35dnX1MoqO1jz4Vp8+vDdUVfjqKx5Y+vJLnkPV3Fz3Oor1WF6HDuoH0NTX7dv8R42ZGf8haWxiMQ/oDRzIc5VqG0RQm6wsnivcEIYMrnbiBC+f4hMF69fzYNmMGTzIrMuaNfz4pk7lPUSFAJFEwnuhL1vG8yi3bq19O9u38x6II0ZoXkY4tidPeNlu3eLtv3y+d3399ptqcKy0lAdFf/qJB+dr19ZvW4cP8/NLCAR/9x3fTkQEz+E7YYLy8seO8aD/J5+UTfvyS967LiSEP9lSFeXUV0gID9hOmqQc9PP35y9hED1D2tvhw2UB6tJSHhzavZsHIF7EQfn+9z9evg8+4DmfmzXjAf1du/i1Y8cO1R7hAL+B+dZbZf8XiXgO5z/+UF5eCPb7+Kjfv48P39b9++pvHqizezcP6ggBHamU98KMiuLBQOEan57O26SbG79Bodh+Nm/mN+e++orn0S9Pn/MwNpa3H23HBvA6MOTJskmT+A2xY8c0jwWhifDkkLpgG8DzvoeF8Z72CQm8LgH9x13JzeXXMUtL3vNWH3fv8h7P6npaK9aRwM2N/42LU11emJaYyPOVq2ubinTVh7qyKpZLkZMTz8etWFZ92rewnOK/DakPY8rPB1JS+M0pdd+lqnr/VXXO6OLoyM9pbdf0Eyf4d5FGjfjNSOEm14IF/Jry4488/7+6cUMUaWsTIhF/ijI6Wr/2W5F9VPV7KGz7dW3DhBDyiqCgPiGEvM5iY8vSAygaOFC5x6sioUe+YuBv4kT+4ykkRPnRdZGIPzo8fjwPbAg9bqyt+Y2A8eP5dtR9ob94kb/UcXSsuqB+tWq8l9e33wK//qpfr0pN9QjwIJshQf0fflAeKHfHDv6jcelSPihZVRgwgAd2tmzhwUHFdAX6ysrSXAeaGBJkdXJSDh4DvO0sXcp7e5a/oaTOqlU8KLtqlXLw19ycB7b37OFBQm1B/YcP+Q0tKyvtKYsU60Ik4k8BLFyovXzaqOvtamrKU6EcOsTT3qgbcFqdCRPKAvrCdr7/nm9n3TrVoH7durxdKJo6lZ8jFy5UXTn1wVhZGg3F1DuVdeSI6o0iU1M+gGmbNsbbj7FUq8avwePG8SdYwsP5dEtL4OOP1Z/Tc+fyG1NCKoXLl3n6k40b+Y2MzZvLls3O5n819QK3t1deTh9jxyr30DQx4W0jKoq3K+Eav349v0Hxyy+qN4TGjOHXzC1b1Af19TkPq+LYKmP1an5jJiBANZ2SICZG+dg8PHg96Rv0fucdfnP+66952iN9ZGdrfkJFXR317cvresUK/l4LaXUKCpTfg+xs7UHRAwf4TaZGjfQ/x/V5TxMTDVtecTnh34bUhzE97zb7vPevjWLAX7F8Qs/+MWP4MrqC+oYcY0WD+tr2YWPDr4lVWYevcxsmhJBXBAX1CSHkdRYYqJyuIS2NB7JmzQI6deKPVyv21k9J4cGGhg2VA1ujRvHgd0gI78GrmJ6hXj2eszcmhvd+vXCB/18Imq1fz7epmE8T4Ok69O11aGwff8yDCN99x9ONCD8uNClfj5WxbJnqtBUr+M2BqrR4MX/PP/mEpzIxVJ06VTsOwRtvqKZFEIn4D/Pr13kvYW1B/YIC4No1fmNk0SLV+SUl/O+tW5q3kZHBg2xpabzdNmigeVnGeE/G5GT+dMtnn/Gga3i47vakTm4uD16GhfGbSPn5yvOTk/XflrqeuW3a8BsVMTGq81q0UM3JXasW/5uVVXXl1MfRo7zXr58f7zlpLAsXlt1Ekkr500sbNvDrmxB0FlKCvAhiY4E33+Q3BI8f5+dLVhZ/MuWLL/j16eRJ5TIvXaq8je7d+TW5RQseJJ83T/nmj7G1aqU6TV27ElJ4nD2rfkyKoiLeE//JE94DW5Gxz8Oqtm8ff/LIy4vfXNFk0iT+KiriPVmXLeNB9MWLdacR+/xz3i769OH/ripdu/IbhBs28Kc3Bg7k7S88nN80cnDgATttT+1FR/PvFw4OvINA+e8Jr7KoqLL0KIKWLcvGhahqYWGqnwfC008vssuX+V915RSmqfucexUJT/QoqlOn4inoDPW82zAhhLwGKKhPCCGkjLs778VUWMh7xC1apDyA6Lp1PMBVvievkxPv7b19Ow+yqUsx0rKlco7+qCjeUz8ykveInzOnCg6oguzseCBs9myehujbb5/dvlNSeK/bwkJ+U0XI9d6wYVmOUYEQaNU2XoEwr3xQtryOHfkPrbAwHtiraJqYqqKpN5mHB/+rqzdXZiYP8CUlaX+ioHwQWnH9nj2BGzd4ipnx43WXWSzmQcp33uG9YUeO5DeKFi/Wva4iiYQHIy5d4sHaCRP49kxNeXqPdet4/mJ9aapLd3deP+Wp60knPOkglVZdOfUhDJA7bZpxt6vIxIT3EP/iC54Oa8MG3otdGE/kRTB5Mn+y5/79slQKtrb8BmVGBm9zGzfy5bSxtuafAd98w1PdCEF9oQ1oOs+EwVn1zeeuaVl17Sojg//95Rft28vPVw3qA7rPw6o4toqIiACGDePXtKNH+VgFulha8lRLoaF8zItPPuHBek1jdyxYwG9YBQQAO3caNtimEIRXR1MdhYbyG4Z//cX/bWXFP8eWLOFty9SUf39Q5/Jl/uSBSMTrxpAbTPq8p+V7cetaXnE54d9V2WaiolQ/q4KC+Of0s2izYWHqB5b1939xzhlN+xaLy9I/KfLw4PP06f2t7zFW5uag4j7KPzGTn8+vg5Wpw/JP9AD8BrgQ1H/V2zAhhLwGKKhPCCFElZC7/dIl5elCgP+LL/hLnb/+0i8g7O/PA0dTpvAAxosU1Af4wI0//cTzr86Y8ez3b2XF62jfPqB5c15Pd+8qP+Yt/NhJT9e8nSdPlJfVZuFCnoLmk09U06roUtU59dPS1E8XBmPUdXzCD+/WrXnvT0NkZPCA/uXLPLA4fbph6wNlaTHK91rTx65d/FycNo0PZqpoyxb1gRdtNNVlWlrlfkAbu5y6ZGYC//7L03oMG2bcbWvSrh0P6l+69OIE9XNzeR7pVq3U50YOCOAB7IsXdQf1gbLAeEFB2TRd+Y3v3uXBsnr1DCu7PoRz99q1ig80LVB3Hnp787JrOzZAc/5wYzhwABgyhNd9ZGTF6lEYPPzECfX1tGABv+b6+/PrvJWVYdv38eFPOaSmqrYzTXUkFvMn/2bNUp4eHw/k5fE2q+6Jl0uXeC52qZQ/Oda2reFlFcpVPp1aZib/XOzUSf3y6qg7vorUhyHmz9f8GWljw2/6xMXxOip/c8YY+w8N1Tx+yItwzmhib887Mzx+rHoDOy2Nz9MnEK+tTTDGnxqqUUP1CUJD+Pjw7yN376oG9Y1Rh8ITPdr2/yq3YUIIeQ3o6LZHCCHktST0jFTsAX78OP+S7e3Ne4+rezk78yBbZqZ++6nMj6GqZm7ObzoUFBieK96YGjbkebyTk1WD5s2a8b9nzmheX5jXvLl++5o8mQf//vnHsHIKOfUNeRni8mX1vehPneJ/W7TQvr6dHc/J/N9/qiljtFEM6K9cCbz3nv7rKhLSzphWoD9FbCz/O3Cg6rwTJwzfnrp1oqP50yGKT9MYytjl1GXjRt7zf9w4wwOUFaXu2vi8SST8r3ADr7zHj/lffVOXnDvH/9apUzatQwe+/qFDqmm2UlJ4wL19e95z3Njat+d/tV3n9KXuPLS05Ddrbt/mTzuUd/AgP3ahHIYQAlWKTx6Ud+AA77nq5MQD+hVNI6XtGiME1/z8+I3iiuQA9/Pjf9WlZ4uIUF5Gl7//5n9Hj1add+kSv+aWlPC6qUi9ayurME2xrD4+PEB76pTq50xREf/+U6OG8ntjzPqoCD8/XlbhM/BZ7r8qzxl9mJhoPqeE8UPU3UAXxnXS53NOSNWj7v09f55/j6hs/b4Ibeh57/95tWFCCHlFUFCfEEKIMpmsbMBBxdzbwgC58+bxlBfqXkFB/Aew8IM9Lo4PSpqbq7qf/HzeEx7QPWDZ8zJ2LP/xt2YN71n4vHz6KQ9a/vBD2SPJAO/N2aULDzir61F3+DDvkVmnjvo86uosWMD3NW+eYWUUcuob8jJEZqZqLvz163kwMSBAOZ9+djbPjZ+Sorz8rFn8Js1bb6m/QRAXp/w+Z2Twp04uX+ZtVdcTG7duqe8FX1AAfPgh/3ffvtq3oY6XF/978qTy9GPHVHvE62PDBp5GSFBaWpZbuzKD2Bq7nLoI16SKDJCrqY3oWkc4z/Q9n54FFxc+vsODB2XpiAQ5OTzVCcBz5gsuX1buiS/Yto2nFnJ15YFVgb09z21+/77yWCeM8Tz1Mhk/rxQVFPA6fvCgcsc3eXJZSjTFdqu4HyHvPlCx8/Dtt/nfTz9VvjaFhPAbgaNGVSzNhrMz/6s4KKui8gF9Xb1ST53i52t5MTH8fTE15T3cFQUH8+t61676BfQ1nRuTJ/Ptf/edcsqMGzf4tdjbm1+LFSl+XglOnOBPhXl58ZRIihQD+vv387RwFdGjB/983LRJOX96bi6/WW9qqtyDWSTiTxjl5fHBgxUtXMg/f6ZNUx4vqCL1YUxCm503r+zGHsDT50VEAN26KY+JVFX7N/Y5ow9nZ34Ts6hIdZ7wGbZggXL7y8kp60ygz+ecry+vw8jIsoHHAd42he9H5a95hho5kj8dt3Il8PBh2fSUFN6Jw9GRD2ZeVV73NkwIIa8ASr9DCCGvs3v3lB+NffyY/4D57z8eJBV+uOTk8Hz5trbaf2BMnszT1fz1Fw+AZmcDM2cC//sfDyg0acIDxklJfNDCjAz+aPzMmarbio7W/NiuoyPPd68oJUXzY8a1a6v+UNeHSMQDyX36qO+NJihfj+UZkmZGHQ8Png5o+XJev8HBZfPWrOE/fCZP5gHHdu14L7arV3nAyNqaB3H17SFeowYflFfdYLLPU9euwM8/8+Bd27bAnTv8qRAHB37jSNG///L6CApSvtkxfTpff906Hhzr2ZMf76NHPIh17hwPAgk9lIcO5QGhhg15W1X3Ps6ezdsjwOv7k094D7969XjZkpJ4cCo9HejcuSyoaIgBA3iZlizhgwI3bcp7SO7dywOCO3YYtr2ePXnP69GjeXAkPJxvNzBQv7ECjFnOkyfLAtFCj/KTJ8vO5YYNywasVXTxIh8cuVWrsp6ZhtDURgSHD5cFjGQy/j7u3s0DSb16qU/3c+2a5mtQq1aqKUi0CQsrG+AwLq5smnDTqUsX5XEEVqzg9f/WWzwo36oV70m6Zw9v32++CfTvX7b8Tz/x7fXowa+PjPGA6okTvBfuunX8eq9o0SL++fD++7x+fH358qdO8bZTPlB2/jy/keDnV7G0UwI3N35MI0bwJ3L69OHtoqiIX5ePHeOpVITByityHk6cCGzdytNExcXxde/f523W09PwcTAE3bvzz5EvvuDXGAcH/nr3Xf7/wYP50yb+/vwYyys/qOX77/PzpHNn/r6VlvJz7OBB/h4uX678hEVoKP/sMzXlnw3lB0cGVAc/1XRu+Prya+C8efzJr+HD+c3RzZt5oPPPP1U/Z4YP508ANW/OA7zXrvH3wdmZtz87u7JlhaeiMjP5e3zoEH8pUvfZr46pKb+uBAbyz44xY/j+d+7k7++336oGCz/+mJ/jS5bwm16tW/NrzP79/Ob+xx8rL1+R+jD0vName3e+7Jo1/BrYvz8/17du5cf622+q66xZU3bT9dq1smnC+Tl4sP6DmFbknFm0qGwweuHJm0WLytrZtGn6dfIICODfEQcM4O+vuTlfr0sX/n1o5kweKG/alF+rGePv/cOH/DrcrZt+x/jbb/zaMmQID8DXqMGvL1ev8rIq3igF+OeD4kDVJSV8muI5rHhOOTnx7y8TJvBr9ujRPK3R1q38vdywQXXMiYp+ZqrzurdhQgh5FTBCCCGvn7g49X2nLSwYa9CAsQ8/ZOzx47Llf/+dz586Vfe2W7fmy168yFhREWM7djD29tuMtWjBmKsrYyYmjDk5MdalC2PLlzNWWKi8fmSk7j7eXl7K6+havkUL5W1Pn668flAQn37mjPpjCggo21ZKiu56LP/Sh5+f6vYVpaYyZm3NmIMDYxkZyvOSk/l71rAhY1ZW/H2sV4/X+9276rfn5cWXUycrizFnZ16eBg30K39VEeo4KIixq1cZ69OHMTs7xmxtGevfn7Hr11XXCQkpW0edrVsZ69mTt0MzM8Zq1mTM35+xZcuU272Xl+73Ni6ubPlr1xh7913GmjXj2zY1ZczFhb+3v/3GWElJxevh/n3Ghg1jzM2Nt4O2bRnbsqWsTQcHKy/v5aV6ngQH82UjIxn74w/GGjfmbaBWLcY+/ZSxggLl5RXrXh2AH1tlyim8V5pe5bcvePddPv/XX9XPV6SuLjS1EU3lsbVlrF07xn78kTGJRHkdfa4DgwYpl0fXdUF4rzS91L0n0dGMjRzJWPXqvO3Z2PD6X7FCte3t3MnLVKcOf5/MzRmrW5df4//7T3O5kpMZmzKFMQ8Pvk79+owtWMCv9eUJ73n591Co45AQzeuUbyeMMXbrFi+flxfft5MTP9dmzWLs/Pmy5Sp6HhYV8WOpX59v38ODH2tysub60EdoKC+LhYXy55c+n3Xl6279esYGD+bbsLLi5fTyYmzsWMZOn1bdt652pO2c1HTeb9zIWJs2fP8ODvyarFj/in75hbdBBwdeVm9vxj74gH+elafPeVT+PNbl3DlePgcHXt42bXj5NcnKYmzOHMY8Pflng6cn/39WluZ1DKmPipzX2kiljP38M2NNmvD25eLC2PDhjN2+rX554buOvm1BF0PPGeF7jqaXumuCOrm5jL31Fr/WicXqy752LW971tZln0Vr1xp2fIzxuhw+nNethQWv659/5nVfnj5tWJ39+xnr1o1/ztja8n8fOKB+2Yp+ZmrzOrdhQgh5yYkYY+x531gghBBCCCFVbP58nn4gMlK5Zy4hhBBCCCGEkJcK5dQnhBBCCCGEEEIIIYQQQl4SFNQnhBBCCCGEEEIIIYQQQl4SNFAuIYQQQsizFhbGB+HVpfwgloSQ5yc+Xv3AyuXpO6ArIYQQQgghFUQ59QkhhBBCnrVJk4B163QvFxzMc+ETQp6/qCige3fdy3l58RsAhBBCCCGEVBEK6hNCCCGEEEIIIYQQQgghLwnKqU8IIYQQQgghhBBCCCGEvCQoqE8IIYQQQgghhBBCCCGEvCQoqE8IIYQQQgghhBBCCCGEvCQoqE8IIYQQQgghhBBCCCGEvCQoqE8IIYQQ8pKJioqCSCTC/Pnzn3dRCCGEEEIIIYQ8YxTUJ4QQQgipYpGRkRg1ahQ8PT1hYWEBZ2dndOnSBT/++COKiorUrlOnTh3UqVPn2RaUVKm0tDQsXLgQw4cPR926dSESiSASibSuI5PJsGrVKrRq1QrW1tawt7eHn58fdu/erXZ5YZvaXg8fPlRaJzMzE3PnzkX9+vVhYWEBNzc3DB8+HDdu3KjQcaampmLatGmoXr06LC0t4evri6+//hoSicQodaLL3bt3MXLkSLi5ucHKygrNmzfHqlWrIJPJVJaNjY3F/PnzMXDgQNSsWRMikahC592zutEWExODL7/8Eh06dIC7uzssLCxQr149vPfee0hKStK4nr51whjD/v378e6776J58+ZwcHCAtbU1WrRoge+//17t9SohIQHvvPMOWrduDTc3N1hYWMDLywv9+/fHkSNHKnSMn3/+OQIDA+Hm5gaRSAR/f3+j14kmixYtQu/eveHp6QkrKyu4uLigTZs2WL58OQoKClSWr4o2TAghhBCii4gxxp53IQghhBBCXkWlpaV4//33sXr1atjY2KBv376oX78+srOzcfDgQcTGxsLX1xf79u1D/fr1ldYVAovx8fEq242KikL37t0RHBxMvfVfIsL7JhKJ4OPjg8TERBQUFEDT13HGGEaMGIEdO3bA29sbffv2RXFxMXbt2oW0tDSsXLkSM2bMUFpHU3u4d+8e/v77bzRq1Ag3b96UT09PT0fHjh1x9+5ddOzYER07dkRKSgp27NgBU1NTHD16FO3bt9f7GFNTU9G+fXs8fPgQgwcPhq+vL06ePIlTp06hT58+2LdvH8Tisn5FhtaJLjdv3kSnTp1QUFCAkSNHombNmti/fz+uXbuGt956C6tXr1ZaPjQ0FJMnT4aJiYm8bjw9PdWed9o8q3OyQ4cOOH/+PNq2bYv27dvDwsIC586dw4kTJ+Dq6ooTJ06gYcOGSusYUidFRUWwsrKChYUF/P390axZMxQVFSEiIgJ3795F27ZtcezYMVhZWcnXOXz4MEaMGIGOHTuibt26sLe3R1JSEnbt2oWcnBx89913+Pzzz/U+xvnz52PBggUwNzeHr68vrl+/Dj8/P0RFRRmtTrSpW7cuXF1d0axZM7i7uyMvLw9RUVG4ceMGWrRogdOnT8Pa2lq+vLHbMCGEEEKIXhghhBBCCKkSc+fOZQBY27ZtWWJiotK80tJS9tVXXzEArH79+iw7O1tpvpeXF/Py8lK73cjISAaABQcHV1HJSVVITU1lx44dYzk5OYwxxho0aMC0fR3ftm0bA8A6d+7MCgoK5NMfP37MvLy8mIWFBYuLi9Nr3zNmzGAA2LJly5Smv//++wwA+/DDD5Wmnz59mpmYmLDGjRszqVSq5xEyNnHiRAaA/frrr/JpMpmMBQUFMQBs7dq1SssbWie6dOvWjQFg+/btk0+TSCSsR48eDAA7evSo0vKxsbHszJkz8vq1sLDQeN5p86zOyZUrV7J79+6pTF+0aBEDwPr166cyz5A6kUgk7LvvvmOZmZlK25BIJGzAgAEMAFuyZInSvOLiYrVtJCkpiXl4eDAzMzOV7Wlz/fp1dvHiRSaRSFhKSgoDwPz8/DQuX5E60aawsFDt9AkTJjAAbNWqVUrTjd2GCSGEEEL0Qd82CCGEEEKqwJ07d5hYLGbOzs4sNTVV43Jjx45lANiXX37JGGMsLi6OAVD7EgKGigHEixcvst69ezNbW1tmb2/PBg8erDHQe//+fTZ16lTm6enJzM3NWbVq1VhQUBCLj49XWVYIpCUmJrKgoCDm4eHBRCIRi4yM1Hrcfn5+DAArKipiX375JfP29mampqbysgvz1RECv4rlDwkJYQBYSEgIO3z4MOvcuTOztrZmzs7ObOLEiezJkycq2zl69Cjr06cPq169OjM3N2fVq1dnfn5+7M8//9Ra9mdNV/Bv3LhxKsFYwYoVKxgA9tVXX+ncT2FhIXNycmLm5uYsLS1NaV7NmjWZWCxmubm5KusNHjxYbSBck5ycHGZhYcHq1avHZDKZ0rzk5GQmFotZx44dtW6jMgHR27dvMwCse/fuKvPOnj3LALAxY8Zo3UZFgvrBwcEaz1nFtvzkyRM2e/ZsVqdOHWZubs7c3NzYyJEj2Y0bNwzanzqlpaXM2tqa2djYKE03Rp0ITp8+zQCw/v37612uIUOGMAAsJiZG73UU6RPU10RTnVTUrl27GAA2e/ZsrctRUJ8QQgghz4KpMXv9E0IIIYQQLjQ0FDKZDG+//TY8PDw0Lvfll19i06ZNWLt2Lb7++ms4OjoiODgYK1asAADMnj1bvmz5vNLR0dFYunQp/P39MX36dFy+fBlhYWG4du0arl+/DktLS/my586dQ2BgIPLz8zFgwADUr18f8fHx+Pvvv7F//36cOXMG9erVU9q+kJrF2dkZo0aNgkQigb29vV7HP3ToUFy5cgWBgYFwdnZW2bah9uzZg71792LAgAF49913cfz4caxfvx6xsbE4efKkfLl9+/ZhwIABcHR0xKBBg1C9enU8fvwYMTEx+PvvvzFt2rRKleNZevToEQCeDqQ8YdrRo0exYMECrdvZuXMnMjMzMXz4cLi5uansw9XVFba2tlr30b17d53lPXPmDIqLi9GrVy+VnOLVq1dHs2bNcO7cORQVFSm1TWMR0rP07t1bZV67du3g6OiIY8eOGX2//v7+iI+Px7p16+Dn56d0njo6OgLg51KHDh1w7949+Pv7Y/To0YiPj8f27duxb98+HDp0CB07dqxwGUQiEUxMTJRSGwHGrRMzMzMAgKmpfj8h09PTce7cOVhbW1f6/K8ITXVSUfv27QMANG3a1CjbI4QQQgipDArqE0IIIYRUgdOnTwMAevTooXW5hg0bokaNGkhKSsLDhw/h6emJ+fPnIzQ0FIDmHOkADzJt2bIFo0aNkk+bOHEiNmzYgLCwMIwePRoAUFJSgtGjR0MmkyE6OhotWrSQL3/y5En4+/vjgw8+wJ49e5S2f/36dUyePBl//vknTExMDDl8JCcn4+rVq3B2djZoPU12796NqKgodO7cGQAglUrRs2dPREVF4ezZs+jQoQMAYO3atWCMISoqCs2bN1faRnp6ul77CgsLQ0xMjN5l8/f31zqQZ0UJAfi4uDg0atRIaV5cXBwA4M6dOzq389dffwGA2hsabm5uePToEfLy8lQC+4bsA+CDsQKAj4+P2vk+Pj64cuUK7t+/j8aNG+u1TUNo279IJEL9+vURHR2NgoICpZzolSW89+vWrYO/v7/ac/bjjz/GvXv38Nlnn+H777+XT580aRL69OmDoKAg3Lp1q8IB6O3btyM3NxcjRoxQmm7MOlm7di0A9TcIAD7+R2hoKKRSKZKTk7F7925kZWXh999/h52dXUUOq1I01Ym+VqxYgaysLGRlZeHUqVOIjo5G7969MXHiRCOXlBBCCCHEcBTUJ4QQQgipAqmpqQAAT09Pnct6enoiOTkZKSkpei0v6Natm1JAHwCmTJmCDRs24MKFC/Kg/t69exEfH49vvvlGKaAPAF26dMGgQYMQFhaGnJwcpZ745ubmWLJkicEBfQBYsGCB0QL6ADB27Fh5QB8ATExMEBQUhKioKFy4cEEe1BcoDuQpcHFx0WtfYWFhWLdunUHlq4qgft++fbF582YsWrQIAQEB8t7t6enp8ic5srKytG4jLi4OkZGRqF27Nnr16qV2H2vXrsWCBQuwdOlS+fTz589j7969eu1DkJ2dDQBwcHBQO19oW8JyxmbI/o0Z1NdFIpFg8+bNcHFxwbx585TmBQYGIjAwEBERETh9+jS6dOli8PYfPnyIWbNmwcrKCt98843SPGPVyYEDB/DHH3+gUaNGmDp1qtpl4uPjlZ4asbW1RUhICMaPH2/Q8RiDtjrR14oVK5CQkCD///jx4/Hbb7/Jn1gghBBCCHmeKKhPCCGEEPKcMcYAQCVliS6tWrVSmVarVi0AyoHYs2fPAgBu3bqlthdxamoqZDIZ7ty5gzZt2sin161bF66urgaVSdCuXbsKraeJvsc6cuRI7Ny5E+3bt8eYMWMQEBCArl27wt3dXe99hYaGyp+UeJ7GjBmDkJAQREZGolmzZujTpw9KSkoQFhYmT+mk64aL8OTC5MmT1fYCX7BgAfbv348ffvgBZ86cQYcOHZCSkoLt27ejcePGuHr1qtI+hN7LiiZNmoQ6depU+nj1oa79zp49W57m5kV069YtFBYWwt/fX23g3N/fHxEREYiJiTE4qJ+RkYF+/fohLS0N69evR4MGDYxVbLno6GiMGjUKDg4O2LZtGywsLNQu5+/vD8YYSkpKEB8fj9WrV2PixIk4f/48fv75Z/lyoaGhiI+PV1p38ODBaNmypVHKq6tO9G3DQhlTU1MRGRmJjz/+GO3bt0dERIT82kMIIYQQ8rxQUJ8QQgghpApUq1YNt27dwsOHD3UG2hITE+XrGEJd71sh37VUKpVPy8jIAAD8/fffWreXn5+v9H9tYwHoUpl11dH3WEeNGgUzMzOsWLECf/zxB3799VeIRCL4+/tj+fLlRgscPgumpqbYv38/Fi1ahE2bNmH16tVwcHDAkCFDMHfuXPj6+qrkyFckk8kQGhoKsViMKVOmqF2mVq1auHDhAoKDg7F//36cP38enp6e+Prrr1GnTh2MHj1aaR/ley8DPJhbp04d+XukqSd+Tk4OAM29xvWhbvyASZMmwdHRUe/96zsuhLEI+9V0TgjnvaFPMGRmZqJnz564ceMGfvvtN7U94itbJ5cvX0bv3r0hEokQERGBJk2a6CyXmZkZfHx8sHTpUhQUFGDlypXo27cv+vbtC4AH9cvn8a9Tp45Rzk196kRbG1anWrVqGDNmDOrXr4927drho48+wtatWytdVkIIIYSQyqCgPiGEEEJIFejUqROioqJw5MgR9OzZU+Nyt27dQnJyMmrWrGlQ6h1DCAG7PXv24M0339R7PUOfHNBnXaG3eGlpqcqAm8ZKyzJ06FAMHToUOTk5OH36NHbu3Im//voLgYGBuH37ts5e3S9KTn0AsLCwQHBwMIKDg5WmCwOgKj5ZUd6BAweQmJiIwMBA1K5dW+NyNWvWxJo1a1SmC73iFfdRvoe1IiFvu5DHvby7d+9CLBZXatBU4akWQ/fPGMO9e/dQo0YN2NjYVHj/FSGcf8LAx+UJ0w252ZCRkYGePXvi8uXL+OWXXzB9+nS1y1WmTi5duoRevXpBKpXi4MGDaNu2rd7lE/Tu3Ru//voroqKi5EF9oe0am751oq0Na9O2bVs4OTlVWfkJIYQQQgxBQX1CCCGEkCoQFBSERYsW4c8//8SHH36osUf1d999BwAqPalNTEwgkUiMUpb27dsDAM6cOWNQUL8qODk5AQCSkpLg5eUlny6TyXDlyhWj7sve3h59+vRBnz59IJVKsXbtWpw7dw6BgYFa13tRcuprIzx1IYyboI62AXJ1kUql2LJlC0xNTTFs2DC91unQoQMsLCxw6NAhMMaUbuykpKTg2rVraN++vXxsAGMT3oODBw/i008/VZp3/vx5ZGVlyQPLxiakKFJ8akTQsGFDWFpa4sKFC2oHpBV6revbU10xeL1y5Uq89957GpetaJ1cunQJPXv2RGlpKSIiIuTXEEMlJycDgMoNPGMzpE4qKi8vD9nZ2QY/UUUIIYQQUhVUE2sSQgghhJBK8/X1xQcffID09HQMGDAAKSkpSvNlMhm++eYbbNy4Ed7e3pg7d67SfGdnZzx58gRFRUWVLsugQYNQu3ZtLF++HMePH1eZX1JSgpMnT1Z6P/oQen2Xz1m/fPlyxMXFVXr7R44cUVtnaWlpANQPoFteaGgoGGN6v9TleTcWIT2Kou3bt2Pt2rVo27Ythg4dqna9x48fY8+ePXB1dcXAgQM1br+kpASFhYVK02QyGebOnYvbt29j5syZqFGjhl5ltbe3x6hRo3D//n38/vvv8umMMXz22WeQyWR466239NpWRfj6+qJbt26IjIxEeHi4fHpJSYl8gNqq2r8wKLSQSkuRubk5xowZgydPnmDhwoVK8w4fPoz9+/ejfv36SgNBa5KRkYEePXrg8uXL+OmnnzBjxgyty1ekToSAfklJCfbv34+OHTtq3cf58+fVnnMJCQny462qmymA4XWiTUJCgtqe/CUlJZg9ezZkMlmVHgshhBBCiL6opz4hhBBCSBVZsmQJsrOzsXbtWvj4+KB///7w9vZGTk4ODh48iLt378LHxwfh4eEqqTcCAgIQHR2NAQMGoGvXrjA3N0eXLl0MHkgT4Clctm/fjr59+8LPzw89evRA06ZNAQAPHjzAiRMn4OLiglu3bhnluLWZPHkylixZgvnz5yMmJgbe3t6Ijo7G9evX4efnp5Jr21AfffQRHjx4IM+RLRKJcPLkSZw/fx6dOnXSK3BalSZNmiT/t3CjR3HaDz/8oDQ4cfv27eHp6YlGjRrB0tIS58+fR1RUFOrVq4dt27ZpHCh3/fr1KCkpwcSJE2Fubq6xPI8ePUKTJk3Qu3dv1K1bFxKJBBEREbh16xb69++vEoTWZdGiRYiMjMT777+Pw4cPw9fXFydOnMCpU6cQGBiIoKCgSteJNr/99hs6deqEIUOGYOTIkahRowYOHDiAq1evYtq0aejevbvS8k+ePFG6oVZSUoInT54o7V+fQZMbNmyIGjVqYMuWLbC2tkatWrUgEonw7rvvwsHBAYsXL8axY8fw7bff4vTp02jfvj3i4+Oxfft2WFtbIyQkRO1AxuUNHToUMTExaNiwITIyMvQaONiQOhF6vGdmZqJPnz44dOgQDh06pLR9R0dHzJ49W/7/77//HidOnICfnx9q164NU1NTxMbGIjw8HBKJBHPmzDHounXr1i0sWrQIAOQ3nG7duiV/T1xdXfHDDz9Uqk40uXz5MoYNG4auXbvCx8cHrq6uePToEQ4fPiwfH0V4ukqRMdswIYQQQoheGCGEEEIIqVKHDh1iI0aMYDVq1GBmZmbM0dGRdezYkS1btowVFBSoXSc3N5e99dZbrHr16kwsFjMALDg4mDHGWGRkpNL/FcXFxTEALCgoSGVeYmIi++CDD5iPjw+zsLBg9vb2rFGjRmzatGnsyJEjSssCYH5+fgYfq5+fH9P1FfPSpUusR48ezNramtnb27NBgwaxu3fvsqCgIAaAxcXFyZcNCQlhAFhISIjKdtTVw5YtW9jIkSOZt7c3s7a2Zg4ODqxly5ZsyZIlLC8vz+DjMTYAWl+Kx84YY8HBwaxZs2bMzs6OWVpaskaNGrF58+ax7Oxsrftp1KgRA8Bu3rypdbmcnBw2YcIEVq9ePWZpacns7OxYx44d2Z9//smkUmmFjjE5OZlNmTKFeXh4MHNzc1a/fn22YMECVlRUpHZ5Q+tEl9u3b7Phw4czFxcXZmFhwZo0acJ+/vlntccjnC/aXvo6e/Ys8/PzY3Z2dmrL/vjxYzZr1izm5eXFzMzMmKurKxs+fDi7du2a3vvw8vKqUH3pWyf61IeXl5fSOnv27GGjR49m3t7ezMbGhpmZmbGaNWuyIUOGsPDwcL2PTSCc1/ruv6J1ok5CQgKbM2cOa926NXNxcWEmJibMwcGBdejQgS1evFjjNcTYbZgQQgghRBcRY1pGmyKEEEIIIYQQQgghhBBCyAuDcuoTQgghhBBCCCGEEEIIIS8JCuoTQgghhBBCCCGEEEIIIS8JCuoTQgghhBBCCCGEEEIIIS8JCuoTQgghhBBCCCGEEEIIIS8JCuoTQgghhBBCCCGEEEIIIS8JCuoTQgghhBBCCCGEEEIIIS8JCuoTQgghhBBCCCGEEEIIIS8JCuoTQgghhBBCCCGEEEIIIS8JCuoTQggh5LUyf/58iEQiREVFKU0XiUTw9/ev9HaMadKkSRCJRIiPj6+yfRiLv78/RCLR8y4GIYQQQgghhLzyKKhPCCGEkBfGmDFjIBKJsGXLFq3Lpaenw8LCAq6urpBIJM+odMYXGhoKkUiE0NDQ512UF8LLdBNDHaH82l5hYWHy5YX3X/FlZWUFX19fzJw5E6mpqVr3d//+fYjFYohEIqxatUrjcvHx8VrLpOt8U3T8+HHMnTsX3bt3h4ODA0QiESZNmqR1ncTEREyfPh21a9eGubk5atSogcmTJ+Phw4cqy6qrk/KvHj16qKx37tw5DBo0CK6urrCwsICvry+++uorFBYW6n1siiIiIuDv7w97e3vY2dnB398fERERRqsTXTZt2oR27drBxsYGTk5O6NevH6Kjo9Uuu2fPHsycOROdO3eGjY0NRCIR5s+fb/A+n8X5V1JSgh07dmDSpElo1KgRbGxsYGdnh/bt2+PXX3+FVCrVuK6+dZKeno7Vq1dj4MCBqFevnvyzom/fvhrfw507d2L48OHw8fGBvb09bG1t0aRJE8yePRtJSUkGH+fGjRsxffp0tGnTBhYWFlqv85WpE3USEhLwzjvvoHXr1nBzc4OFhQW8vLzQv39/HDlyRO06VdGGCSGEEFK1TJ93AQghhBBCBFOnTsWWLVsQEhKC0aNHa1xu48aNkEgkmDBhAszNzY2y7//++w/W1tZG2ZaxLFy4EJ9++ilq1qz5vItCDDB16lTUqlVL7byGDRuqTOvRowe6dOkCAHjy5AmOHj2KVatWISwsDJcuXYKbm5vaba1duxaMMYhEIvz111+YMWOG1nK1aNECgwcPVpnetGlTHUekvM9169bB2toatWvXRk5OjtblY2Nj0alTJ6SlpaFXr14YNWoU7t69i3Xr1iE8PBynT5+Gt7e3fPmWLVsiODhY7ba2b9+OGzduIDAwUGn6zp07MWrUKJiYmGDYsGGoVq0aTp06hW+++QZHjx7FkSNHYGFhofcx/v333xg/fjxcXV0RFBQEkUiEf/75B3369MHGjRsxbty4StWJLt9//z2++OIL1K5dG++88w7y8vKwZcsWdO7cWX6zQdGyZctw7Ngx2Nvbo0aNGrh3716l9l+VYmNjMXz4cNjZ2SEgIAADBw5EdnY29uzZg/fffx8HDhzArl27VJ76MaROtm3bhnfffRc1a9ZEQEAAatasicTEROzYsQMHDhzA0qVLMXfuXKXt//vvv7hy5Qratm2L6tWrAwBiYmLw888/Y926dTh58iSaNGmi93HOmzcPCQkJcHV1RfXq1ZGQkGD0OtHk7t272Lp1Kzp27IgOHTrA3t4eSUlJ2LVrF8LDw/Hdd9/h888/V1rH2G2YEEIIIc8AI4QQQgh5QchkMlanTh0mFovZgwcPNC7XokULBoBdu3bN4H0EBwczACwyMrISJTXOdkJCQhgAFhISUqmyvAj8/PxYZb9aBgUFMQAsLi7OOIV6xoTynzlzRq/lhfd/4cKFStOlUinr168fA8C++uorteuWlpaymjVrsurVq7Nx48YxAOzixYtql42Li2MAWFBQkEHHo86FCxfY9evXWWlpKTtz5ozO7fbv358BYD/99JPS9H/++YcBYIGBgXrtt7i4mLm4uDBTU1OWmpoqn15QUMBcXV2ZmZkZi46Olk+XyWTs/fffV1u/2mRkZDBHR0fm6uqqdA1KTk5m1apVY46OjiwjI0NpHUPrRJs7d+4wU1NT5uvry7KysuTTr1+/zqytrZm3tzcrKSlRWuf48ePszp07TCaTsc2bNzMALDg42OB9P4vzLzExkf36668sPz9faXpeXh5r06YNA8D++ecfpXmG1smRI0fY3r17mVQqVdrOrVu3mIODAzMzM2NJSUlK8woLC9WWd82aNQwAGz58uEHHeejQIRYfH88YY2zhwoVar/MVqRNtiouLVY6dMcaSkpKYh4cHMzMzY5mZmUrzjNmGCSGEEPJsUPodQgghhLwwRCIRJk+eDJlMhnXr1qld5uLFi7hy5QratWuHpk2bIjk5GcHBwejQoQPc3d1hYWGBOnXq4L333kNaWppB+1aXU//hw4cYM2YMnJ2dYWtrCz8/Pxw/flztNiQSCVauXInAwEB4enrCwsIC7u7uGDp0KC5fvqy07KRJkzB58mQAwOTJk5XSiyguoykdxrp169ChQwfY2trC1tYWHTp0UFtnUVFR8nQcly5dQmBgIOzs7ODg4IAhQ4YYnGrj5MmT8PPzg42NDVxcXDBq1Ci1aVQAGPTe1KlTR17+unXryutC8T35999/MWbMGNSvXx/W1tZwcHBA165dsWPHDoOO4UUnFovlqS8uXryodpmIiAgkJSVh7Nix8nb0119/VXnZ2rRpgyZNmsDExETnskVFRYiIiICHhwdmzpypNG/EiBFo2bIlIiIicP/+fZ3b+vfff5Geno4333wTHh4e8umnTp3CkydPMHjwYLRu3Vo+XSQS4dtvvwUA/P7772CM6XV827ZtQ1ZWFmbOnAlPT0/59OrVq2P27NnIysrCtm3blNYxpE50CQkJQWlpKb744gs4ODjIpzdp0gQTJ05EbGwsjh49qrRO165d4ePjU6kxLfQ5/wDg9OnT6N+/P5ydnWFpaYmGDRti/vz5KCgo0Gs/NWvWxLvvvqvyVJSNjQ0+/PBDAMCxY8eU5hlaJwEBAejfvz/EYuWfug0aNMCoUaNQUlKC06dPK82ztLRUW94RI0YAgMFPP/Ts2RNeXl56LVuROtHG3Nxc5dgBoEaNGujUqRNKSkpUnhwwZhsmhBBCyLNBQX1CCCGEvFAmT54MsViM0NBQtYG4kJAQADzFCcBzAS9btgweHh4YM2YMZs6cCW9vb/z222/o2LEjsrOzK1yWlJQUdOzYEVu2bEG7du0wa9YsODs7o1evXjh79qzK8hkZGZg9ezaKi4vRr18/zJkzB/7+/ggPD0enTp1w4cIF+bKDBw/GoEGDAACDBg1CcHCw/KXLnDlzMGnSJCQmJmLq1KmYNm0akpKSMGnSJHkQqLzo6Gh07doVpqam8lzPYWFh6NmzJ4qKivSqjyNHjiAgIADnzp3D8OHD8fbbbyMuLg6dO3dGZmamyvKGvDezZ89GixYtAAAffPCBvC4U8zp/9tlnuHHjBrp06YIPPvgAI0aMwO3btzF8+HCsXLlSr2N4WQht39RUfbZMIYA/ceJEdO/eHZ6enti0aZPW9zI5ORm//fYbFi5ciHXr1iExMdH4BVeQnp6O0tJSeHl5qQ04161bFwAQGRmpc1vC8U6bNk1p+qNHj5S2pcjR0RFOTk5ISEjQ68YBAPnA171791aZJ6T9MSTAaqjntX99zr8dO3bAz88PUVFRGDx4MGbPng1bW1ssWLAAPXv2RHFxcaXKYGZmBkC1zRuzTjTtQ5N9+/YBMCxFlTEZWl5t0tPTce7cOVhbW6NevXqV3h4hhBBCni/KqU8IIYSQF4qnpyd69eqFiIgIHD9+HH5+fvJ5xcXF2LRpE6ytreU59wMCApCamgpbW1ul7axfvx5BQUFYtWoVvvjiiwqV5bPPPkNSUhK+/fZbpW2sXr0a06dPV1neyckJDx48UMmBf+PGDXTo0AGff/45Dh06BIAH9bOysrBr1y4MHjxY70EJT5w4gRUrVqBRo0Y4c+aMvOfqggUL0KFDB/z4448YOnSoPEe7YN++fdiyZQtGjRolnzZx4kRs2LABYWFhWscwAACZTIa3334bpaWlOH78uHz7jDGMHz8emzZtUlnHkPdm9uzZiImJwZUrVzB79mzUqVNHZXvh4eEqwai8vDx06tQJX375JaZOnarXuAihoaEGPaEwePBgtGzZUu/l16xZgwMHDqid9+mnn2rsFSyQSqVYu3YtAKi8jwDw+PFj7NmzB82aNUPz5s0BAOPHj8fChQuxY8cOlZzvgkOHDsnbH8ADhbNmzcLSpUvV9uytLCcnJ5iYmCAhIUGe+19RXFwcAODOnTtat5OQkIAjR46gZs2a6NOnj9I8YbwBYVuKsrOz5Teb7ty5o5S7X5O7d+8CAHx8fFTmCdOEZarC3bt3YWtri2rVqj3T/es6/3JzczFt2jSYmJjgzJkz8naneP4vXboU8+bNq3AZhDZfPnhvrDrJzc3F9u3bYWlpia5du6pdJiwsDDExMSgoKMCNGzcQERGBunXr4uuvvzb0cIxCU53oIz4+HqGhoZBKpUhOTsbu3buRlZWF33//HXZ2dsYuKiGEEEKeteeZ+4cQQgghRJ2tW7cyAGzixIlK04V80frk+pXJZMze3p75+/srTdeUCx8A8/Pzk/+/uLiYWVpaMnd3d5V8y1KplPn6+hqUU3/AgAHM3NycSSQS+TRdOfXV5bieMmUKA8C2bt2qsrxQP1OnTpVPi4yMZABYt27dVJYX5n344Yc6y3/s2DEGgA0YMEBlXnx8PDMxMdE7p76m96aiOb2XLVvGALCoqCi9lhfy/+v70nfMA6H82l6KuayF979Hjx4sODiYBQcHsxkzZrAGDRowAKxDhw4sLy9PZT8//PADA8CWLl0qn/bff/8xAKx79+4qyz969IgFBwezmJgYlpOTw9LS0tju3btZo0aNGAD26aef6nV85emTezsgIIABYKtWrVKavmPHDnmdvP3221r3I5yz8+bNU5mXm5vL7O3tmZmZGbt06ZLSvJkzZ8r3sWnTJr2OycfHhwFQyVsvMDExYb6+vhrXr2w+cjMzM1azZk218x48eMAAsN69e2tcv6py6q9fv54BYO+++67acpmamjJvb2+D9yn4448/GAAWEBCgMq+ydSIYO3YsA8C+/vprjcuUP4fbtGnD7t27p/+BqKErp74m2upEH8L1XXjZ2tqyDRs26FyPcuoTQgghLwfqqU8IIYSQF87gwYPh4uKC7du3Y9WqVfJehUKvxSlTpigtv3PnTvzxxx+4dOkSMjMzIZVK5fOSk5MrVIbbt2+jqKgIAQEBKj2rxWIxOnXqpLaHcUxMDJYsWYKTJ08iNTUVJSUlSvOfPHmC6tWrV6hMAOS5+dXl/xemxcTEqMxr1aqVyrRatWoBALKysnTu98qVKwCgtoerl5cXPD091fZ+N+Z7k5aWhkWLFmH//v1ISEhAYWGh0nx9tyek86gqZ86cQYcOHfRe/siRIzhy5IjStI4dO+Lo0aNqe/WvXbsWYrEYY8eOlU9r2LAh2rZti6ioKNy/f1/piQZ3d3fMnz9f/n87OzsMGDAAbdu2RdOmTbF8+XJ8/PHHcHJyMuAo9bN8+XJ06dIFM2bMwJ49e9C8eXPcu3cPu3btQvPmzXH16lWtebxlMhlCQkIgEolUznsAsLW1xfLlyzFt2jR07NgRw4cPR7Vq1XD69GlcvHgRDRs2xK1bt+T7EHovK3J0dMTs2bONedgaxcTEICwsTGlanTp19H5S53nRdt3x9PSEt7c3bt++jdzcXIN7ge/btw8zZsyAl5cXNm7caIziqvj888+xadMm9OnTB59//rnG5UJDQxEaGors7GxcvnwZX3zxBVq3bo2dO3ciICAAAL9erlixQmVdxXOssrTVib5t2N/fH4wxlJSUID4+HqtXr8bEiRNx/vx5/Pzzz0YrKyGEEEKeDwrqE0IIIeSFY25ujvHjx+Onn37CP//8g6lTp+Lhw4c4cuQIfHx80K1bN/myy5Ytw9y5c+Hm5obevXujVq1asLKyAgCsWLGiwnmehXzv7u7uaucrDtYpOH36tDzw07t3b/j4+MDW1hYikQhhYWG4cuVKpfNO5+TkQCwWy9OOlC+TWCxWO46A4gCTAiFPs2KgXRN96qN8UN+Y701GRgbatm2LBw8eoHPnzujZsyccHR1hYmKCmJgY7Nq1q9J1+7wsXLgQn376KWQyGeLj4zF//nxs2LABb731FjZs2KC07NmzZ3Hz5k306tULNWrUUJoXFBSECxcuICQkBN98843O/VarVg39+vXDhg0bcOHChQql+NClRYsWuHDhAoKDgxEZGYnIyEjUr18ff/zxB7KysvC///1PbVsWHDp0CA8ePECPHj3U5s0H+PgaNWrUwJIlS7Br1y5IpVK0adMGR44cweLFi3Hr1i35PuLj47FgwQKl9b28vOQBUeE8yc7OhouLi9Jy+fn5kEqlas8lfcXExKjs38/PTx7Ud3Bw0DgOSE5OjlIZnyVh3+quewBvS7dv30ZOTo5BQf2IiAgMGzYMHh4eOHr0qNobnpWtkwULFmDhwoUICAjAzp079RoM1sHBAf7+/ti/fz8aNGiAiRMnIi4uDmZmZsjKylJ5DwHjBfV11YmuNlyemZkZfHx8sHTpUhQUFGDlypXo27cv+vbta5TyEkIIIeT5oKA+IYQQQl5IU6dOxU8//YS1a9di6tSpCA0NhUwmU+qtW1paim+++QY1atRATEyMUnCQMYYlS5ZUeP9CkCgtLU3tfGGATkXfffcdiouLcfLkSXTu3Flp3tmzZ+W93SvD3t4eMpkMjx8/Vgmwp6WlQSaTwd7evtL7Kc/Q+jD2e/PXX3/hwYMHKuMbAMCiRYuwa9cuvbdV1Tn1K0osFqNevXpYt24dEhISsHHjRgwbNgyDBw+WLyMMGHvo0CG1g88C/PgWLFigV558V1dXAEBBQUHlD0CDhg0bYuvWrSrThUB2mzZtNK6raYDc8jQFKSdMmACxWCx/UkXovayJj48PoqOjcffuXZWgvrZ8+/qaNGmS1l75Pj4+OHPmDFJTU1VyyBtj/xUlXFPUXfcUpxty7Tlw4ACGDBkCV1dXREZGahy8tTJ1smDBAsyfPx/+/v7Ys2eP/Kaivuzt7dGhQweEhYXh3r17aNSoEerUqaO1DVWGPnWiqw1r07t3b/z666+IioqioD4hhBDykqOgPiGEEEJeSM2aNUPbtm1x+vRp3Lp1C6GhoTAxMUFQUJB8mSdPniA7Oxs9evRQ6e0bHR2tkp7FEA0aNIClpSWio6NRVFSklAZFJpPh9OnTKuvExsbC2dlZJaBfUFCAS5cuqSwv9BjVp6e84I033sDly5cRFRWFkSNHKs07duwYAFRJALpFixYA+EC9//vf/5TmJSQk4OHDh0rTKvLeaKuP2NhYAMDAgQNV5p04ccKAI+FBb6Gu9FGnTp1nEtQXiEQi/PTTT2jVqhU+++wzDBgwACYmJsjPz8fWrVthbW2NMWPGqF337Nmz8gE+9QnanT9/HgDUDkxclXJzc7Fnzx44OzujV69eapdJT0/Hrl274OzsjCFDhhi8j1OnTiE+Ph79+vXTu3e7n58fNm/ejIMHD6qkUIqIiJAvU1X8/Pxw5swZHDx4EBMnTnym+9d2/r3xxhsAoPa6k5SUhNjYWNSrV0/vXvoHDhzA4MGD4ezsLH96Q5OK1sn8+fOxYMEC+Pn5Yd++fXoNoq2OkNZLeLKpqhhSJxX1rI6FEEIIIVVPd/cdQgghhJDnZOrUqQB4L9379++jX79+SqkI3N3dYWVlhUuXLin1NM7MzMTMmTMrtW9zc3OMHDkSaWlpWLZsmdK8NWvWqM2n7+XlhczMTNy4cUM+TSqVYu7cuXj8+LHK8s7OzgCAxMREvcsl3NRYsGCBPPUEwNNQCCkZFG98GEuXLl1Qt25d7N27FydPnpRPZ4zh888/VwkEVuS90VYfXl5eAKC0bwDYtGkTwsPDDTqWqKgoMMb0fj2PfOctW7bE4MGDcevWLWzatAkA8M8//yA3NxcjRozAmjVr1L6+//57AGU93AEeuC8/tgPA892fOnUKjRs3lt+0MbbCwkKUlpYqTSsuLsbUqVORkZGB4OBgteMGAMCGDRsgkUgwfvx4WFhYaNyH4nkgSE5OxrRp02BqaqpXKiLByJEj4eDggJUrVyrdqEpJScGKFSvg6OiIESNG6L09Q02ePBmmpqb47rvvlFLO3LhxA+vXr4e3t7c8xZexaTv/Bg0aBAcHB4SEhChd3xhj+Oyzz1BSUqL3eSIEr52cnBAZGanzyYOK1ElwcDAWLFiArl276gzoFxcX4+zZs2rnhYSE4Pz586hfv36VPiFhaJ1oc/78eRQVFalMT0hIwMKFCwGAeukTQgghrwC6RU8IIYSQF9aYMWPw4Ycf4tSpUwDKgvwCsViM9957D8uWLUOLFi0wYMAA5OTkYP/+/fDy8lLJOW6oRYsW4ciRI5g3bx5OnjyJN954A//99x/Cw8PRu3dvHDx4UGn5mTNn4uDBg+jSpQtGjhwJS0tLREVFISkpCf7+/ioDtHbs2BFWVlZYsWIFcnJy5D3aP/30U41l6tatG2bOnImVK1eiadOmGDZsGBhj2LlzJx4+fIhZs2YpjTlgLGKxGKtXr0a/fv3Qs2dPjBo1CjVq1MDRo0eRkpIiH/RUcXlD35uAgAD88MMPmD59OkaMGAEbGxvUrl0bY8eOxYQJE7B48WLMnDkTkZGR8PLywtWrV3H48GEMHToUO3fuNPoxV9SaNWtw4MABtfP8/f3VDjaqzvz58xEWFoavv/4aY8aMkQfq1Q0YK+jXrx88PDywe/duPH78GG5ubvj4449x69Yt+Pn5wdPTE4WFhThz5gwuX74MJycnbNiwQWMqn/JOnjyJNWvWAID8RtXJkyflAd2GDRsqtd+LFy9i6NCh6NWrFzw9PZGTk4N9+/bhwYMHeOutt7TefNM39c7PP/+MjRs3okuXLnB3d8fDhw+xa9cuFBQU4K+//lI7SLQmTk5OWLVqFSZMmIBWrVph9OjREIvF2Lp1Kx49eoQNGzaoDChsaJ1o4+vri/nz52PevHlo3rw5hg8fjvz8fGzevBklJSX4888/VXpZh4WFyQffjYuLk08TUkx16dJFZx0C2s8/e3t7/PnnnxgzZgzat2+PUaNGwc3NDUeOHEF0dDTatWun8gSPOrdu3cLgwYNRXFwMf39/bN68WWWZ8gMHG1onoaGh+Prrr2Fqaop27dph6dKlKvtQPA8LCwvRsWNHNG3aFC1btkTNmjWRnZ2N8+fP49KlS7C1tUVISIjOY1O0Zs0a+Q3Ia9euyacJnwGDBw+Wp9WqSJ1o8/333+PEiRPw8/ND7dq1YWpqitjYWISHh0MikWDOnDno0qWL0jrGbMOEEEIIeUYYIYQQQsgLbOLEiQwA8/DwYCUlJSrzJRIJ++6775iPjw+zsLBgtWvXZh9++CHLzc1lXl5ezMvLS2n54OBgBoBFRkYqTQfA/Pz8VLafkJDARo0axRwdHZm1tTXr2rUrO3bsmMbtbN++nbVq1YpZW1szV1dXNnLkSBYbG8uCgoIYABYXF6e0/L59+1jbtm2ZlZUVA8AUv55pWocxxtauXcvatm3LrK2tmbW1NWvbti1bu3atynKRkZEMAAsODlaZFxcXxwCwoKAglXmaHD9+nHXr1o1ZWVkxZ2dnNmLECJaQkMD8/PxY+a+Whr43jDG2ZMkS5uPjw8zMzFTek5iYGNa7d2/m5OTE7OzsmJ+fHzt8+DALCQlhAFhISIjex1EVhPdL20vxfRDKvXDhQo3bHDZsGAPAfv/9dwaAeXt76yzHRx99xACwZcuWMcYY+/PPP1mfPn1YrVq1mKWlJbO0tGQNGjRgH3zwAXv48KFBxyiUWdOr/DmUkJDARowYwTw9PZm5uTlzdHRkAQEBbPv27Vr3c+7cOQaAtWvXTmeZjhw5wnr27Mnc3d2ZmZkZq1atGhs1ahS7dOmSQcemaP/+/axbt27M1taW2drasm7durEDBw6oXdbQOtHHxo0bWZs2bZiVlRVzcHBgffr0YefPn1e7rHAt0vQy5PzWdv4xxs//vn37MkdHR2Zubs58fX3Zl19+yfLy8vTavnA9qkh96Vsnuuqj/HkokUjYggULmL+/P6tevTozMzNj1tbWrHHjxmz27NksISFB3+qT03UtUNx/ZepEnT179rDRo0czb29vZmNjw8zMzFjNmjXZkCFDWHh4uNp1qqINE0IIIaRqiRirolF+CCGEEEIIIYQQQgghhBBiVJRTnxBCCCGEEEIIIYQQQgh5SVBQnxBCCCGEEEIIIYQQQgh5SVBQnxBCCCGEEEIIIYQQQgh5SVBQnxBCCCGEEEIIIYQQQgh5SVBQnxBCCCGEEEIIIYQQQgh5SVBQnxBCCCGEEEIIIYQQQgh5SVBQnxBCCCGEEEIIIYQQQgh5SVBQnxBCCCGEEEIIIYQQQgh5SVBQnxBCCCGEEEIIIYQQQgh5SVBQnxBCCCGEEEIIIYQQQgh5SVBQnxBCCCGEEEIIIYQQQgh5SVBQnxBCCCGEEEIIIYQQQgh5SVBQnxBCCCGEEEIIIYQQQgh5SVBQnxBCCCGEEEIIIYQQQgh5SVBQnxBCCCGEEEIIIYQQQgh5SVBQnxBCCCGEEEIIIYQQQgh5SVBQnxBCCCGEEDXq1KkDkUgEkUiEsLAwjcv17NkTIpEIoaGhStNDQ0Pl65ubmyM9PV3jNkpLS+Hu7i5ffv78+WqXi4iIwNChQ1GzZk2Ym5vD0dERDRo0wIABA7Bs2TLExsYqLR8fHy/fpq5XfHy8njWj282bNzF9+nT4+vrCysoKNjY2qFu3Lvz9/fHll1/i9OnTKusI9V2+HjWZNGmSyjGYmZmhevXqGDhwIPbv32+04ynv4sWL8n2OGzdO5/KKZVy5cqXWZefMmSNftk6dOkYqMSGEEEIIeZWYPu8CEEIIIYQQ8qKbP38+Bg0aBJFIVKH1S0pKsHXrVrz33ntq50dERODx48datzFjxgz88ssvAAAbGxv4+PjA2toaCQkJ2Lt3L/bu3YuUlBT88MMPatdv06YNLCwsNG7f0tJSz6PR7u+//8aUKVMgkUhgZmaG2rVrw9nZGWlpaTh27BiOHTuG/fv3Izo62ij7c3d3h4+PDwCgqKgId+7cwZ49e7Bnzx589tln+P77742yH0UbNmyQ/zssLAy5ubmws7PTe92ZM2eqnSeVSrFlyxajlJEQQgghhLy6qKc+IYQQQgghWpiYmODKlSvYsWNHhdb38fGBSCRSCgSXJ8xr0KCB2vmbN2/GL7/8ArFYjJ9++gnp6em4ceMGLly4gLS0NNy4cQNffPEF3N3dNe5j27ZtOHnypMZXtWrVKnR8iuLj4zF16lRIJBJMmTIFiYmJuHfvHs6fP4/4+HikpKRg1apVaNy4caX3Jejbt6/8GKKjo/HkyRPMnTsXALBw4UKcOXPGaPsC+FMVmzdvBgA4OjqioKAAO3fu1GvdBg0a4MKFC7h9+7ba+YcOHUJqaqrGdkAIIYQQQghAQX1CCCGEEEK0GjNmDABgwYIFYIwZvH7t2rXRrVs3nD17Fvfu3VOZn5ubi927d6Nu3bro3Lmz2m2sW7cOADBlyhTMmjVLpcd948aN8e233+Ljjz82uHzGtGXLFhQXF6NBgwb4888/VW4yVKtWDe+//z7Wr19fZWUwNzfHkiVL0LJlS3mZjOngwYNIS0uDp6cnPvvsMwDQesNG0fjx4wEAGzduVDtfmD5hwgQjlJQQQgghhLyqKKhPCCGEEEKIFlOmTEGdOnVw/fp1/PPPPxXahrZg7vbt21FYWIhx48ZpTO9z//59AJAHql9UQjmbNWsGsfj5/dQQiUTo0qULAODu3btG3bYQwB89ejTGjh0LsViMyMhIJCYm6lx32LBhsLKywsaNG1VuEOXn5yMsLEx+E4gQQgghhBBNKKhPCCGEEEKIFmZmZvjiiy8A8N76MpnM4G2MGDEClpaW+Pvvv1XmCYF+IfCvjr29PQDg/PnzBu/7WRLKGRMTg5KSkudaloo8VaFLTk4Odu3aBQAYO3YsatWqhW7dukEmk2HTpk0617ezs8OgQYMQHx+PU6dOKc3buXMn8vPztd7cIYQQQgghBKCgPiGEEEIIITpNmjQJ9erVw3///VehdC4ODg4YMGAA7t27p5TjPTExEVFRUWjXrp3WPOp9+vQBwHuJv/vuu7hw4QKkUqnhB1LFhHLeu3cPffv2xf79+1FQUPDMy8EYkwfN69evb7TtCk9VNG7cWP7UxLhx4wDon4JHSK1Tfnnh/9pu7hBCCCGEEAJQUJ8QQgghhBCdTE1N8eWXXwIAvv766woF1IVgrWIw9++//4ZMJtMZyP3kk0/QunVrMMbw+++/o127drC3t0eXLl3w6aefIjo6Wuf+69atC5FIpPZlrLQ+PXv2xNtvvw0AOHLkCPr16wcHBwe0aNEC77zzDvbu3VvlNyMkEgk+/vhjxMTEAABGjhxptG0L793YsWPl04YPHw5zc3Ncv35dvk9tevfuDXd3d/zzzz8oLi4GAKSkpODo0aNo1aqVUQcRJoQQQgghryYK6hNCCCGEEKKHCRMmwMfHB7dv31abRkeXvn37wtXVFf/88488Nc3GjRthamqK0aNHa13Xzs4OJ0+exLJly9CoUSMAQEFBAU6dOoXFixejbdu2GDx4MLKysjRuo02bNujcubPa1xtvvGHw8Wjyxx9/YMeOHfDz84OJiQlKS0tx9epV/PHHHxgwYABatGiBa9euGW1/+/fvR5cuXdClSxe0adMGrq6u+OGHHwAAc+bMkefWr6yHDx/i2LFjAMoGTwYAR0dH9OvXD4B+vfWF9zsrKwv79u0DAGzatAlSqZQGyCWEEEIIIXqhoD4hhBBCCCF6MDExkffW/+abb1BaWmrQ+mZmZhg5ciTS09MRHh6OmJgYXL9+HYGBgXBzc9O5vqWlJT788EPcvHkTSUlJ2LlzJ+bMmYO6desCAHbt2oWhQ4dqXH/btm04efKk2ldISIhBx6LL0KFDERUVhYyMDBw6dAjffPMN2rVrBwC4ceMGevbsicePHxtlX2lpaTh16hROnTqFmJgYWFpaom/fvvj333+xfPlyo+wDgHxw2w4dOqBevXpK84QUPEJwXpfyT21s2LABJiYmSjcLCCGEEEII0YSC+oQQQgghhOhp7NixaNCgAe7du6d3DnVFQk/sjRs3ygfIrUjv7Bo1amDIkCFYvnw57ty5g48++ggAEBkZqTIA6/Nkb2+Pnj17Yt68eTh37hy2bdsGsViMtLQ0rF692ij7CAoKAmMMjDGUlpYiLS0N4eHhGDx4sFG2L1CXekfw5ptvwt7eHqmpqTh8+LDObbVt2xYNGzZEeHg4jh8/jitXrqBXr17w8PAwapkJIYQQQsiriYL6hBBCCCGE6MnExARfffUVgIr11u/QoQN8fHywZ88ebNy4Efb29hg4cGClymRqaoolS5agWrVqAIDz589XantVafjw4Rg2bBiAF7uc5UVHR+O///4DAMyaNUtlTAIrKyvk5OQA0H/A3PHjx0Mikchv6lDqHUIIIYQQoi8K6hNCCCGEEGKA0aNHo3HjxoiLi0NoaKjB648bNw7FxcV49OgRhg0bBisrq0qXSSwWw8vLCwAfKPZFJqSuedHLqUgI1FtbW8PDw0PtS0ih9O+//yIvL0/nNsePHw+RSIQHDx7A1tbW6E8WEEIIIYSQVxcF9QkhhBBCCDGAWCxGcHAwAODbb7+VD3qrrwkTJqBHjx7o0aMH3nrrLb3WSUtL0zo/KysLN2/eBAD4+PgYVB5j0lVOADh9+jSA51tOQ5SWlmLLli0AgF9++QWpqakaX7Vq1UJBQQF27typc7teXl6YPn06evTogblz58La2rqqD4UQQgghhLwiKKhPCCGEEEKIgUaMGIFmzZohISHB4Bz29erVw+HDh3H48GF07NhRr3X69euHcePG4ejRoyo3EWJiYjBo0CDk5uaievXqCAwMNKg8mkyaNAkikQiTJk3Se53vv/8eXbt2xebNm5Gbm6s0LyUlBe+88w5OnDgBkUiEoKAgo5TTUHXq1IFIJNL7KYuIiAikpaXByspKnjpIHbFYLB/oVt8UPL/99hsOHz4sv0lECCGEEEKIPkyfdwEIIYQQQgh52YhEIgQHB2P48OGQSqVVvj+pVIpNmzZh06ZNsLS0RP369WFpaYnk5GQkJycDABwdHfHPP//AxsZG7TZGjBgBCwsLjftYuHAhunbtWqlyikQinDx5EidPnoRYLIa3tzecnJzw+PFjPHz4EKWlpTAxMcHy5cvRunVrtduYOXMm5s6dq3EfUVFRaNq0aaXKaQghQD948GDY2dlpXXb8+PFYunQpjh49iqSkJNSsWfNZFJEQQgghhLxmKKhPCCGEEEJIBQwdOhQtW7ZETExMle/r4MGDiIiIwP79+3H9+nUkJycjKysLtra2aN++PQIDA/H+++/D3d1d4zaio6O17iM9PV3p/6mpqQCAli1b6l3O77//Hr169cL+/ftx7tw5JCUlIT4+HhYWFvD19UW3bt3w7rvvonnz5hq3kZeXpzUnvaGDEyuSSqV48uQJAKBFixY6l8/JycHu3bsB8IC9Ls2bN0ezZs1w7do1bNq0Cf/73/8qXFZCCCGEEEI0ETHG2PMuBCGEEEIIIeTFIZPJ4OzsDMYYEhMTdfZQf1lcunQJrVu3Rvfu3XH06NHnXRxCCCGEEEIqhHLqE0IIIYQQQpTcuHED2dnZePvtt1+ZgD4A+fgHH3300XMuCSGEEEIIIRVHQX1CCCGEEEKIktOnT8PU1BSzZs163kUxqtOnT6Nhw4bo16/f8y4KIYQQQgghFUbpdwghhBBCCCGEEEIIIYSQlwT11CeEEEIIIYQQQgghhBBCXhIU1CeEEEIIIYQQQgghhBBCXhIU1CeEEEIIIYQQQgghhBBCXhKmz7sAhBBCyKtMJpMhOTkZdnZ2EIlEz7s4hBBCCCGkijHGkJubixo1akAspr6UhBBCjI+C+oQQQkgVSk5Ohqen5/MuBiGEEEIIecYePnyIWrVqPe9iEEIIeQVRUJ8QQgipQnZ2dgD4jzp7e/vnXBpCCCGEEFLVcnJy4OnpKf8eSAghhBgbBfUJIYS8Mn799VcsXboUKSkpaNKkCVasWIGuXbvqXO/UqVPw8/ND06ZNERMTozRvx44d+PLLLxEbGwtvb2989913GDJkiN5lElLu2NvbU1CfEEIIIeQ1QqkXCSGEVBVK7kYIIeSVsHXrVsyePRtffPEFLl++jK5du6Jv37548OCB1vWys7MxceJE9OjRQ2XemTNnMGrUKEyYMAFXrlzBhAkTMHLkSJw7d66qDoMQQgghhBBCCCFEKxFjjD3vQhBCCCGV1b59e7Rq1Qq//fabfFqjRo0wePBgLFy4UON6o0ePho+PD0xMTBAWFqbUU3/UqFHIycnB/v375dP69OkDJycnbN68Wa9y5eTkwMHBAdnZ2dRTnxBCCCHkNUDf/wghhFQ1Sr9DCCHkpSeRSHDx4kV8+umnStN79+6N06dPa1wvJCQEsbGx2LhxI7799luV+WfOnMGcOXOUpgUGBmLFihUat1lcXIzi4mL5/3NycvQ8CkIIIYS8DqRSKUpKSp53MUglmZubQyym5AeEEEKeDwrqE0IIeek9efIEUqkUHh4eStM9PDyQmpqqdp27d+/i008/xYkTJ2Bqqv7jMDU11aBtAsDChQuxYMECA4+AEEIIIa86xhhSU1ORlZX1vItCjEAsFqNu3bowNzd/3kUhhBDyGqKgPiGEkFdG+cHIGGNqByiTSqUYO3YsFixYAF9fX6NsU/DZZ5/hww8/lP8/JycHnp6e+hSfEEIIIa8wIaDv7u4Oa2trGkT1JSaTyZCcnIyUlBTUrl2b3ktCCCHPHAX1CSGEvPRcXV1hYmKi0oM+LS1Npac9AOTm5iI6OhqXL1/GjBkzAPAfZ4wxmJqa4uDBgwgICEC1atX03qbAwsICFhYWRjgqQgghhLwqpFKpPKDv4uLyvItDjMDNzQ3JyckoLS2FmZnZ8y4OIYSQ1wwlgCOEEPLSMzc3R+vWrXHo0CGl6YcOHUKnTp1Ulre3t8e1a9cQExMjf73zzjto0KABYmJi0L59ewBAx44dVbZ58OBBtdskhBBCCNFEyKFvbW39nEtCjEVIuyOVSp9zSQghhLyOqKc+IYSQV8KHH36ICRMmoE2bNujYsSNWr16NBw8e4J133gHA0+IkJSVh/fr1EIvFaNq0qdL67u7usLS0VJr+wQcfoFu3bli8eDEGDRqEXbt24fDhwzh58uQzPTZCCCGEvBooTcurg95LQgghzxMF9QkhhLwSRo0ahfT0dHz99ddISUlB06ZNER4eDi8vLwBASkoKHjx4YNA2O3XqhC1btmDevHn48ssv4e3tja1bt8p78hsiJiYGtra2Bq+nyNXVFbVr167UNgghhBBCCCGEkP+zd+9xVVX5/8ffB5CLFzA5yiVBKDUUKxXzRnQP1KmxtNFMKcZLMpqJNn7VTFO0NDNFyxuNiY5FaJpZmUozmZLWlCPd1DJvmECGjSBeQPH8/uDHqSOgXA4HzuH1fDz2I/baa3/WZ4OPR3t9zjp7w74ZTCaTqbaTAADAUeXl5cnLy8sqsTw8PHTgwAEK+wAA2JkLFy7oyJEjCg4Olru7e22nAyu42t+05P4vNzdXnp6etZQhAMCRsVIfAAAbePDBB+Xn51fl83NycrRhwwbl5ORQ1AcAoJ4qKpJ27pSysiQ/PykiQnJ2ru2sAACArfGiXAAAbMDb21v+/v5V3oxGY21fAgAAqEUbNkhBQdLdd0uPPVb836Cg4vaaYDAYrrrFxMSY+23cuLHU+TExMXrooYfK3T958qRGjhypwMBAubm5ydfXV1FRUdq9e3e5OU2fPt08vpOTk/z9/TV48GAdP37col9QUJASEhJKnZ+QkKCgoKBS8UrewVQiPT1dBoNBR48eLTcXAABqE0V9AAAAAADqsA0bpEcekX7+2bL9xIni9poo7GdlZZm3hIQEeXp6WrQtXLiwWvH79++vr7/+WqtWrdKPP/6oTZs26a677tJvv/121fNCQ0OVlZWln3/+WSkpKfr22281YMCAKufh7u6uFStW6Mcff6xyDAAAbI3H7wAAAAAAUEcVFUljx0plvQ3PZJIMBikuTurb17qP4vH19TX/7OXlJYPBYNFWHadPn1ZaWpq2b9+uO++8U5LUqlUrde3a9Zrnuri4mPPw9/fXiBEj9PTTTysvL69Kz6+/6aab1KJFCz333HNau3Ztpc8HAKA2sFIfAAAAAIA6aufO0iv0/8hkko4fL+5nLxo3bqzGjRtr48aNKigoqHKc7OxsbdiwQc7OznKuxicac+bM0fr16/Xll19WOQYAALZEUR8AAAAAgDoqK8u6/WrCoEGDzIX6ku3NN98st7+Li4uSkpK0atUqNW3aVOHh4Xr22Wf1zTffXHOsb7/9Vo0bN1bDhg3l5+en7du3a/To0WrUqFGV8+/cubMGDBigSZMmVTkGAAC2RFEfAAAAAIA6ys/Puv1qwoIFC5Senm6x/fnPf77qOf3791dmZqY2bdqkqKgobd++XZ07d1ZSUtJVz7vpppuUnp6uL7/8Ui+88II6duyoF154odrXMGvWLO3cuVPbtm2rdiwAAGoaRX0AAAAAAOqoiAipZcviZ+eXxWCQAgKK+9UWX19ftW7d2mJr0qTJNc9zd3fX/fffr2nTpmnXrl2KiYnR888/f9VzXF1d1bp1a4WGhurZZ59Vx44d9be//c2ij6enp3Jzc0ude/r0aXl5eZUZ98Ybb9SIESM0adIkmcp6gQEAAHUIRX0AAAAAAOooZ2dp4cLin68s7JfsJyRY9yW5taV9+/Y6e/Zspc6ZOnWqkpOT9d///tfcFhISUubz8b/88kvddNNN5caaNm2afvzxR7399tuVygEAAFujqA8AAAAAQB3Wr5/0zjvS9ddbtrdsWdzer1/t5FVVp06d0j333KM1a9bom2++0ZEjR7Ru3TrNnTtXffv2rVSsG264QX379tW0adPMbePHj9dHH32k+Ph47du3T/v27dPMmTO1ZcsWPfPMM+XG8vHx0fjx47Vo0aIqXxsAALbgUtsJAAAAAACAq+vXT+rbV9q5s/iluH5+xY/csccV+o0bN1a3bt20YMECHTp0SBcvXlRAQIBGjBihZ599ttLxnnnmGYWHh+uLL75Qt27d1L17d23dulXx8fFKSEiQJIWGhmrr1q3q1q3bVWNNmDBBS5cu1YULF6pyaQAA2ITBxMPiAACoMXl5efLy8lJMTIyCgoKqHCczM1OJiYnas2ePOnfubL0EAQBAjbtw4YKOHDmi4OBgubu713Y6sIKr/U1L7v9yc3Pl6elZSxkCABwZj98BAAAAAAAAAMBOUNQHAAAAAAAAAMBOUNQHAAAAAAAAAMBOUNQHAAAAAAAAAMBOUNQHAAAAAAAAAMBOUNQHAAAAAAAAAMBOUNQHAAAAAAAAAMBOUNQHAAAAAAAAAMBOUNQHADiMJUuWKDg4WO7u7goLC9POnTvL7ZuWlqbw8HB5e3vLw8NDISEhWrBggUWfpKQkGQyGUtuFCxdq+lIAAAAAAADKRFEfAOAQUlJSFBcXpylTpmjv3r2KiIhQ7969lZGRUWb/Ro0a6amnntKOHTu0f/9+Pffcc3ruueeUmJho0c/T01NZWVkWm7u7uy0uCQAAoNbFxMRYLG7w9vZWr1699M0335Tq++STT8rZ2Vlvv/12qWNnz57VxIkTdcMNN8jd3V3NmzfXXXfdpQ8++MDc56677ipzQUVsbKy5j8Fg0MaNG8vMdfv27TIYDDp9+rTFfocOHVRUVGTRt2nTpkpKSjLvBwUFlTn2nDlzKvHbAgDANijqAwAcwvz58zVs2DANHz5c7dq1U0JCggICArR06dIy+3fq1EmDBg1SaGiogoKCNGTIEEVFRZVa3W8wGOTr62uxAQAA2NT06dLMmWUfmzmz+HgN6tWrl3lxw7/+9S+5uLjogQcesOhz7tw5paSkaMKECVqxYkWpGLGxsdq4caNee+01HThwQFu2bFH//v116tQpi34jRowotaBi7ty51cr/0KFDWr169TX7xcfHlxp7zJgx1RobAICa4FLbCQAAUF2FhYXas2ePJk2aZNEeGRmpXbt2VSjG3r17tWvXLs2aNcuiPT8/X61atVJRUZE6duyomTNnqlOnTuXGKSgoUEFBgXk/Ly+vElcCAABQBmdnadq04p+nTv29febM4vb4+Bod3s3NzbywwdfXVxMnTtQdd9yhX3/9Vc2bN5ckrVu3Tu3bt9fkyZPl5+eno0ePKigoyBzj/fff18KFC9WnTx9JxSvjw8LCSo3VsGFDqy+iGDNmjJ5//nkNGjToqt+4bNKkCQs4AAB2gZX6AAC7l5OTo6KiIvn4+Fi0+/j4KDs7+6rntmzZUm5uburSpYtGjx6t4cOHm4+FhIQoKSlJmzZtUnJystzd3RUeHq6DBw+WG2/27Nny8vIybwEBAdW7OAAAgKlTiwv306b9vmL/jwX9Pxb6a1h+fr7efPNNtW7dWt7e3ub2FStWaMiQIfLy8lKfPn20cuVKi/N8fX21efNmnTlzxma5loiLi9OlS5f02muv2XxsAABqAkV9AIDDMBgMFvsmk6lU25V27typr776SsuWLVNCQoKSk5PNx7p3764hQ4bo1ltvVUREhNauXau2bdvq1VdfLTfe5MmTlZuba96OHz9evYsCAACQLAv7bm42Leh/8MEHaty4sRo3bqwmTZpo06ZNSklJkZNTcUnh4MGD+vzzzzVw4EBJ0pAhQ7Ry5UpdvnzZHCMxMVG7du2St7e3brvtNo0bN06fffZZqbGWLFliHqtkW7VqVbXyb9iwoZ5//nnNnj1bubm55fabOHFiqbG3b99erbEBAKgJFPUBAHbPaDTK2dm51Kr8kydPllq9f6Xg4GDdfPPNGjFihMaNG6fpV3kmrZOTk2677barrtR3c3OTp6enxQYAAGAVU6dKrq5SYWHxf220Qv/uu+9Wenq60tPT9cUXXygyMlK9e/fWsWPHJBWv0o+KipLRaJQk9enTR2fPntXHH39sjnHHHXfo8OHD+te//qX+/fvr+++/V0REhGZe8a6AwYMHm8cq2R5++OFqX8OwYcNkNBr10ksvldtnwoQJpcbu1q1btccGAMDaKOoDAOyeq6urwsLClJqaatGempqqnj17VjiOyWSyeB5+WcfT09Pl5+dX5VwBAACqbObM3wv6hYXlvzzXyho1aqTWrVurdevW6tq1q1asWKGzZ8/q9ddfV1FRkVavXq0PP/xQLi4ucnFxUcOGDfXbb7+VemFugwYNFBERoUmTJmnbtm2Kj4/XzJkzVVhYaO7j5eVlHqtks8YiCRcXF82aNUsLFy5UZmZmmX2MRmOpsT08PKo9NgAA1saLcgEADmH8+PGKjo5Wly5d1KNHDyUmJiojI0OxsbGSih+Lc+LECa1evVqStHjxYgUGBiokJESSlJaWpnnz5mnMmDHmmDNmzFD37t3Vpk0b5eXladGiRUpPT9fixYttf4EAAKB+u/IZ+iX7kk2fqS8VP/LQyclJ58+fNz8nf+/evXJ2djb3OXDggAYPHqxTp05ZPHv/j9q3b69Lly7pwoULcnV1rfG8//KXv+jll1/WjBkzanwsAABqEkV9AIBDGDhwoE6dOqX4+HhlZWWpQ4cO2rx5s1q1aiVJysrKUkZGhrn/5cuXNXnyZB05ckQuLi668cYbNWfOHI0cOdLc5/Tp03ryySeVnZ0tLy8vderUSTt27FDXrl1tfn0AAKAeK+uluCX/tUFhv6CgwPyYw//973967bXXlJ+frwcffFAJCQn605/+pFtvvdXinNDQUMXFxWnNmjUaO3as7rrrLg0aNEhdunSRt7e39u3bp2effVZ33323xUr8c+fOlXqkopubm6677jrz/pEjR5Senm7Rp3Xr1hW6ljlz5igqKqrMY2fOnCk1dsOGDXmcIgCgzqGoDwBwGKNGjdKoUaPKPJaUlGSxP2bMGItV+WVZsGCBFixYYK30AAAAqqaoqOyX4pbsFxXV6PBbtmwxP36wSZMmCgkJ0bp169SuXTt9+OGHeuutt0qdYzAY1K9fP61YsUJjx45VVFSUVq1apWeffVbnzp2Tv7+/HnjgAU0r+VDi/3v99df1+uuvW7RFRUVpy5Yt5v3x48eXGu+TTz6p0LXcc889uueee7Rt27ZSx6ZNm1Yqn5EjR2rZsmUVig0AgK0YTCaTqbaTAADAUeXl5cnLy0sxMTEKCgqqcpzMzEwlJiZqz5496ty5s/USBAAANe7ChQs6cuSIgoOD5e7uXtvpwAqu9jctuf/Lzc1llT8AoEbwolwAAAAAAAAAAOwERX0AAAAAAAAAAOwERX0AAAAAAAAAAOwERX0AAAAAAAAAAOwERX0AAAAAAAAAAOwERX0AAAAAAAAAAOwERX0AAAAAAAAAAOwERX0AAAAAAAAAAOwERX0AAAAAAAAAAOyES20nAAAAAABAfWS6cF66eNF2AzZoIIO7h+3GAwAANYKiPgAAAAAANma6cF6Xd6TKdO6szcY0NGwkpzvur1RhPyYmRqdPn9bGjRtLHQsKCtKxY8dKtc+ePVuTJk3S0aNHFRwcrObNm+vQoUNq0qSJuU/Hjh310EMPafr06ZKkw4cPa8qUKfr000/122+/yWg0KiwsTC+//LLatm2ro0ePaubMmfr3v/+t7Oxs+fv7a8iQIZoyZYpcXV0r/bsAAMCeUdQHAAAAAMDWLl4sLui7NJAa2KAofbGweLyLFyUrrtaPj4/XiBEjLNr+WLyXpDNnzmjevHmaMWNGmTEKCwt1//33KyQkRBs2bJCfn59+/vlnbd68Wbm5uZKkAwcO6PLly1q+fLlat26t7777TiNGjNDZs2c1b948q10PAAD2gKI+AAAAAAC1pYGrDG5uNT6MSZIuWf9RP02aNJGvr+9V+4wZM0bz58/X6NGj1aJFi1LH9+3bp8OHD+vf//63WrVqJUlq1aqVwsPDzX169eqlXr16mfdvuOEG/fDDD1q6dClFfQBAvcOLcgEAAAAAQI0ZNGiQWrdurfj4+DKPN2/eXE5OTnrnnXdUVFRU4bi5ublq1qyZtdIEAMBuUNQHAAAAAABVMnHiRDVu3Nhi2759u0Ufg8GgOXPmKDExUYcOHSoV4/rrr9eiRYs0bdo0XXfddbrnnns0c+ZMHT58uNxxDx06pFdffVWxsbHWviQAAOo8ivoAAAAAAKBKJkyYoPT0dIutW7dupfpFRUXp9ttv19SpU8uMM3r0aGVnZ2vNmjXq0aOH1q1bp9DQUKWmppbqm5mZqV69eukvf/mLhg8fbvVrAgCgrqOoDwAAAAAAqsRoNKp169YWm4dH2S/inTNnjlJSUrR3794yjzdp0kR//vOf9cILL+jrr79WRESEZs2aZdEnMzNTd999t3r06KHExESrXw8AAPaAoj4AAAAAAKhxXbt2Vb9+/TRp0qRr9jUYDAoJCdHZs2fNbSdOnNBdd92lzp07a+XKlXJyoqQBAKifXGo7AQAAAAAAUHfl5uYqPT3doq3kBbVnzpxRdna2xbGGDRvK09OzzFgvvPCCQkND5eLyezkiPT1dzz//vKKjo9W+fXu5urrq008/1RtvvKGJEydKKl6hf9dddykwMFDz5s3Tr7/+aj7f19fXGpcJAIDdoKgPAAAAAEBtuVgok43Gqart27erU6dOFm1PPPGEJGnatGmaNm2axbGRI0dq2bJlZcZq27athg4davHonJYtWyooKEgzZszQ0aNHZTAYzPvjxo2TJG3btk0//fSTfvrpJ7Vs2dIipslkk98gAAB1Bt9VAwA4jCVLlig4OFju7u4KCwvTzp07y+2blpam8PBweXt7y8PDQyEhIVqwYEGpfuvXr1f79u3l5uam9u3b6913363JSwAAAPVFgwYyNGwkXboonT9b89uli8XjNWhQqTSTkpJkMplKbUlJSTp69GiZx0oK+kFBQTKZTOrYsaNFzOXLl8tkMmn69OmSip/Lv3DhQn377bc6c+aM8vLy9M033+iZZ54xP2InJiamzLEo6AMA6iNW6gMAHEJKSori4uK0ZMkShYeHa/ny5erdu7f27dunwMDAUv0bNWqkp556SrfccosaNWqktLQ0jRw5Uo0aNdKTTz4pSdq9e7cGDhyomTNn6uGHH9a7776rAQMGKC0tTd26dbP1JQIAAAdicPeQ0x33Sxcv2m7QBg1kcC/7JbYAAMB+GEx8rA0AcADdunVT586dtXTpUnNbu3bt9NBDD2n27NkVitGvXz81atRI//znPyVJAwcOVF5enj766CNzn169eum6665TcnJyhWLm5eXJy8tLMTExCgoKqvgFXSEzM1OJiYnas2ePOnfuXOU4AADA9i5cuKAjR46Yv1EI+3e1v2nJ/V9ubm657xYAAKA6ePwOAMDuFRYWas+ePYqMjLRoj4yM1K5duyoUY+/evdq1a5fuvPNOc9vu3btLxYyKirpqzIKCAuXl5VlsAAAAAAAA1kJRHwBg93JyclRUVCQfHx+Ldh8fH2VnZ1/13JYtW8rNzU1dunTR6NGjNXz4cPOx7OzsSsecPXu2vLy8zFtAQEAVrggAAAAAAKBsFPUBAA7DYDBY7JtMplJtV9q5c6e++uorLVu2TAkJCaUeq1PZmJMnT1Zubq55O378eCWvAgAAAAAAoHy8KBcAYPeMRqOcnZ1LraA/efJkqZX2VwoODpYk3Xzzzfrll180ffp0DRo0SJLk6+tb6Zhubm5yc3OrymUAAAAAAABcEyv1AQB2z9XVVWFhYUpNTbVoT01NVc+ePSscx2QyqaCgwLzfo0ePUjG3bdtWqZgAAAAAAADWxEp9AIBDGD9+vKKjo9WlSxf16NFDiYmJysjIUGxsrKTix+KcOHFCq1evliQtXrxYgYGBCgkJkSSlpaVp3rx5GjNmjDnm2LFjdccdd+ill15S37599d577+njjz9WWlqa7S8QAAAAAABAFPUBAA5i4MCBOnXqlOLj45WVlaUOHTpo8+bNatWqlSQpKytLGRkZ5v6XL1/W5MmTdeTIEbm4uOjGG2/UnDlzNHLkSHOfnj176u2339Zzzz2nqVOn6sYbb1RKSoq6detm8+sDAAAAAACQJIPJZDLVdhIAADiqvLw8eXl5KSYmRkFBQVWOk5mZqcTERO3Zs0edO3e2XoIAAKDGXbhwQUeOHFFwcLDc3d3N7RkZGcrJybFZHkajUYGBgTYbz5GV9zeVfr//y83NlaenZy1lCABwZKzUBwAAAADAxjIyMhQSEqLz58/bbEwPDw8dOHCg0oX97OxsvfDCC/rwww914sQJtWjRQh07dlRcXJzuvfdeBQUF6dixY0pOTtajjz5qcW5oaKj27dunlStXKiYmRpIUFBSkuLg4xcXFmfePHTtmzvGGG27QmDFjLL5BWVBQoPj4eK1Zs0bZ2dlq2bKlpkyZoqFDh1b9FwIAgJ2iqA8AAAAAgI3l5OTo/Pnz6tevn4xGo03G27Bhg3JycipV1D969KjCw8PVtGlTzZ07V7fccosuXryorVu3avTo0Tpw4IAkKSAgQCtXrrQo6n/++efKzs5Wo0aNrjlOfHy8RowYofz8fCUlJSk2NlZNmzbVwIEDJUkDBgzQL7/8ohUrVqh169Y6efKkLl26VMnfAgAAjoGiPgAAAAAAtcRoNMrf37+20yjXqFGjZDAY9J///MeiOB8aGmqxSn7w4MFasGCBjh8/roCAAEnSG2+8ocGDB2v16tXXHKdJkyby9fWVJM2aNUtr167Vxo0bNXDgQG3ZskWffvqpDh8+rGbNmklStR5rCACAvXOq7QQAAAAAAEDd89tvv2nLli0aPXp0mavtmzZtav7Zx8dHUVFRWrVqlSTp3LlzSklJqfLjcdzd3XXx4kVJ0qZNm9SlSxfNnTtX119/vdq2bau///3vNn10EQAAdQlFfQAAAAAAUMpPP/0kk8mkkJCQCvUfOnSokpKSZDKZ9M477+jGG29Ux44dKzXmpUuXlJSUpG+//Vb33nuvJOnw4cNKS0vTd999p3fffVcJCQl65513NHr06MpeEgAADoGiPgAAAAAAKMVkMkmSDAZDhfr/6U9/Un5+vnbs2KE33nijUqv0J06cqMaNG8vDw0OjR4/WhAkTzC/KvXz5sgwGg95880117dpVffr00fz585WUlMRqfQBAvURRHwAAAAAAlNKmTRsZDAbt37+/Qv1dXFwUHR2t559/Xl988YUGDx5c4bEmTJig9PR0HTt2TPn5+Zo7d66cnIpLFn5+frr++uvl5eVl7t+uXTuZTCb9/PPPlbsoAAAcAEV9AAAAAABQSrNmzRQVFaXFixfr7NmzpY6fPn26VNvQoUP16aefqm/fvrruuusqPJbRaFTr1q3l7+9f6psB4eHhyszMVH5+vrntxx9/lJOTk1q2bFnxCwIAwEFQ1AcAAAAAAGVasmSJioqK1LVrV61fv14HDx7U/v37tWjRIvXo0aNU/3bt2iknJ0crV660Wg6PPfaYvL299de//lX79u3Tjh07NGHCBA0dOlQeHh5WGwcAAHvhUtsJAAAAAABQX+Xk5NTpcYKDg/Xf//5XL7zwgp555hllZWWpefPmCgsL09KlS8s8x9vbuzqpltK4cWOlpqZqzJgx6tKli7y9vTVgwADNmjXLquMAAGAvKOoDAAAAAGBjRqNRHh4e2rBhg83G9PDwkNForPR5fn5+eu211/Taa6+Vefzo0aNXPf/Kx/Rc2f9a50tSSEiIUlNTr9kPAID6gKI+AAAAAAA2FhgYqAMHDthspb5U/EFCYGCgzcYDAAA1g6I+AAAAAAC1IDAwkCI7AACoNF6UCwAAAAAAAACAnaCoDwAAAAAAAACAnaCoDwAAAAAAAACAnaCoDwAAAACADVy+fLm2U4CVmEym2k4BAFCP8aJcAAAAAABqkKurq5ycnJSZmanmzZvL1dVVBoOhttNCFZlMJv36668yGAxq0KBBbacDAKiHKOoDAAAAAFCDnJycFBwcrKysLGVmZtZ2OrACg8Ggli1bytnZubZTAQDUQxT1AQAAAACoYa6urgoMDNSlS5dUVFRU2+mgmho0aEBBHwBQayjqAwAcxpIlS/Tyyy8rKytLoaGhSkhIUERERJl9N2zYoKVLlyo9PV0FBQUKDQ3V9OnTFRUVZe6TlJSkv/71r6XOPX/+vNzd3WvsOgAAgGMqeVwLj2wBAADVwYtyAQAOISUlRXFxcZoyZYr27t2riIgI9e7dWxkZGWX237Fjh+6//35t3rxZe/bs0d13360HH3xQe/futejn6emprKwsi42CPgAAAAAAqC2s1AcAOIT58+dr2LBhGj58uCQpISFBW7du1dKlSzV79uxS/RMSEiz2X3zxRb333nt6//331alTJ3O7wWCQr69vjeYOAAAAAABQUazUBwDYvcLCQu3Zs0eRkZEW7ZGRkdq1a1eFYly+fFlnzpxRs2bNLNrz8/PVqlUrtWzZUg888ECplfxXKigoUF5ensUGAAAAAABgLRT1AQB2LycnR0VFRfLx8bFo9/HxUXZ2doVivPLKKzp79qwGDBhgbgsJCVFSUpI2bdqk5ORkubu7Kzw8XAcPHiw3zuzZs+Xl5WXeAgICqnZRAAAAAAAAZaCoDwBwGAaDwWLfZDKVaitLcnKypk+frpSUFLVo0cLc3r17dw0ZMkS33nqrIiIitHbtWrVt21avvvpqubEmT56s3Nxc83b8+PGqXxAAAAAAAMAVeKY+AMDuGY1GOTs7l1qVf/LkyVKr96+UkpKiYcOGad26dbrvvvuu2tfJyUm33XbbVVfqu7m5yc3NreLJAwAAAAAAVAIr9QEAds/V1VVhYWFKTU21aE9NTVXPnj3LPS85OVkxMTF666239Kc//ema45hMJqWnp8vPz6/aOQMAAAAAAFQFRX0AgE0sWrRI//nPfyzaTp48qW+++abM/u+9956GDh1a4fjjx4/XP/7xD73xxhvav3+/xo0bp4yMDMXGxkoqfizO448/bu6fnJysxx9/XK+88oq6d++u7OxsZWdnKzc319xnxowZ2rp1qw4fPqz09HQNGzZM6enp5pgAAAAAAAC2RlEfAGATcXFx2rJli0Xb0qVL1alTpzL7p6ena9WqVRWOP3DgQCUkJCg+Pl4dO3bUjh07tHnzZrVq1UqSlJWVpYyMDHP/5cuX69KlSxo9erT8/PzM29ixY819Tp8+rSeffFLt2rVTZGSkTpw4oR07dqhr166VuXQAAAAAAACr4Zn6AACHMWrUKI0aNarMY0lJSRb727dvv2a8BQsWaMGCBVbIDAAAAAAAwDpYqQ8AAAAAAAAAgJ2gqA8AAAAAAAAAgJ2gqA8AAAAAAAAAgJ2gqA8AAAAAAAAAgJ3gRbkAAJv57rvvtHbtWot9SVq3bp1MJlOpvgAAAAAAALBEUR8AYDPr16/X+vXrzfslhfxHH320VF+TySSDwWCz3AAAAAAAAOwBRX0AgE08//zztZ0CAAAAAACA3aOoDwCwCYr6AAAAAAAA1ceLcgEAAAAAAAAAsBOs1AcA1Anp6en65JNPJEm33367brvttlrOCAAAAAAAoO5hpT4AwCZ27Nihxx9/XJ9//nmpY88995zCwsL097//XX//+9/VvXt3jRkzphayBAAAAAAAqNso6gMAbCIlJUXr1q1T+/btLdo/+eQTvfjii3J2dlZ0dLRiY2NlNBq1ZMkSbdy4sXaSBQAAAAAAqKMo6gMAbGL37t3q1q2bPD09LdqXL18ug8GgZcuWKSkpSYsXL9bOnTvVoEEDJSUl1U6yAAAAAAAAdRRFfQCATWRmZqpt27al2j/55BN5enoqJibG3Na2bVv16dNHX331lQ0zBAAAAAAAqPso6gMAbOJ///ufjEajRdvPP/+sX3/9VbfffrucnCz/l9S6dWvl5OTYMkUAAAAAAIA6j6I+AMAmmjRposzMTIu2PXv2SJLCwsJK9TcYDHJ3d7dJbgAAAAAAAPaCoj4AwCZuueUWffDBBzp79qy57d1335XBYNAdd9xRqv+hQ4fk7+9vyxQBAAAAAADqPIr6AACbGDp0qH777TfdeeedWrRokZ5++mmtWbNGAQEBuuuuuyz6FhUVaceOHbr55ptrJ1kAAAAAAIA6yqW2EwAA1A9DhgzRv/71L61atUp79+6VyWRSkyZN9Prrr5d6nv6HH36onJwcRUVF1VK2AAAAAAAAdRNFfQCAzaxcuVLDhg3T7t271axZM0VFRally5al+rm5uWnBggXq27dvLWQJAAAAAABQd/H4HQCATd1+++2aMGGChg0bVmZBX5KioqI0duxYeXt7Vyr2kiVLFBwcLHd3d4WFhWnnzp3l9t2wYYPuv/9+NW/eXJ6enurRo4e2bt1aqt/69evVvn17ubm5qX379nr33XcrlRMAAAAAAIA1UdQHADiElJQUxcXFacqUKdq7d68iIiLUu3dvZWRklNl/x44duv/++7V582bt2bNHd999tx588EHt3bvX3Gf37t0aOHCgoqOj9fXXXys6OloDBgzQF198YavLAgAAAAAAsGAwmUym2k4CAOD41q5dW6XzBgwYUKF+3bp1U+fOnbV06VJzW7t27fTQQw9p9uzZFYoRGhqqgQMHatq0aZKkgQMHKi8vTx999JG5T69evXTdddcpOTm5QjHz8vLk5eWlmJgYBQUFVeicsmRmZioxMVF79uxR586dqxwHAAAANavk/i83N1eenp61nQ4AwAHxTH0AgE08+uijMhgMFe5vMplkMBgqVNQvLCzUnj17NGnSJIv2yMhI7dq1q0LjXb58WWfOnFGzZs3Mbbt379a4ceMs+kVFRSkhIaHcOAUFBSooKDDv5+XlVWh8AAAAAACAiqCoDwCwGRcXF/Xp00cdO3a0atycnBwVFRXJx8fHot3Hx0fZ2dkVivHKK6/o7NmzFh8iZGdnVzrm7NmzNWPGjEpkDwAAAAAAUHEU9QEANvHQQw/pww8/1KZNm3Ts2DENHTpUgwcP1nXXXWe1Ma78JkDJav9rSU5O1vTp0/Xee++pRYsW1Yo5efJkjR8/3ryfl5engICAiqQPAAAAAABwTbwoFwBgExs2bNCJEyf08ssv69KlS3r66afl7++vQYMGKTU1tVqxjUajnJ2dS62gP3nyZKmV9ldKSUnRsGHDtHbtWt13330Wx3x9fSsd083NTZ6enhYbAAAAAACAtVDUBwDYjNFo1Pjx4/XNN9/o888/1+OPP64tW7aoV69eCgwM1LRp03T48OFKx3V1dVVYWFipDwdSU1PVs2fPcs9LTk5WTEyM3nrrLf3pT38qdbxHjx6lYm7btu2qMQEAAAAAAGoSRX0AQK3o2rWrli9frqysLCUlJal169Z64YUX1LZtW3388ceVjjd+/Hj94x//0BtvvKH9+/dr3LhxysjIUGxsrKTix+I8/vjj5v7Jycl6/PHH9corr6h79+7Kzs5Wdna2cnNzzX3Gjh2rbdu26aWXXtKBAwf00ksv6eOPP1ZcXFy1rx8AAAAAAKAqKOoDAGqVu7u7IiMj1atXL/n5+eny5cs6d+5cpeMMHDhQCQkJio+PV8eOHbVjxw5t3rxZrVq1kiRlZWUpIyPD3H/58uW6dOmSRo8eLT8/P/M2duxYc5+ePXvq7bff1sqVK3XLLbcoKSlJKSkp6tatW/UvHAAAAAAAoAoMJpPJVNtJAADqn6KiIn3wwQd644039NFHH6moqEgdO3bU0KFDFRMTo0aNGtV2ilaRl5cnLy8vxcTEKCgoqMpxMjMzlZiYqD179qhz587WSxAAAABWVXL/l5uby/uVAAA1wqW2EwAA1C/79u3TG2+8oTVr1ujkyZPy9vbWqFGjNHToUN1yyy21nV6dt3///mrHMBqNCgwMtEI2AAAAAADA1ijqAwBsIjExUW+88Ya+/PJLGQwGRUZGaujQoerbt68aNGhQ2+nVefn5+TIYDBoyZEi1Y3l4eOjAgQMU9gEAAAAAsEMU9QEANhEbG6sGDRrowQcf1BNPPKHrr79ekrR3796rnte1a1dbpFfnXbhwQSaTSf369ZPRaKxynJycHG3YsEE5OTkU9QEAAAAAsEMU9QEANnPx4kW9//77ev/99yt8TlFRUQ1mZH+MRqP8/f1rOw0AAAAAAFBLKOoDAGziiSeeqO0UAAAAAAAA7B5FfQCATaxcubK2UwAAAAAAALB7TrWdAAAAAAAAAAAAqBhW6gMAbGLUqFFVOm/JkiVWzgQAAAAAAMB+UdQHANjEsmXLKtzXYDCYf6aoDwAAAAAA8DuK+gAAm/jkk08q1C8jI0Px8fE6dOiQRXEfAAAAAAAAFPUBADZy5513XvX4//73P7344otavHixLly4oB49euill16yUXYAAAAAAAD2gaI+AKBWXbhwQQkJCZo7d65Onz6tkJAQvfjii3rooYdqOzUAAAAAAIA6x6m2EwAA1E8mk0n/+Mc/1KZNGz377LNq2LChEhMT9d1331HQBwAAAAAAKAcr9QEANrdx40Y9++yz+uGHH+Tp6akXX3xRcXFxcnd3r+3UAAAAAAAA6jSK+gAAm0lLS9PEiRP1+eefy9XVVePGjdOUKVN03XXX1XZqAAAAAAAAdoGiPgDAJv785z/rww8/lJOTk5544gnFx8erZcuWtZ0WAAAAAACAXaGoDwCwiQ8++EAGg0GBgYHKzs7Wk08+ec1zDAaDPvzwQxtkBwAAAAAAYB8o6gMAbMZkMunIkSM6cuRIhfobDIYazggAAAAAAMC+UNQHANhERQv5AAAAAAAAKB9FfQCATbRq1aq2UwAAAAAAALB7TrWdAAAA1rJkyRIFBwfL3d1dYWFh2rlzZ7l9s7Ky9Nhjj+mmm26Sk5OT4uLiSvVJSkqSwWAotV24cKEGrwIAAAAAAKB8FPUBAA4hJSVFcXFxmjJlivbu3auIiAj17t1bGRkZZfYvKChQ8+bNNWXKFN16663lxvX09FRWVpbF5u7uXlOXAQAAAAAAcFUU9QEADmH+/PkaNmyYhg8frnbt2ikhIUEBAQFaunRpmf2DgoK0cOFCPf744/Ly8io3rsFgkK+vr8UGAAAAAABQWyjqAwDsXmFhofbs2aPIyEiL9sjISO3atatasfPz89WqVSu1bNlSDzzwgPbu3XvV/gUFBcrLy7PYAAAAAAAArIWiPgDA7uXk5KioqEg+Pj4W7T4+PsrOzq5y3JCQECUlJWnTpk1KTk6Wu7u7wsPDdfDgwXLPmT17try8vMxbQEBAlccHAAAAAAC4EkV9AIDDMBgMFvsmk6lUW2V0795dQ4YM0a233qqIiAitXbtWbdu21auvvlruOZMnT1Zubq55O378eJXHBwAAAAAAuJJLbScAAEB1GY1GOTs7l1qVf/LkyVKr96vDyclJt91221VX6ru5ucnNzc1qYwIAAAAAAPwRK/UBAHbP1dVVYWFhSk1NtWhPTU1Vz549rTaOyWRSenq6/Pz8rBYTAAAAAACgMlipDwBwCOPHj1d0dLS6dOmiHj16KDExURkZGYqNjZVU/FicEydOaPXq1eZz0tPTJRW/DPfXX39Venq6XF1d1b59e0nSjBkz1L17d7Vp00Z5eXlatGiR0tPTtXjxYptfHwAAAAAAgERRHwDgIAYOHKhTp04pPj5eWVlZ6tChgzZv3qxWrVpJkrKyspSRkWFxTqdOncw/79mzR2+99ZZatWqlo0ePSpJOnz6tJ598UtnZ2fLy8lKnTp20Y8cOde3a1WbXBQAAAAAA8EcU9QEADmPUqFEaNWpUmceSkpJKtZlMpqvGW7BggRYsWGCN1AAAAAAAAKyCZ+oDAAAAAAAAAGAnKOoDAAAAAAAAAGAnKOoDAAAAAAAAAGAnKOoDAAAAAAAAAGAnKOoDAAAAAAAAAGAnKOoDAAAAAAAAAGAnKOoDAAAAAAAAAGAnKOoDAAAAAAAAAGAnXGo7AQAAYHv79++vdoyCggK5ublVK4bRaFRgYGC1cwEAAAAAoL6gqA8AQD2Sn58vg8GgIUOGVDuWwWCQyWSqVgwPDw8dOHCAwj4AAAAAABVEUR8AgHrkwoULMplM6tevn4xGY5XjHDx4UJ988km14uTk5GjDhg3KycmhqA8AAAAAQAVR1AcAoB4yGo3y9/ev8vk5OTlWiQMAAAAAACqHF+UCAAAAAAAAAGAnWKkPAABqlTVe2ssLdwEAAAAA9QVFfQAAUCus+dJeXrgLAAAAAKgvKOoDAIBaYa2X9vLCXQAAAABAfUJRHwAA1CpetgsAAAAAQMXxolwAAAAAAAAAAOwERX0AAAAAAAAAAOwERX0AAAAAAAAAAOwERX0AgMNYsmSJgoOD5e7urrCwMO3cubPcvllZWXrsscd00003ycnJSXFxcWX2W79+vdq3by83Nze1b99e7777bg1lDwAAAAAAcG0U9QEADiElJUVxcXGaMmWK9u7dq4iICPXu3VsZGRll9i8oKFDz5s01ZcoU3XrrrWX22b17twYOHKjo6Gh9/fXXio6O1oABA/TFF1/U5KUAAAAAAACUi6I+AMAhzJ8/X8OGDdPw4cPVrl07JSQkKCAgQEuXLi2zf1BQkBYuXKjHH39cXl5eZfZJSEjQ/fffr8mTJyskJESTJ0/Wvffeq4SEhBq8EgAAAAAAgPK51HYCAABUV2Fhofbs2aNJkyZZtEdGRmrXrl1Vjrt7926NGzfOoi0qKuqqRf2CggIVFBSY9/Py8qo8Pipn//791Y5hNBoVGBhohWwAAAAAAKgZFPUBAHYvJydHRUVF8vHxsWj38fFRdnZ2leNmZ2dXOubs2bM1Y8aMKo+JysvPz5fBYNCQIUOqHcvNzU3r16+Xn59fteLw4QAAAAAAoKZQ1AcAOAyDwWCxbzKZSrXVdMzJkydr/Pjx5v28vDwFBARUKwdc3YULF2QymdSvXz8ZjcYqx8nIyNDWrVv1wAMPVDsnDw8PHThwgMI+AAAAAMDqKOoDAOye0WiUs7NzqRX0J0+eLLXSvjJ8fX0rHdPNzU1ubm5VHhNVZzQa5e/vX+Xzc3JyrPLhQE5OjjZs2KCcnByK+gAAAAAAq6OoDwCwe66urgoLC1Nqaqoefvhhc3tqaqr69u1b5bg9evRQamqqxXP1t23bpp49e1YrX9Rt1f1wAAAAAACAmkRRHwDgEMaPH6/o6Gh16dJFPXr0UGJiojIyMhQbGyup+LE4J06c0OrVq83npKenSyp+Jvuvv/6q9PR0ubq6qn379pKksWPH6o477tBLL72kvn376r333tPHH3+stLQ0m18fAAAAAACARFEfAOAgBg4cqFOnTik+Pl5ZWVnq0KGDNm/erFatWkmSsrKylJGRYXFOp06dzD/v2bNHb731llq1aqWjR49Kknr27Km3335bzz33nKZOnaobb7xRKSkp6tatm82uC/Zr//791Y7BC3cBAAAAAFeiqA8AcBijRo3SqFGjyjyWlJRUqs1kMl0z5iOPPKJHHnmkuqmhHsnPz5fBYNCQIUOqHYsX7gIAAAAArkRRHwAAwIouXLjAC3cBAAAAADWGoj4AAEAN4IW7AAAAAICaQFEfAACgDqvus/l5Lj8AAAAAOBaK+gAAAHWQtZ7Nz3P5AQAAAMCxUNQHAACog6zxbH6eyw8AAAAAjoeiPgAAQB3Gs/kBAAAAAH/kVNsJAAAAAAAAAACAimGlPgAANtDEyaBGulzl85u6OMu3cSN5OlCcupSLo8bxdDLIt3EjHfn2G7lcOF/lXCSpWbNmuv7666sVAwCA+sB0Jq+2UwAAODiDyWQy1XYSAAA4qry8PHl5eemjsSPV/DqvKsf532+ndSzjmNq2bauGDT0cIk5dysVR4+TlntHhI4ernMMfOTs76+GHHlajxo2sEg8AAEeVd+6cvAcPV25urjw9PWs7HQCAA2KlPgAANnDRJJ2Tocrnnykq0qlz53X2sklykDh1KRdHjXO6sFCnzp1XmzZt5OFR9Q8Yzp8/r4MHD+p4To6aVXM9iIeHh5o0ocABAHBghRdrOwMAgIOjqA8AgA0Umky6WI0C74XLJuUXXlSBSXJ1kDh1KRdHjVMSw8ndQ66NG1c5lzMFhcovvKi1722qcowSzs7OGjhggBo3aVKtOEWXLsnZpXq3sg0bNpSXV9W/QQMAQJlcXGs7AwCAg6OoDwAAgKu6dOmSJKldu3Zq2LBhlePk5ubqp59+0lvJydZKrVqs9QEDHw4AAAAAsCWK+gAAAKiQhg0bqkmTqq/4P3funKTqfzhw6tQpHT16tFpxrPkBQ1369oHEhwwAAACAo6OoDwAAAJuy1ocD1YljrQ8Y6tq3DyS+gQAAAAA4Oor6AAAAqLcc6dsHknU/ZHBxcdFTTz1FYR8AAACoYyjqAwAAANVUF7598Mc41f1w4Ny5c9q/f78yjh2TsXnzKsdhtT8AAABgfRT1AQCwAVeDQQ1kqvL57k4GNXZtIDeDHCZOXcrFUePUpVzqWpy6lEtNxLmuUUM1atyoynEMFy+qsWsDbfvwgyrHkCRnZxcNHfpXNWniWa04AGBXLhXWdgYAAAdHUR8AABtoYJAaVqNQ18TZWd4NPdTIyeAwcepSLo4apy7lUtfi1KVc6mKcApnk3dBDrQJbyc3drWoxLhToWMYxXcw9Lbk4VzkXALA7ly7WdgYAAAdHUR8AABvYfKZQgde5V/n8/dn/0+aP0zTEN0g+Da9ziDh1KRdHjVOXcqlrcepSLnU6zpAg+TSrWpxf8n7Rmo/T1PShR9WmRWCVc5GkZs2a6frrr69WDACwFee8vNpOAQDg4CjqAwBgA2cum3RWTlU+//SlImXnn1XeZZMaO0icupSLo8apS7nUtTh1KRdHjZOZd0a/nD2nR2L+WuU8Sri5uWn9+vXy8/OrVpyCggK5uVXtmwd/ZDQaFRhYvQ8qADguQ9W/KAUAQIVQ1AcAOIwlS5bo5ZdfVlZWlkJDQ5WQkKCIiIhy+3/66acaP368vv/+e/n7++v//u//FBsbaz6elJSkv/61dDHq/Pnzcnev+qp7AKgPLly4IJPJpH79+sloNFY5TkZGhrZu3aoHHnig2jkZDAaZTNWvtnl4eOjAgQMU9gEAAFArKOoDABxCSkqK4uLitGTJEoWHh2v58uXq3bu39u3bV2bR5ciRI+rTp49GjBihNWvW6LPPPtOoUaPUvHlz9e/f39zP09NTP/zwg8W5FPQBoOKMRqP8/f2rfH5OTo5VPhw4ePCgPvnkk2rHycnJ0YYNG7Rz5061a9euynFY7Q8AAICqoqgPAHAI8+fP17BhwzR8+HBJUkJCgrZu3aqlS5dq9uzZpfovW7ZMgYGBSkhIkCS1a9dOX331lebNm2dR1DcYDPL19bXJNQAAymeNDwesESc/P18Gg0FDhgypcgyJRwoBAACg6ijqAwDsXmFhofbs2aNJkyZZtEdGRmrXrl1lnrN7925FRkZatEVFRWnFihW6ePGiGjRoIKm4eNOqVSsVFRWpY8eOmjlzpjp16lRuLgUFBSooKDDv5/GiNABwKNZ4rFBdfKSQtT5k4MMBAACAmkdRHwBg93JyclRUVCQfHx+Ldh8fH2VnZ5d5TnZ2dpn9L126pJycHPn5+SkkJERJSUm6+eablZeXp4ULFyo8PFxff/212rRpU2bc2bNna8aMGda5MABAnVWdFf917ZFC1vyQgQ8HAAAAah5FfQCAwzAYDBb7JpOpVNu1+v+xvXv37urevbv5eHh4uDp37qxXX31VixYtKjPm5MmTNX78ePN+Xl6eAgICKnchAIB6oa48UshaHzJY88MBXkYMAABQPor6AAC7ZzQa5ezsXGpV/smTJ0utxi/h6+tbZn8XFxd5e3uXeY6Tk5Nuu+02HTx4sNxc3NzcrPJsYwAAbK2ufDhQ8jLinJwcivoAAABloKgPALB7rq6uCgsLU2pqqh5++GFze2pqqvr27VvmOT169ND7779v0bZt2zZ16dLF/Dz9K5lMJqWnp+vmm2+2XvIAADiY6n44AAAAgKujqA8AcAjjx49XdHS0unTpoh49eigxMVEZGRmKjY2VVPxYnBMnTmj16tWSpNjYWL322msaP368RowYod27d2vFihVKTk42x5wxY4a6d++uNm3aKC8vT4sWLVJ6eroWL15cK9cIAEB9sn///mqdz3P5AQCAo6KoDwBwCAMHDtSpU6cUHx+vrKwsdejQQZs3b1arVq0kSVlZWcrIyDD3Dw4O1ubNmzVu3DgtXrxY/v7+WrRokfr372/uc/r0aT355JPKzs6Wl5eXOnXqpB07dqhr1642vz4AAOqL/Px8GQwGDRkypFpxeC4/rK2oSNq5U8rKkvz8pIgIydm5trMCANRHFPUBAA5j1KhRGjVqVJnHkpKSSrXdeeed+u9//1tuvAULFmjBggXWSg8AAFTAhQsXqv1s/pLn8u/cuVPt2rWrVj6s+IckbdggjR0r/fzz720tW0oLF0r9+tVeXgCA+omiPgAAAACgzqnOs/mttdpfYsU/igv6jzwimUyW7SdOFLe/8w6FfQCAbVHUBwAAAAA4FGus9pdY8Y/iR+6MHVu6oC8VtxkMUlyc1Lcvj+IBANgORX0AAAAAgEOqzmp/iRX/KH6G/h8fuXMlk0k6fry431132SwtAEA9R1EfAAAAAIAysOIfWVnW7QcAgDVQ1AcAAAAA4CpY8V9/+flZtx8AANZAUR8AAAAAgBpU11b8FxQUyM3Nrcrnl6gP3xqIiJBatix+KW5Zz9U3GIqPR0TYPjcAQP1FUR8AAAAAABuoKyv+DQaDTGVVqCupPnxrwNlZWrhQeuSR4gL+H39tBkPxfxMSeEkuAMC2KOoDAAAAAGAHrLHi/+DBg/rkk0+s9q2BnJwchy7qS1K/ftI770hjx1q+NLdly+KCfr9+tZYaAKCeoqgPAAAAAIAdqc6K/5ycnGrHqHemT1c/Z2f1PTpVO3cWvxTXz6/4kTvOL86UvimSpk+v7SwBAPUIRX0AAAAAAIDyODtL06bJWdJdU6f+3j5zpjRtmhQfX2upAQDqJ4r6AAAAAAAA5Skp5E+b9vv+Hwv6fyz0AwBgAxT1AQAAAAAAruaPhf1Zs6TCQgr6AIBa41TbCQAAAAAAANR5U6dKrq7FBX1XVwr6AIBaw0p9AAAAAABQJfv37692DKPRqMDAQCtkU8Nmzvy9oF9YWLxPYR8AUAso6gMAAAAAgErJz8+XwWDQkCFDqh3Lzc1N69evl5+fX7Xi1OiHA1c+Q79kX6KwDwCwOYr6AAAAAACgUi5cuCCTyaR+/frJaDRWOU5GRoa2bt2qBx54oNo5eXh46MCBA9Yv7Jf1UtyyXp4LAICNUNQHAAAAAABVYjQa5e/vX+Xzc3JyrPLhQE5OjjZs2KCcnBzrF/WLisp+KW7JflGRdccDAOAaKOoDAAAAAIBaVd0PB2rU9OnlH2OFPgCgFjjVdgIAAAAAAAAAAKBiKOoDAAAAAAAAAGAnKOoDAAAAAAAAAGAnKOoDABzGkiVLFBwcLHd3d4WFhWnnzp1X7f/pp58qLCxM7u7uuuGGG7Rs2bJSfdavX6/27dvLzc1N7du317vvvltT6QMAAAAAAFwTRX0AgENISUlRXFycpkyZor179yoiIkK9e/dWRkZGmf2PHDmiPn36KCIiQnv37tWzzz6rp59+WuvXrzf32b17twYOHKjo6Gh9/fXXio6O1oABA/TFF1/Y6rIAAAAAAAAsUNQHADiE+fPna9iwYRo+fLjatWunhIQEBQQEaOnSpWX2X7ZsmQIDA5WQkKB27dpp+PDhGjp0qObNm2fuk5CQoPvvv1+TJ09WSEiIJk+erHvvvVcJCQk2uioAAAAAAABLLrWdAAAA1VVYWKg9e/Zo0qRJFu2RkZHatWtXmefs3r1bkZGRFm1RUVFasWKFLl68qAYNGmj37t0aN25cqT5XK+oXFBSooKDAvJ+bmytJys7OrswllfLrr79KkrKyslRYWOgQcepSLo4apy7lUtfi1KVcHDVOXcqlrsWpS7k4apy6lEtdi1OXcrFmnFOnTkmS8vPzlZeXV+U41lAyvslkqtU8AACOy2Di/zIAADuXmZmp66+/Xp999pl69uxpbn/xxRe1atUq/fDDD6XOadu2rWJiYvTss8+a23bt2qXw8HBlZmbKz89Prq6uSkpK0mOPPWbu89Zbb+mvf/2rReH+j6ZPn64ZM2ZY8eoAAABgj44fP66WLVvWdhoAAAfESn0AgMMwGAwW+yaTqVTbtfpf2V7ZmJMnT9b48ePN+5cvX9Zvv/0mb2/vq54HAAAAx2AymXTmzBn5+/vXdioAAAdFUR8AYPeMRqOcnZ1LPeLm5MmT8vHxKfMcX1/fMvu7uLjI29v7qn3KiylJbm5ucnNzs2hr2rRpRS8FAAAADsDLy6u2UwAAODBelAsAsHuurq4KCwtTamqqRXtqaqrF43j+qEePHqX6b9u2TV26dFGDBg2u2qe8mAAAAAAAADWNlfoAAIcwfvx4RUdHq0uXLurRo4cSExOVkZGh2NhYScWPxTlx4oRWr14tSYqNjdVrr72m8ePHa8SIEdq9e7dWrFih5ORkc8yxY8fqjjvu0EsvvaS+ffvqvffe08cff6y0tLRauUYAAAAAAACK+gAAhzBw4ECdOnVK8fHxysrKUocOHbR582a1atVKkpSVlaWMjAxz/+DgYG3evFnjxo3T4sWL5e/vr0WLFql///7mPj179tTbb7+t5557TlOnTtWNN96olJQUdevWzebXBwAAAAAAIEkGU8lbAQEAAAAAAAAAQJ3GM/UBAAAAAAAAALATFPUBAAAAAAAAALATFPUBAAAAAAAAALATFPUBAAAAAAAAALATFPUBAAAAAAAAALATFPUBAAAAAAAAALATFPUBAAAAAAAAALATFPUBAAAAAAAAALATFPUBAAAAAAAAALATFPUBAAAAAAAAALATFPUBAAAAAAAAALATFPUBAAAAAAAAALATFPUBAAAAAAAAALATFPUBAAAAAAAAALATFPUBAAAAAAAAALATFPUBAAAAAAAAALATFPUBAAAAAAAAALATFPUBAAAAAAAAALATFPUBAAAAAAAAALATFPUBAAAAAAAAALATFPUBAAAAAAAAALATFPUBAAAAAAAAALATFPUBAAAAAAAAALATFPUBAAAAAAAAALATFPUBOLSgoCAZDAYZDAZt3Lix3H733XefDAaDkpKSLNqTkpLM57u6uurUqVPlxrh06ZJatGhh7j99+vQy+23dulX9+vXT9ddfL1dXVzVt2lQ33XSTHnzwQb3yyis6dOiQRf+jR4+aY15rO3r0aAV/M9e2b98+jRw5Um3btpWHh4caNWqk4OBg3XXXXZo6dap27dpV6pyS3/eVv8fyxMTElLqGBg0ayM/PT3/+85/10UcfWe16tm/fXuZYRqNRISEhGjRokJYvX668vLxyY/zxb3Hl77qsa7lye+ihh6x2PQAAALA95hdV5+jzi2+++eaq/Tt16mTuGxMTc9W+v/zyixo0aCCDwaDw8PBr5vLHf5fPPPPMVfsuXLjQIm8A9smlthMAAFuZPn26+vbtW+Ubl4sXLyolJUWjRo0q8/jWrVv166+/XjXGU089pcWLF0uSGjVqpDZt2qhhw4Y6duyYPvjgA33wwQfKysrSvHnzyjy/S5cucnNzKze+u7t7Ba/m6t58800NHTpUhYWFatCggQIDA9WsWTOdPHlSn376qT799FN99NFH+uqrr6wyXosWLdSmTRtJ0oULF/Tjjz/q/fff1/vvv6/JkyfrxRdftMo4JUpujE0mk86cOaOff/5Zb7/9tt5++239/e9/10svvVTu3/la/ngtV2rfvn2VcwYAAEDdwvyi4hx9fiFJa9as0dy5c8s89v333ys9Pb3CsZKTk3Xp0iVJ0q5du3To0CHdeOONFTr3rbfe0ty5c+Xs7FxungDsH0V9APWCs7Ozvv76a61fv16PPPJIpc9v06aNfvrpJ/3zn/8s96b7n//8pyTppptu0g8//FDqeHJyshYvXiwnJyctWLBAI0eOtLiB3rdvn9566y15enqWm8e6desUFBRU6fwr4+jRoxo2bJgKCws1dOhQzZ49Wy1atDAfz87O1vr16/XFF19YbczevXtbrL4pLCzUlClTNG/ePM2ePVsPPvigevToYbXx0tLSLPZNJpO+/fZbLViwQElJSRo9erSOHz+u2bNnVzr2ldcCAAAAx8P8ouIcfX7h7++vM2fO6K233tKcOXPk5FT6oRjX+luW179p06Y6ffq01qxZo+eff/6a55XE//jjjxUVFVXq+A8//KCvvvqqwnkAqLt4/A6AemHQoEGSpBkzZshkMlX6/MDAQN1xxx36/PPP9dNPP5U6fubMGW3atEnBwcHlfj1y1apVkqShQ4fq6aefLrUipn379po1a5b+7//+r9L5WdPbb7+tgoIC3XTTTXr99dctbrglydfXV6NHj9bq1atrLAdXV1fNnTtXHTt2NOdUkwwGg2655RatXLlSiYmJkqQ5c+Zo+/btNTouAAAA7BPzi4pz9PmFh4eH+vXrpxMnTuiTTz4pddxkMumtt95So0aN9PDDD18z3r59+/Tf//5XHh4eeuWVVyT9XuS/liFDhkgqfzV+SZzo6OgKxQNQd1HUB1AvDB06VEFBQfruu++0du3aKsW42g3SO++8o/Pnz2vw4MHlfv328OHDkmS+kayrSvK8+eaby1xlYisGg0G33367JOngwYM2G3fEiBHq27evpOLCPgAAAHAl5hcVVx/mFyV/y7KK79u3b9fx48f18MMPq1GjRteMVRLjgQce0GOPPSZPT08dOnRIu3fvvua5d955pwICAvTuu+/q7NmzFsdMJpPefPNN84cQAOwbRX0A9UKDBg00ZcoUScWraS5fvlzpGH/5y1/k7u6uN998s9Sxkhvxkpu5spR87fU///lPpce2pZI809PTdfHixVrNpSqrnqwhNjZWkvTJJ5/o/PnztZIDAAAA6i7mFxVXH+YX99xzj66//npt2LBB586dszhW8resyOr4y5cvm/89PPbYY3J3dzcX4CuyWt9gMGjw4ME6e/as3n33XYtjaWlpOnr0qB566CE1adKkQtcFoO6iqA+g3oiJidENN9yg/fv3V+nrll5eXnrwwQf1008/WayS+Pnnn7V9+3Z17dpVN910U7nn9+rVS1Lxzdjf/vY3ffnllyoqKqr8hdSwkjx/+ukn9e7dWx999FGpG1NbMJlM+uyzzyRJrVu3tunYPXv2lMFgUGFhob7++mubjg0AAAD7wPyiYurD/MLJyUmPPfaYzpw5o/fee8/cfuHCBb3zzjvy8/PTvffee804Jav6r7vuOvXp00eSNHjwYElSSkqKCgsLrxmj5MODKz8E4NE7gGOhqA+g3nBxcdHUqVMlSfHx8VW64S3ra5VvvvmmLl++fNVVNJI0ceJEhYWFyWQyadmyZeratas8PT11++23a9KkSfrqq6+uOX5wcLAMBkOZm7W+dnvffffpySeflCT961//Up8+feTl5aVbb71VsbGx+uCDD2p8slBYWKj/+7//U3p6uiRpwIABNTrelTw9PeXl5SVJOnnyZKXOXbVqVbl/IwAAADgO5hcVU1/mF2UV09977z3l5eVp0KBBcnZ2vmaMknP79+8vV1dXScXfAvD19dVvv/2mzZs3XzNG+/bt1alTJ/3rX/9SVlaWJKmgoEDr1q1TixYtdP/991f62gDUPRT1AdQr0dHRatOmjX744Ycyv+Z6Lb1795bRaNTatWvNXx1ds2aNXFxc9Oijj1713CZNmigtLU2vvPKK2rVrJ0k6d+6cPvvsM7300ku67bbb9NBDD+n06dPlxujSpYvCw8PL3Dp16lTp6ynP8uXLtX79et15551ydnbWpUuX9M0332j58uV68MEHdeutt+rbb7+12ngfffSRbr/9dt1+++3q0qWLjEaj5s2bJ0kaN26c+dmXtlTyvMszZ85U6rwWLVqU+zcCAACAY2F+UTH1YX5x880365ZbblFqaqp5YVBlHr1z/vx5rV+/XlLxo3dKODk5mf8tVPSFudHR0SoqKlJycrIk6YMPPtDp06c1aNAgubi4VPyiANRZFPUB1CvOzs7m1TQzZ87UpUuXKnV+gwYNNGDAAJ06dUqbN29Wenq6vvvuO0VFRal58+bXPN/d3V3jx4/Xvn37dOLECW3YsEHjxo1TcHCwpOKVHFd7adG6deuUlpZW5rZy5cpKXcu19OvXT9u3b9dvv/2m1NRUzZw5U127dpUkff/997rvvvv066+/WmWskydP6rPPPtNnn32m9PR0ubu7q3fv3nr33Xc1f/58q4xRWfn5+ZJ+fwZoRfXu3bvcvxEAAAAcC/OLiqsP84shQ4bo0qVLSk5OVk5OjrZs2aLQ0NAKfeth48aNOnPmjPz9/XXnnXdaHCt5BM8HH3yg//3vf9eMVfLNgJIPAUr+e61vfwCwHxT1AdQ7jz32mG666Sb99NNPFV7p8EclqyzWrFlTqZUXV/L399fDDz+s+fPn68cff9QzzzwjqfjlrCXPeqwLPD09dd999+m5557TF198oXXr1snJyUknT55UYmKiVcZ44oknZDKZZDKZdOnSJZ08eVKbN2/WQw89ZJX4lZWbm6u8vDxJxSvvAQAAgPIwv6gcR55fDB48WE5OTlqzZo3efvttXbp0qcJ/y5J/O48++qicnCzLdV26dFHbtm1VWFiotWvXXjOWr6+v7rvvPqWnp2vHjh366KOPFBISoi5dulT+ogDUSRT1AdQ7zs7OmjZtmqSqrabp3r272rRpo/fff19r1qyRp6en/vznP1crJxcXF82dO1e+vr6SpP/85z/VileTHnnkEfXv319S3c6zOj777DOZTCa5urrq1ltvre10AAAAUIcxv6geR5pf+Pv765577tFXX32ll19+WU5OTuZV9lfzyy+/aNu2bZKk+fPnl/mOgx9//FFS5R7BU/LfwsJCXpALOBiK+gDqpUcffVTt27fXkSNHlJSUVOnzBw8erIKCAv3yyy/q37+/PDw8qp2Tk5OTWrVqJan4RU512Q033CCp7udZVcuWLZMk3XvvvXJ3d6/lbAAAAFDXMb+oHkeaX5Q84iYjI0N33nmnWrZsec1z3nrrLRUVFcnNzU0+Pj7lblLxAqTDhw9fM+bDDz+sxo0bKyMjQwaDoUIfLgCwHxT1AdRLTk5Oev755yVJs2bNMr+UqqKio6N177336t5779WIESMqdE7Jy5LKc/r0ae3bt0+S1KZNm0rlY03XylOSdu3aJal286wpr7/+ut5//31J0uTJk2s5GwAAANgD5hflq2/zi/79+ysyMlL33nuvnn766QqdU7L6ftKkScrOzi5369Gjh6TfX8B7NQ0bNtQzzzyje++9VyNHjjR/wAPAMVDUB1Bv/eUvf9HNN9+sY8eOVfoZkzfccIM+/vhjffzxx+Ybq2vp06ePBg8erH//+9+lbvLT09PVt29fnTlzRn5+foqKiqpUPuWJiYmRwWBQTExMhc958cUXFRERoeTkZJ05c8biWFZWlmJjY7Vz504ZDAY98cQTVsmzsoKCgmQwGKq0CqosJpNJ33zzjYYOHaonn3xSkvTcc88pIiLCKvEBAADg+JhflK2+zS8aN26srVu36uOPP67QM/y///577d27V9K1X2RbcrwiRX1Jmj59uj7++GMtXbq0Qv0B2A+X2k4AAGqLwWDQ888/r0ceeURFRUU1Pl5RUZHeeustvfXWW3J3d1fr1q3l7u6uzMxMZWZmSpKaNm2qtWvXqlGjRmXG+Mtf/iI3N7dyx5g9e3a1C9EGg0FpaWlKS0uTk5OTbrzxRl133XX69ddfdfz4cV26dEnOzs6aP3++wsLCyowxZswY/f3vfy93jO3bt6tDhw7VyrM6br/9dvPPZ86c0fHjx/W///1PktSkSRO99NJL+tvf/lZb6QEAAMAOMb8oW32YX1RHySr9Hj16qHXr1lftO3DgQMXFxengwYP6/PPP1b17d1ukCKAOoqgPoF7r16+fOnbsqPT09Bofa9u2bdq6das++ugjfffdd8rMzNTp06fVuHFjdevWTVFRURo9erRatGhRboyvvvrqqmOcOnXKYj87O1uS1LFjxwrn+eKLL+r+++/XRx99pC+++EInTpzQ0aNH5ebmprZt2+qOO+7Q3/72N91yyy3lxsjPz1d+fn65xyv78rA/KioqUk5OjiRV+SW2JSunXFxc5OnpqRYtWigyMlJ33323HnvsMTVp0qTcsUu4urpWaWwAAAA4LuYXpdWH+UVVXb58WW+++aaka6/SlyRvb2/16tVL77//vv75z39S1AfqMYPJZDLVdhIAAOu7fPmymjVrJpPJpJ9//rncQrW9+e9//6uwsDDdfffd+ve//10rY0vS2bNn1bBhQ5uODwAAANQW5hcAUHfwTH0AcFDff/+9cnNz9eSTTzrMDbf0+yr7Z555xuZjf/PNN5KkwMBACvoAAACoV5hfAEDdQVEfABzUrl275OLioqeffrq2U7GqXbt2KSQkRH369LHpuJmZmXr55ZclSQ8++KBNxwYAAABqG/MLAKg7ePwOAABXsW7dOs2aNUs//PCDCgoK1Lx5c+3du1fXX399bacGAAAAAADqIVbqAwBwFSdOnND333+vZs2aKTo6Wp9//jkFfQCoh5YsWaLg4GC5u7srLCxMO3furNB5n332mVxcXCr1UkkAAADgalipDwAAAABXkZKSoujoaC1ZskTh4eFavny5/vGPf2jfvn0KDAws97zc3Fx17txZrVu31i+//KL09HTbJQ0AAACHRVEfAAAAAK6iW7du6ty5s5YuXWpua9eunR566CHNnj273PMeffRRtWnTRs7Oztq4cSNFfQAAAFiFS20nYC8uX76szMxMNWnSRAaDobbTAQAAQA0zmUw6c+aM/P395eTEUyvrq8LCQu3Zs0eTJk2yaI+MjNSuXbvKPW/lypU6dOiQ1qxZo1mzZl1znIKCAhUUFJj3L1++rN9++03e3t7MPwAAAOqBysw/KOpXUGZmpgICAmo7DQAAANjY8ePH1bJly9pOA7UkJydHRUVF8vHxsWj38fFRdnZ2meccPHhQkyZN0s6dO+XiUrEp1+zZszVjxoxq5wsAAAD7VpH5B0X9CmrSpImk4l+qp6dnLWcDAACAmpaXl6eAgADzfSDqtytXy5tMpjJX0BcVFemxxx7TjBkz1LZt2wrHnzx5ssaPH2/ez83NVWBgIPMPAACAeqIy8w+K+hVUcsPu6enJTTUAAEA9wqNP6jej0ShnZ+dSq/JPnjxZavW+JJ05c0ZfffWV9u7dq6eeekpS8aN0TCaTXFxctG3bNt1zzz2lznNzc5Obm1upduYfAAAA9UtF5h88HBQAAAAAyuHq6qqwsDClpqZatKempqpnz56l+nt6eurbb79Venq6eYuNjdVNN92k9PR0devWzVapAwAAwEGxUh8AAAAArmL8+PGKjo5Wly5d1KNHDyUmJiojI0OxsbGSih+dc+LECa1evVpOTk7q0KGDxfktWrSQu7t7qXYAAACgKijqAwAAVEFRUZEuXrxY22mgmlxdXeXkxJdXcXUDBw7UqVOnFB8fr6ysLHXo0EGbN29Wq1atJElZWVnKyMio5SwBAIAjY/7hGKw1/zCYTCaTFfJxeHl5efLy8lJubi7PtAQAoB4zmUzKzs7W6dOnazsVWIGTk5OCg4Pl6upa6hj3f6hN/PsDAAAS8w9HY635Byv1AQAAKqHkhrpFixZq2LAhL1G1Y5cvX1ZmZqaysrIUGBjI3xIAAAB1DvMPx2HN+QdFfQAAgAoqKioy31B7e3vXdjqwgubNmyszM1OXLl1SgwYNajsdAAAAwIz5h+Ox1vyDB4gCAABUUMkzLBs2bFjLmcBaSr72WlRUVMuZAAAAAJaYfzgea80/WKlfSenp6WrcuHG1YhiNRgUGBlopIwAAYGt85dVx8LdEXcf8AwAAcM/qOKz1t6SoX0l33nlntWN4eHjowIED3FgDAAAAuCrmHwAAALgSRf1KevDBB+Xn51fl83NycrRhwwbl5ORwUw0AAADgqph/AAAA4EoU9SvJ29tb/v7+tZ0GAACwY0VF0s6dUlaW5OcnRURIzs61nRWAuoj5BwAAqC7mH46HF+UCAADY0IYNUlCQdPfd0mOPFf83KKi4vSYYDIarbjExMeZ+GzduLHV+TEyMHnrooXL3T548qZEjRyowMFBubm7y9fVVVFSUdu/eXW5O06dPN4/v5OQkf39/DR48WMePH7foFxQUpISEhFLnJyQkKCgoqFS82NhYi37p6ekyGAw6evRoubkAAAAAjoz5h2POP+pkUX/JkiUKDg6Wu7u7wsLCtHPnznL7pqWlKTw8XN7e3vLw8FBISIgWLFhg0ScpKanMf0QXLlyo6UsBAAAw27BBeuQR6eefLdtPnChur4kb66ysLPOWkJAgT09Pi7aFCxdWK37//v319ddfa9WqVfrxxx+1adMm3XXXXfrtt9+uel5oaKiysrL0888/KyUlRd9++60GDBhQ5Tzc3d21YsUK/fjjj1WOAQAAADgS5h+/c7T5R517/E5KSori4uK0ZMkShYeHa/ny5erdu7f27dtX5jMgGzVqpKeeekq33HKLGjVqpLS0NI0cOVKNGjXSk08+ae7n6empH374weJcd3f3Gr8eAAAAqfgrr2PHSiZT6WMmk2QwSHFxUt++1v0qrK+vr/lnLy8vGQwGi7bqOH36tNLS0rR9+3bzyzxbtWqlrl27XvNcFxcXcx7+/v4aMWKEnn76aeXl5cnT07PSudx0001q0aKFnnvuOa1du7bS5wMAAACOhPmHJUebf9S5lfrz58/XsGHDNHz4cLVr104JCQkKCAjQ0qVLy+zfqVMnDRo0SKGhoQoKCtKQIUMUFRVVanV/yT+gP24AAAC2snNn6RUyf2QyScePF/ezF40bN1bjxo21ceNGFRQUVDlOdna2NmzYIGdnZzlXY0YxZ84crV+/Xl9++WWVYwAAAACOgPlH+Rxh/lGnivqFhYXas2ePIiMjLdojIyO1a9euCsXYu3evdu3aZf60pkR+fr5atWqlli1b6oEHHtDevXuvGqegoEB5eXkWGwAAQFVlZVm3X00YNGiQ+Ua5ZHvzzTfL7e/i4qKkpCStWrVKTZs2VXh4uJ599ll988031xzr22+/VePGjdWwYUP5+flp+/btGj16tBo1alTl/Dt37qwBAwZo0qRJVY4BAAAAOALmH5Ycbf5Rp4r6OTk5Kioqko+Pj0W7j4+PsrOzr3puy5Yt5ebmpi5dumj06NEaPny4+VhISIiSkpK0adMmJScny93dXeHh4Tp48GC58WbPni0vLy/zFhAQUL2LAwAA9Zqfn3X71YQFCxYoPT3dYvvzn/981XP69++vzMxMbdq0SVFRUdq+fbs6d+6spKSkq5530003KT09XV9++aVeeOEFdezYUS+88EK1r2HWrFnauXOntm3bVu1YAAAAgL1i/mHJ0eYfdaqoX8JgMFjsm0ymUm1X2rlzp7766istW7ZMCQkJSk5ONh/r3r27hgwZoltvvVURERFau3at2rZtq1dffbXceJMnT1Zubq55u/JtyAAAAJURESG1bFn87MqyGAxSQEBxv9ri6+ur1q1bW2xNmjS55nnu7u66//77NW3aNO3atUsxMTF6/vnnr3qOq6urWrdurdDQUD377LPq2LGj/va3v1n08fT0VG5ubqlzT58+LS8vrzLj3njjjRoxYoQmTZokU1kPEAUAAADqAeYflhxt/lGnivpGo1HOzs6lVuWfPHmy1Or9KwUHB+vmm2/WiBEjNG7cOE2fPr3cvk5OTrrtttuuulLfzc1Nnp6eFhsAAEBVOTtLCxcW/3zljXXJfkKCdV9SVVvat2+vs2fPVuqcqVOnKjk5Wf/973/NbSEhIWU+n/LLL7/UTTfdVG6sadOm6ccff9Tbb79dqRwAAAAAR8H84+rsff5Rp4r6rq6uCgsLU2pqqkV7amqqevbsWeE4JpPpqi9LMJlMSk9Pl19tfr8EAADUO/36Se+8I11/vWV7y5bF7f361U5eVXXq1Cndc889WrNmjb755hsdOXJE69at09y5c9W3b99KxbrhhhvUt29fTZs2zdw2fvx4ffTRR4qPj9e+ffu0b98+zZw5U1u2bNEzzzxTbiwfHx+NHz9eixYtqvK1AQAAAPaO+Uf57H3+4WKzkSpo/Pjxio6OVpcuXdSjRw8lJiYqIyNDsbGxkoofi3PixAmtXr1akrR48WIFBgYqJCREkpSWlqZ58+ZpzJgx5pgzZsxQ9+7d1aZNG+Xl5WnRokVKT0/X4sWLbX+BAACgXuvXT+rbV9q5s/ilVH5+xV95tccVMo0bN1a3bt20YMECHTp0SBcvXlRAQIBGjBihZ599ttLxnnnmGYWHh+uLL75Qt27d1L17d23dulXx8fFKSEiQJIWGhmrr1q3q1q3bVWNNmDBBS5cu1YULF6pyaQAAAIBDYP5RPnuefxhMdfBho0uWLNHcuXOVlZWlDh06aMGCBbrjjjskSTExMTp69Ki2b98uSXr11Ve1fPlyHTlyRC4uLubnGI0cOVJOTsVfRBg3bpw2bNig7OxseXl5qVOnTpo+fbp69OhR4Zzy8vLk5eWlmJgYBQUFVfnaMjMzlZiYqD179qhz585VjgMAAGzvwoULOnLkiIKDg+Xu7l7b6cAKrvY3Lbn/y83N5VGMsDnmHwAAgPmH47HW/KPOrdSXpFGjRmnUqFFlHrvyTcZjxoyxWJVflgULFmjBggXWSg8AAAAAAAAAgFpRp56pDwAAAAAAAAAAykdRHwAAAAAAAAAAO0FRHwAAAAAAAAAAO0FRHwAAAAAAAAAAO0FRHwAAAAAAAAAAO0FRHwAAAAAAAAAAO0FRHwAAAAAAAAAAO0FRHwAAAAAAAAAAO0FRHwAAoB6IiYmRwWAwb97e3urVq5e++eabUn2ffPJJOTs76+233y517OzZs5o4caJuuOEGubu7q3nz5rrrrrv0wQcfmPvcddddFmOVbLGxseY+BoNBGzduLDPX7du3y2Aw6PTp0xb7HTp0UFFRkUXfpk2bKikpybwfFBRU5thz5sypxG8LAAAAQHUw/6jZ+QdFfQAAAFuZPl2aObPsYzNnFh+vQb169VJWVpaysrL0r3/9Sy4uLnrggQcs+pw7d04pKSmaMGGCVqxYUSpGbGysNm7cqNdee00HDhzQli1b1L9/f506dcqi34gRI8xjlWxz586tVv6HDh3S6tWrr9kvPj6+1Nhjxoyp1tgAAACA3WH+Ua386/L8w6VGowMAAOB3zs7StGnFP0+d+nv7zJnF7fHxNTq8m5ubfH19JUm+vr6aOHGi7rjjDv36669q3ry5JGndunVq3769Jk+eLD8/Px09elRBQUHmGO+//74WLlyoPn36SCpemRIWFlZqrIYNG5rHspYxY8bo+eef16BBg+Tu7l5uvyZNmlh9bAAAAMDuMP+olro8/2ClPgAAgK1MnVp84zxt2u8rZv54Q/3HG+0alp+frzfffFOtW7eWt7e3uX3FihUaMmSIvLy81KdPH61cudLiPF9fX23evFlnzpyxWa4l4uLidOnSJb322ms2HxsAAACwO8w/qqUuzz8o6gMAANjSH2+s3dxsekP9wQcfqHHjxmrcuLGaNGmiTZs2KSUlRU5OxbeEBw8e1Oeff66BAwdKkoYMGaKVK1fq8uXL5hiJiYnatWuXvL29ddttt2ncuHH67LPPSo21ZMkS81gl26pVq6qVf8OGDfX8889r9uzZys3NLbffxIkTS429ffv2ao0NAAAA2CXmH1VWl+cfFPUBAABsbepUydVVKiws/q+NVsjcfffdSk9PV3p6ur744gtFRkaqd+/eOnbsmKTiVTJRUVEyGo2SpD59+ujs2bP6+OOPzTHuuOMOHT58WP/617/Uv39/ff/994qIiNDMK57VOXjwYPNYJdvDDz9c7WsYNmyYjEajXnrppXL7TJgwodTY3bp1q/bYAAAAgF1i/lFldXX+QVEfAADA1mbO/P2GurCw/JdXWVmjRo3UunVrtW7dWl27dtWKFSt09uxZvf766yoqKtLq1av14YcfysXFRS4uLmrYsKF+++23Ui+satCggSIiIjRp0iRt27ZN8fHxmjlzpgoLC819vLy8zGOVbJ6entW+BhcXF82aNUsLFy5UZmZmmX2MRmOpsT08PKo9NgAAAGCXmH9UWV2df1DUBwAAsKU/PsOyoKD0My5tyGAwyMnJSefPnzc/p3Lv3r0WK0zWrVunjRs36tSpU+XGad++vS5duqQLFy7YJO+//OUvCg0N1YwZM2wyHgAAAGC3mH9UW12cf7jUdgIAAAD1RlkvpSr577Rplvs1oKCgQNnZ2ZKk//3vf3rttdeUn5+vBx98UAkJCfrTn/6kW2+91eKc0NBQxcXFac2aNRo7dqzuuusuDRo0SF26dJG3t7f27dunZ599VnfffbfFSphz586Zxyrh5uam6667zrx/5MgRpaenW/Rp3bp1ha5lzpw5ioqKKvPYmTNnSo3dsGFDq6zUAQAAAOwG8w+HnX9Q1AcAALCVoqKyX0pVsl9UVKPDb9myRX5+fpKkJk2aKCQkROvWrVO7du304Ycf6q233ip1jsFgUL9+/bRixQqNHTtWUVFRWrVqlZ599lmdO3dO/v7+euCBBzStZFLw/73++ut6/fXXLdqioqK0ZcsW8/748eNLjffJJ59U6Fruuece3XPPPdq2bVupY9OmTSuVz8iRI7Vs2bIKxQYAAAAcAvMPh51/GEwmk6nGojuQvLw8eXl5KSYmRkFBQVWOk5mZqcTERO3Zs0edO3e2XoIAAKDGXbhwQUeOHFFwcLDc3d1rOx1YwdX+piX3f7m5uazyh80x/wAAAMw/HI+15h88Ux8AAAAAAAAAADtRJ4v6S5YsMX9aERYWpp07d5bbNy0tTeHh4fL29paHh4dCQkK0YMGCUv3Wr1+v9u3by83NTe3bt9e7775bk5cAAAAAAAAAAIDV1bmifkpKiuLi4jRlyhTt3btXERER6t27tzIyMsrs36hRIz311FPasWOH9u/fr+eee07PPfecEhMTzX12796tgQMHKjo6Wl9//bWio6M1YMAAffHFF7a6LAAAAAAAAAAAqq3OFfXnz5+vYcOGafjw4WrXrp0SEhIUEBCgpUuXltm/U6dOGjRokEJDQxUUFKQhQ4YoKirKYnV/QkKC7r//fk2ePFkhISGaPHmy7r33XiUkJNjoqgAAAAAAAAAAqL46VdQvLCzUnj17FBkZadEeGRmpXbt2VSjG3r17tWvXLt15553mtt27d5eKGRUVddWYBQUFysvLs9gAAAAAAAAAAKhNdaqon5OTo6KiIvn4+Fi0+/j4KDs7+6rntmzZUm5uburSpYtGjx6t4cOHm49lZ2dXOubs2bPl5eVl3gICAqpwRQAAAAAAAAAAWE+dKuqXMBgMFvsmk6lU25V27typr776SsuWLVNCQoKSk5OrFXPy5MnKzc01b8ePH6/kVQAAAAAAAAAAYF0utZ3AHxmNRjk7O5daQX/y5MlSK+2vFBwcLEm6+eab9csvv2j69OkaNGiQJMnX17fSMd3c3OTm5laVywAAAAAAAAAAoEbUqZX6rq6uCgsLU2pqqkV7amqqevbsWeE4JpNJBQUF5v0ePXqUirlt27ZKxQQAAAAAAAAAoLbVqZX6kjR+/HhFR0erS5cu6tGjhxITE5WRkaHY2FhJxY/FOXHihFavXi1JWrx4sQIDAxUSEiJJSktL07x58zRmzBhzzLFjx+qOO+7QSy+9pL59++q9997Txx9/rLS0NNtfIAAAcDimC+elixdtN2CDBjK4e9huPAAAAAB1BvMP1Lmi/sCBA3Xq1CnFx8crKytLHTp00ObNm9WqVStJUlZWljIyMsz9L1++rMmTJ+vIkSNycXHRjTfeqDlz5mjkyJHmPj179tTbb7+t5557TlOnTtWNN96olJQUdevWzebXBwAAHIvpwnld3pEq07mzNhvT0LCRnO64v1I31jExMTp9+rQ2btxY6lhQUJCOHTtWqn327NmaNGmSjh49quDgYDVv3lyHDh1SkyZNzH06duyohx56SNOnT5ckHT58WFOmTNGnn36q3377TUajUWFhYXr55ZfVtm1bHT16VDNnztS///1vZWdny9/fX0OGDNGUKVPk6upa6d8FAAAAUJ8w/2D+IdXBor4kjRo1SqNGjSrzWFJSksX+mDFjLFbll+eRRx7RI488Yo30AAAAfnfxYvENtUsDqYENbgovFhaPd/GiZMXVMvHx8RoxYoRF2x9vniXpzJkzmjdvnmbMmFFmjMLCQt1///0KCQnRhg0b5Ofnp59//lmbN29Wbm6uJOnAgQO6fPmyli9frtatW+u7777TiBEjdPbsWc2bN89q1wNY25IlS/Tyyy8rKytLoaGhSkhIUERERJl909LSNHHiRB04cEDnzp1Tq1atNHLkSI0bN87GWQMAAIfD/MOsPs8/6mRRHwAAwO40cJXBza3GhzFJ0iXrf9W2SZMm8vX1vWqfMWPGaP78+Ro9erRatGhR6vi+fft0+PBh/fvf/zZ/y7JVq1YKDw839+nVq5d69epl3r/hhhv0ww8/aOnSpXZ9Uw3HlpKSori4OC1ZskTh4eFavny5evfurX379ikwMLBU/0aNGumpp57SLbfcokaNGiktLU0jR45Uo0aN9OSTT9bCFQAAAIfD/KNezz/q1ItyAQAAUHcNGjRIrVu3Vnx8fJnHmzdvLicnJ73zzjsqKiqqcNzc3Fw1a9bMWmkCVjd//nwNGzZMw4cPV7t27ZSQkKCAgAAtXbq0zP6dOnXSoEGDFBoaqqCgIA0ZMkRRUVHauXOnjTMHAACwX8w/ykdRHwAAAJo4caIaN25ssW3fvt2ij8Fg0Jw5c5SYmKhDhw6VinH99ddr0aJFmjZtmq677jrdc889mjlzpg4fPlzuuIcOHdKrr76q2NhYa18SYBWFhYXas2ePIiMjLdojIyO1a9euCsXYu3evdu3apTvvvLPcPgUFBcrLy7PYAAAAHBXzj+qhqA8AAABNmDBB6enpFlu3bt1K9YuKitLtt9+uqVOnlhln9OjRys7O1po1a9SjRw+tW7dOoaGhSk1NLdU3MzNTvXr10l/+8hcNHz7c6tcEWENOTo6Kiork4+Nj0e7j46Ps7OyrntuyZUu5ubmpS5cuGj169FX/nc+ePVteXl7mLSAgwCr5AwAA1EXMP6qHoj4AAABkNBrVunVri83Do+wXYc2ZM0cpKSnau3dvmcebNGmiP//5z3rhhRf09ddfKyIiQrNmzbLok5mZqbvvvls9evRQYmKi1a8HsDaDwWCxbzKZSrVdaefOnfrqq6+0bNkyJSQkKDk5udy+kydPVm5urnk7fvy4VfIGAACoi5h/VA8vygUAAECldO3aVf369dOkSZOu2ddgMCgkJMTiMSUnTpzQ3XffrbCwMK1cuVJOTqwzQd1lNBrl7OxcalX+yZMnS63ev1JwcLAk6eabb9Yvv/yi6dOna9CgQWX2dXNzk5sNXnYHAABgb5h/lEZRHwAAoJ7Izc1Venq6RVvJC6LOnDlTqmjZsGFDeXp6lhnrhRdeUGhoqFxcfr+dTE9P1/PPP6/o6Gi1b99erq6u+vTTT/XGG29o4sSJkopXyNx1110KDAzUvHnz9Ouvv5rP9/X1tcZlAlbl6uqqsLAwpaam6uGHHza3p6amqm/fvhWOYzKZVFBQUBMpAgAA1EnMP2oORX0AAABruFgok43Gqart27erU6dOFm1PPPGEJGnatGmaNm2axbGRI0dq2bJlZcZq27athg4davHV1ZYtWyooKEgzZszQ0aNHZTAYzPvjxo2TJG3btk0//fSTfvrpJ7Vs2dIipslkk98gUGnjx49XdHS0unTpYv7KdkZGhvkFa5MnT9aJEye0evVqSdLixYsVGBiokJAQSVJaWprmzZunMWPG1No1AAAAB8P8o17PPyjqAwAAVEeDBjI0bCTTubPSpYs2GdLQsES29OcAAJoMSURBVJHUoEGlzklKSlJSUlKVxgsKCirzhnf58uVavny5ed9oNGrhwoVXjRUTE6OYmJgq5QHUloEDB+rUqVOKj49XVlaWOnTooM2bN6tVq1aSpKysLGVkZJj7X758WZMnT9aRI0fk4uKiG2+8UXPmzNHIkSNr6xIAAICjYP5h3q/P8w+K+gAAANVgcPeQ0x33Sxdtc0MtqfhG3r3sl0gBqBmjRo3SqFGjyjx25YR1zJgxrMoHAAA1gvkHJIr6AAAA1WZw95C4yQUAAABgA8w/YP+v+gUAAAAAAAAAoJ6gqA8AAAAAAAAAgJ2gqA8AAAAAAAAAgJ2gqA8AAAAAAAAAgJ2gqA8AAAAAAAAAgJ2gqA8AAAAAAAAAgJ2gqA8AAAAAAAAAgJ1wqe0EAAAA7F1GRoZycnJsNp7RaFRgYKDNxgMAAABQdzD/AEV9AACAasjIyFBISIjOnz9vszE9PDx04MCBSt9YZ2dn64UXXtCHH36oEydOqEWLFurYsaPi4uJ07733KigoSMeOHVNycrIeffRRi3NDQ0O1b98+rVy5UjExMZKkoKAgxcXFKS4uzrx/7Ngxc4433HCDxowZo5EjR5rjFBQUKD4+XmvWrFF2drZatmypKVOmaOjQoVX/hQAAAAD1BPMP5h8SRX0AAIBqycnJ0fnz59WvXz8ZjUabjLdhwwbl5ORU6qb66NGjCg8PV9OmTTV37lzdcsstunjxorZu3arRo0frwIEDkqSAgACtXLnS4qb6888/V3Z2tho1anTNceLj4zVixAjl5+crKSlJsbGxatq0qQYOHChJGjBggH755RetWLFCrVu31smTJ3Xp0qVK/hYAAACA+on5h6X6Ov+ok0X9JUuW6OWXX1ZWVpZCQ0OVkJCgiIiIMvtu2LBBS5cuVXp6ugoKChQaGqrp06crKirK3CcpKUl//etfS517/vx5ubu719h1AACA+sNoNMrf37+20yjXqFGjZDAY9J///Mfi5jg0NNRilcrgwYO1YMECHT9+XAEBAZKkN954Q4MHD9bq1auvOU6TJk3k6+srSZo1a5bWrl2rjRs3auDAgdqyZYs+/fRTHT58WM2aNZNUvLoGAAAAQOUw/yhWX+cfde5FuSkpKYqLi9OUKVO0d+9eRUREqHfv3srIyCiz/44dO3T//fdr8+bN2rNnj+6++249+OCD2rt3r0U/T09PZWVlWWwU9AEAQH3w22+/acuWLRo9enSZq12aNm1q/tnHx0dRUVFatWqVJOncuXNKSUmp8tdT3d3ddfHiRUnSpk2b1KVLF82dO1fXX3+92rZtq7///e82/eowAAAAgJrF/KPm1bmi/vz58zVs2DANHz5c7dq1U0JCggICArR06dIy+yckJOj//u//dNttt6lNmzZ68cUX1aZNG73//vsW/QwGg3x9fS02AACA+uCnn36SyWRSSEhIhfoPHTpUSUlJMplMeuedd3TjjTeqY8eOlRrz0qVLSkpK0rfffqt7771XknT48GGlpaXpu+++07vvvquEhAS98847Gj16dGUvCQAAAEAdxfyj5tWpon5hYaH27NmjyMhIi/bIyEjt2rWrQjEuX76sM2fOmL9SUSI/P1+tWrVSy5Yt9cADD5RayX+lgoIC5eXlWWwAAAD2yGQySSpe5FARf/rTn5Sfn68dO3bojTfeqNQqmYkTJ6px48by8PDQ6NGjNWHCBPOLqi5fviyDwaA333xTXbt2VZ8+fTR//nwlJSU5xGoZAAAAAMw/bKFOFfVzcnJUVFQkHx8fi3YfHx9lZ2dXKMYrr7yis2fPasCAAea2kJAQJSUladOmTUpOTpa7u7vCw8N18ODBcuPMnj1bXl5e5q3kmU4AAAD2pk2bNjIYDNq/f3+F+ru4uCg6OlrPP/+8vvjiCw0ePLjCY02YMEHp6ek6duyY8vPzNXfuXDk5Fd9y+vn56frrr5eXl5e5f7t27WQymfTzzz9X7qIAAAAA1EnMP2penSrql7jyUxyTyVShT3aSk5M1ffp0paSkqEWLFub27t27a8iQIbr11lsVERGhtWvXqm3btnr11VfLjTV58mTl5uaat+PHj1f9ggAAAGpRs2bNFBUVpcWLF+vs2bOljp8+fbpU29ChQ/Xpp5+qb9++uu666yo8ltFoVOvWreXv71/q/i08PFyZmZnKz883t/34449ycnJSy5YtK35BAAAAAOos5h81r04V9Y1Go5ydnUutyj958mSp1ftXSklJ0bBhw7R27Vrdd999V+3r5OSk22677aor9d3c3OTp6WmxAQAA2KslS5aoqKhIXbt21fr163Xw4EHt379fixYtUo8ePUr1b9eunXJycrRy5Uqr5fDYY4/J29tbf/3rX7Vv3z7t2LFDEyZM0NChQ+Xh4WG1cQAAAADULuYfNculthP4I1dXV4WFhSk1NVUPP/ywuT01NVV9+/Yt97zk5GQNHTpUycnJ+tOf/nTNcUwmk9LT03XzzTdbJW8AAICcnJw6PU5wcLD++9//6oUXXtAzzzyjrKwsNW/eXGFhYVq6dGmZ53h7e1cn1VIaN26s1NRUjRkzRl26dJG3t7cGDBigWbNmWXUcAAAAwNEx/7g2R55/1KmiviSNHz9e0dHR6tKli3r06KHExERlZGQoNjZWUvFjcU6cOKHVq1dLKi7oP/7441q4cKG6d+9uXuXv4eFhfl7SjBkz1L17d7Vp00Z5eXlatGiR0tPTtXjx4tq5SAAA4DCMRqM8PDy0YcMGm43p4eEho9FY6fP8/Pz02muv6bXXXivz+NGjR696/pVfk72y/7XOl4rfdZSamnrNfgAAAABKY/5R8fMlx51/1Lmi/sCBA3Xq1CnFx8crKytLHTp00ObNm9WqVStJUlZWljIyMsz9ly9frkuXLmn06NEaPXq0uf2JJ55QUlKSpOJ/AE8++aSys7Pl5eWlTp06aceOHeratatNrw0AADiewMBAHThwwGYrZaTiG/nAwECbjQcAAACgbmD+AakOFvUladSoURo1alSZx0oK9SW2b99+zXgLFizQggULrJAZAABAaYGBgdzkAgAAALAJ5h+oUy/KBQAAAAAAAAAA5aOoDwAAAAAAAACAnaCoDwAAAAAAAACAnaCoDwAAUEmXL1+u7RRgJSaTqbZTAAAAAK6K+YfjsNb8o06+KBcAAKAucnV1lZOTkzIzM9W8eXO5urrKYDDUdlqoIpPJpF9//VUGg0ENGjSo7XQAAAAAC8w/HIs15x8U9QEAACrIyclJwcHBysrKUmZmZm2nAyswGAxq2bKlnJ2dazsVAAAAwALzD8djrfkHRX0AAIBKcHV1VWBgoC5duqSioqLaTgfV1KBBAwr6AAAAqLOYfzgWa80/Kl3UX7Rokbp3766uXbua206ePKns7Gzdcsstpfq/9957eu+99/TGG29UL1MAAIA6ouTrkjyyBagbmKMAAABHxvwDV6r0i3Lj4uK0ZcsWi7alS5eqU6dOZfZPT0/XqlWrqpYdAAAAAFwDcxQAAADUJ5Uu6gMAAAAAAAAAgNpBUR8AAAAAAAAAADtBUR8AAAAAAAAAADtBUR8AAAAAAAAAADtBUR8AAAAAAAAAADvhUpWTvvvuO61du9ZiX5LWrVsnk8lUqi8AAAAA1CTmKAAAAKgvqlTUX79+vdavX2/eL7lJfvTRR0v1NZlMMhgMVUwPAID/x969x0VZp30c/w4gBw9gOgqeAPOQx9IwFRGrNXF1tzWt1Q5Srlr6YAel2iTTFEs7KrqJ6ZaSaxmaWFmWUauJaW2x0kktMw3TYXEsRVRAcJ4/XGYbAYU5wMzweb9e83qae373dV839bz2vq75ze8HAMClUaMAAACgvqhxU//xxx93RR4AAAAAYBdqFAAAANQnNPUBAAAAeDRqFAAAANQnbJQLAAAAAAAAAICHsGtN/YvJycnRli1bJEkDBw7UNddc4+xLAAAAAEC1UaMAAADAm9R4pv62bdt055136tNPP63w2WOPPaaoqCg99NBDeuihh9S/f3/dd999NU4qNTVV7du3V2BgoKKiopSVlVXl2IyMDA0ZMkQtWrRQcHCwoqOjtXnz5grj1q9fr27duikgIEDdunXThg0bapwXAAAAAPdTGzUKAAAA4C5q3NRPT0/XunXr1K1bN5vjW7Zs0bx58+Tr66v4+HhNnjxZRqNRqampevPNN2sUf+rUqZoxY4Z27dql2NhYDRs2TLm5uZWO37Ztm4YMGaJNmzYpOztb119/vW688Ubt2rXLOmbnzp0aM2aM4uPj9eWXXyo+Pl6jR4/WZ599VtPbBwAAAOBmXF2jAAAAAO6kxk39nTt3ql+/fgoODrY5vmzZMhkMBr344otKS0vTkiVLlJWVpQYNGigtLa3a8RcsWKAJEyZo4sSJ6tq1q1JSUtSuXTstXbq00vEpKSn661//qmuuuUadOnXSvHnz1KlTJ23cuNFmzJAhQ5SUlKQuXbooKSlJgwcPVkpKSk1vHwAAAICbcXWNAgAAALiTGjf1jxw5os6dO1c4vmXLFgUHB2vcuHHWY507d9bw4cP1xRdfVCt2SUmJsrOzFRcXZ3M8Li5OO3bsqFaMc+fO6eTJk2rWrJn12M6dOyvEHDp06EVjFhcXq6CgwOYFAAAAwP24skYBAAAA3E2Nm/q//vqrjEajzbGff/5ZR48e1cCBA+XjYxuyY8eOMpvN1YptNptVVlam0NBQm+OhoaHKy8urVoznn39ep06d0ujRo63H8vLyahxz/vz5CgkJsb7atWtXresDAAAAqF2urFEAAAAAd1Pjpn6TJk105MgRm2PZ2dmSpKioqArjDQaDAgMDa3QNg8Fg895isVQ4Vpk1a9Zo9uzZSk9PV8uWLR2KmZSUpBMnTlhfhw4dqsEdAAAAAKgttVGjAAAAAO7Cr6YnXHnllXrnnXd06tQpNWrUSJK0YcMGGQwGDRo0qML4/fv3q3Xr1tWKbTQa5evrW2EGfX5+foWZ9hdKT0/XhAkTtG7dOt1www02n4WFhdU4ZkBAgAICAqqVNwAAAIC648oaBQAAAHA3NZ6pP378eP3yyy+69tprtXjxYt1///1avXq12rVrp+uuu85mbFlZmbZt26aePXtWK7a/v7+ioqKUmZlpczwzM1MDBgyo8rw1a9Zo3Lhxeu211/SHP/yhwufR0dEVYn7wwQcXjQkAAADAM7iyRimXmpqq9u3bKzAwUFFRUcrKyqpybEZGhoYMGaIWLVooODhY0dHR2rx5sz23BgAAAFRQ45n6Y8eO1UcffaRXXnlFu3btksViUZMmTfT3v/+9wlqV7777rsxms4YOHVrt+ImJiYqPj1efPn0UHR2t5cuXKzc3V5MnT5Z0flmcw4cPa9WqVZLON/TvvPNOLVq0SP3797fOyA8KClJISIgk6YEHHtCgQYP09NNPa8SIEXrrrbf04Ycfavv27TW9fQAAAABuxtU1Snp6uqZOnarU1FTFxMRo2bJlGjZsmHbv3q3w8PAK47dt26YhQ4Zo3rx5atq0qVauXKkbb7xRn332mXr37u3w/QIAAKB+q3FTX5JWrlypCRMmaOfOnWrWrJmGDh2qtm3bVhgXEBCghQsXasSIEdWOPWbMGB07dkzJyckymUzq0aOHNm3apIiICEmSyWRSbm6udfyyZctUWlqqKVOmaMqUKdbjd911l9LS0iRJAwYM0Ouvv67HHntMM2fOVIcOHZSenq5+/frZc/sAAAAA3Iwra5QFCxZowoQJmjhxoiQpJSVFmzdv1tKlSzV//vwK41NSUmzez5s3T2+99ZY2btxIUx8AAAAOs6upL0kDBw7UwIEDLzpm6NChNZoBUy4hIUEJCQmVflbeqC+3devWasW85ZZbdMstt9Q4FwAAAACewRU1SklJibKzszV9+nSb43FxcdqxY0e1Ypw7d04nT55Us2bNqhxTXFys4uJi6/uCgoJq5wgAAID6pcZr6gMAAABAfWE2m1VWVqbQ0FCb46GhodalPy/l+eef16lTpzR69Ogqx8yfP18hISHWV7t27RzKGwAAAN6rxjP1165da9eFLvYACwAAAAD2qo0axWAw2Ly3WCwVjlVmzZo1mj17tt566y21bNmyynFJSUlKTEy0vi8oKHBqY3/Pnj0OxzAajZXuIQAAAIDaVeOm/q233lqth9dy5Q+7NPUBAAAAuIIraxSj0ShfX98Ks/Lz8/MrzN6/UHp6uiZMmKB169bphhtuuOjYgIAABQQEXDr5GiosLJTBYNDYsWMdjhUUFKS9e/fS2AcAAKhjdq2p7+fnp+HDh6tXr15OTgcAAAAAas5VNYq/v7+ioqKUmZmpkSNHWo9nZmZedLPdNWvWaPz48VqzZo3+8Ic/ODWnmigqKpLFYtGoUaNkNBrtjmM2m5WRkSGz2UxTHwAAoI7VuKl/00036d1339Xbb7+tn376SePHj9cdd9yhyy67zBX5eS1+/goAAAA4h6trlMTERMXHx6tPnz6Kjo7W8uXLlZubq8mTJ0s6v3TO4cOHtWrVKknnG/p33nmnFi1apP79+1tn+QcFBSkkJMQpOdWU0WhU69at6+TaAAAAcK4aN/XLZ2esWrVKaWlpuv/++/Xwww/rpptu0vjx4zVkyBBX5Ok1+PkrAAAA4FyurlHGjBmjY8eOKTk5WSaTST169NCmTZsUEREhSTKZTMrNzbWOX7ZsmUpLSzVlyhRNmTLFevyuu+5SWlqaQ7kAAAAAdi2/YzQalZiYqMTERP3rX//Syy+/rLVr12rt2rVq06aNxo0bp3Hjxunyyy93dr4ej5+/AgAAAM7n6holISFBCQkJlX52YaN+69atdl0DAAAAqA4fRwP07dtXy5Ytk8lkUlpamjp27Kgnn3xSnTt31ocffuiMHL1S+c9f7X058oUAAAAA4M2oUQAAAODN7JqpX5nAwEDFxcXJZDLp+++/15EjR3T69GlnhUcVWJsfAAAAqBw1CgAAALyRw039srIyvfPOO1qxYoXee+89lZWVqVevXkpKStLgwYOdkSMqwdr8AAAAQOWoUQAAAODN7G7q7969WytWrNDq1auVn5+v5s2bKyEhQePHj9eVV17pzBxRCdbmBwAAAGxRowAAAKA+qHFTf/ny5VqxYoU+//xzGQwGxcXFafz48RoxYoQaNGjgihxxEeVr8wMAAAD1FTUKAAAA6pMaN/UnT56sBg0a6MYbb9Rdd92lNm3aSJJ27dp10fP69u1rX4YAAAAAcBHUKLWHPb0AAADqnl3L75w9e1YbN27Uxo0bq31OWVmZPZcCAAAAgEuiRnEt9vQCAABwHzVu6t91112uyAMAAAAA7EKN4nrs6QUAAOA+atzUX7lypSvyAAAAAAC7UKPUHvb0AgAAqHs+dZ0AAAAAAAAAAAConhrP1E9ISLDrQqmpqXadBwAAAAAXQ40CAACA+qTGTf0XX3yx2mMNBoP1n3lgBgAAAOAK1CgAAACoT2rc1N+yZUu1xuXm5io5OVn79++3eXAGAAAAAGeiRgEAAEB9UuOm/rXXXnvRz3/99VfNmzdPS5YsUVFRkaKjo/X000/bnSAAAAAAXAw1CgAAAOoTp22UW1RUpKeeekodOnTQ888/r8jISGVkZOiTTz7RwIEDaxQrNTVV7du3V2BgoKKiopSVlVXlWJPJpNtvv11XXHGFfHx8NHXq1Apj0tLSZDAYKryKiopqepsAAAAAPIQzaxQAAADAXTjc1LdYLHrppZfUqVMnPfroo2rYsKGWL1+ub775RjfddFON46Wnp2vq1KmaMWOGdu3apdjYWA0bNky5ubmVji8uLlaLFi00Y8YMXXXVVVXGDQ4OlslksnkFBgbWOD8AAAAA7s3ZNQoAAADgThxq6r/55pvq3r27Jk2apMLCQs2bN08//PCDJk6cKB8f+0IvWLBAEyZM0MSJE9W1a1elpKSoXbt2Wrp0aaXjIyMjtWjRIt15550KCQmpMq7BYFBYWJjNCwAAAIB3cUWNAgAAALgTu55qt2/frpiYGN188806cOCApk2bph9//FHTp093aPZ7SUmJsrOzFRcXZ3M8Li5OO3bssDuuJBUWFioiIkJt27bVH//4R+3ateui44uLi1VQUGDzAgAAAOCeXFWjAAAAAO6mxhvl/ulPf9K7774rHx8f3XXXXUpOTlbbtm2dkozZbFZZWZlCQ0NtjoeGhiovL8/uuF26dFFaWpp69uypgoICLVq0SDExMfryyy/VqVOnSs+ZP3++5syZY/c1AQAAANQOV9YoAAAAgLupcVP/nXfekcFgUHh4uPLy8nTPPfdc8hyDwaB333232tcwGAw27y0WS4VjNdG/f3/179/f+j4mJkZXX321/va3v2nx4sWVnpOUlKTExETr+4KCArVr187uHNzdnj17HDrfaDQqPDzcSdkAAAAA1VcbNQoAAADgLmrc1JfON9kPHDigAwcOVGt8dRvyRqNRvr6+FWbl5+fnV5i97wgfHx9dc8012rdvX5VjAgICFBAQ4LRruqvCwkIZDAaNHTvWoThBQUHau3cvjX0AAADUCVfVKAAAAIC7qXFTv7oPyfbw9/dXVFSUMjMzNXLkSOvxzMxMjRgxwmnXsVgsysnJUc+ePZ0W01MVFRXJYrFo1KhRMhqNdsUwm83KyMiQ2WymqQ8AAIBa58oaBQAAAHA3NW7qR0REuCIPq8TERMXHx6tPnz6Kjo7W8uXLlZubq8mTJ0s6vyzO4cOHtWrVKus5OTk5ks7POj969KhycnLk7++vbt26SZLmzJmj/v37q1OnTiooKNDixYuVk5OjJUuWuPRePInRaFTr1q3rOg0AAACgxlxdowAAAADuxK7ld1xpzJgxOnbsmJKTk2UymdSjRw9t2rTJ+qBuMpmUm5trc07v3r2t/5ydna3XXntNEREROnjwoCTp+PHjuueee5SXl6eQkBD17t1b27ZtU9++fWvtvgAAAAAA57GnFwAAgP3crqkvSQkJCUpISKj0s7S0tArHLBbLReMtXLhQCxcudEZqAAAAAAA7sacXAACA49yyqQ8AAAAA8D7O3NMrKytLXbt2dSgfZvwDAABPRFMfAAAAAFCrHNnTy1mz/SVm/AMAAM9EUx8AAAAA4DGcMdtf+t+Mf7PZTFMfAAB4FJr6AAAAAACP48hsfwAAAE/mU9cJAAAAAAAAAACA6qGpDwAAAAAAAACAh6CpDwAAAAAAAACAh6CpDwAAAAAAAACAh6CpDwAAAAAAAACAh6CpDwAAAAAAAACAh6CpDwAAAAAAAACAh/Cr6wQAAAAAAKgre/bscTiG0WhUeHi4E7IBAAC4NJr6AAAAAIB6p7CwUAaDQWPHjnU4VlBQkPbu3UtjHwAA1Aqa+nAaZrgAAAAA8BRFRUWyWCwaNWqUjEaj3XHMZrMyMjKUlZWlrl27OpRTcXGxAgICHIohUVcBAODtaOrDYcxwAQAAAOCpjEajWrdubff5zqyHDAaDLBaLw3GoqwAA8G409eEwZ89wMZvNPHwCAAAA8AjOqof27dunLVu2UFcBAIBLoqkPp3F0hgsAAAAAeCpH6yGz2eyUOAAAwPvR1IfbYW1+AAAAAAAAAKgcTX24DdbmBwAAAAAAAICLo6kPt8Ha/AAAAAAAAABwcT51nUBlUlNT1b59ewUGBioqKkpZWVlVjjWZTLr99tt1xRVXyMfHR1OnTq103Pr169WtWzcFBASoW7du2rBhg4uyh6PK15C09+XIFwIAAAAAAAAA4M7crqmfnp6uqVOnasaMGdq1a5diY2M1bNgw5ebmVjq+uLhYLVq00IwZM3TVVVdVOmbnzp0aM2aM4uPj9eWXXyo+Pl6jR4/WZ5995spbAQAAAAAAAADAqdxu+Z0FCxZowoQJmjhxoiQpJSVFmzdv1tKlSzV//vwK4yMjI7Vo0SJJ0ooVKyqNmZKSoiFDhigpKUmSlJSUpI8//lgpKSlas2aNi+4EAAAAAIC6sWfPHofONxqNLGcKAICbcqumfklJibKzszV9+nSb43FxcdqxY4fdcXfu3Klp06bZHBs6dKhSUlKqPKe4uFjFxcXW9wUFBXZfH3XD0YdYiQdZAAAAAJ6lsLBQBoNBY8eOdShOUFCQ9u7dSz0EAIAbcqumvtlsVllZmUJDQ22Oh4aGKi8vz+64eXl5NY45f/58zZkzx+5rou446yFW4kEWAAAA56WmpurZZ5+VyWRS9+7dlZKSotjY2ErHmkwmPfjgg8rOzta+fft0//33X3RCEeBMRUVFslgsGjVqlN37jZnNZmVkZCgrK0tdu3Z1KB8mSgEA4Hxu1dQvZzAYbN5bLJYKx1wdMykpSYmJidb3BQUFateunUM5oHY44yFW4kEWAAAA55Xv+5WamqqYmBgtW7ZMw4YN0+7duyt9xvvtvl8LFy6sg4yB8zVI69at7TqXiVIAALg3t2rqG41G+fr6VphBn5+fX2GmfU2EhYXVOGZAQIACAgLsvibqniMPsRIPsgAAADjPFft+Ae7M2ROlzGYztRAAAE7kVk19f39/RUVFKTMzUyNHjrQez8zM1IgRI+yOGx0drczMTJt19T/44AMNGDDAoXzh3XiQBQAAgKv2/boQe3rBHTk6UQoAALiGWzX1JSkxMVHx8fHq06ePoqOjtXz5cuXm5mry5MmSzi+Lc/jwYa1atcp6Tk5OjqTzM6uPHj2qnJwc+fv7q1u3bpKkBx54QIMGDdLTTz+tESNG6K233tKHH36o7du31/r9wfPwIAsAAFB/uWrfrwuxpxcAAACqy+2a+mPGjNGxY8eUnJwsk8mkHj16aNOmTYqIiJB0ftOp3Nxcm3N69+5t/efs7Gy99tprioiI0MGDByVJAwYM0Ouvv67HHntMM2fOVIcOHZSenq5+/frV2n0BAAAA8Fyu2Pfrt9jTCwAAANXldk19SUpISFBCQkKln6WlpVU4ZrFYLhnzlltu0S233OJoagAAAADqEVft+3Uh9vSCN9uzZ4/DMYxGI8uZAgDwX27Z1AcAAAAAd+Cqfb+A+qCwsFAGg0Fjx451OFZQUJD27t1LYx8AANHUB2qNo7NTmJkCAABQN1yx7xdQHxQVFclisWjUqFEyGo12xzGbzcrIyFBWVpa6du3qUE7FxcUO/yqG2gwAUNdo6gMu5qzZKcxMAQAAqBuu2Perupr4GNRI5+zOvamfr8IaN1KwF8Vxp1y8NY6zc7m8ZQuFhtm/XJXvmdNq1aSxHpo8ye4Y5QwGQ7WW8L0Yf39/vfTSSw4vwVVSUix/f8eX3WrWrJnatGnjcBwAQN2ynCyo9lia+oCLOWN2ijNnpjCrBAAAoOZcse9XdQxv4q8WKrL7/F5hl2nADQPVOdhfDb0kjjvl4q1x3CkXSep1WUNFDY5RRHiEAgLtb4IXFBQoLy/PoTinTp3S4cOHlbtquXIvPbxW+Pj46PrrrlfDhkEOxQkICFSjxo2clBUAoKbKTp+u9lia+kAtMRqNat26tV3nshYlAABA/XTWIp2Wwe7zT5aV6djpMzp1ziJ5SRx3ysVb47hTLr+N08bfXwENG9odp+TUaYfjnPlvjE6dOikoyP4m+q+//qpDhw45HKeg4KQOHjygte+8Y3eMcr6+fho//i9q0iTY4VgAADuUnK32UJr6gAdwx7UomfEPAADgeiUWi8460AwtOmdRYclZFVskfy+J4065eGscd8rF3eKUx/AJDJJ/48Z256JTp50Sp+y/cbp27aqGDnzhcfr0ae3Zs0enzpYq2ME9BwAAdvLzr/5QF6YBwMkcme0vOXfGf0BAgNavX69WrVo5FIeNqgAAAADAMQ0bNlSTJg58yfBf5qNHnZJLSEiIw3EAAFWjqQ/UI86a8Z+bm6vNmzfrj3/8o8M5OWOjKmd9wcCXAwAAAADqo5KSEklSxoYNDsfy8/PTvffeS2MfAFyIpj5QDzk6499sNjvly4F9+/Zpy5YtDsVx5hcM7DcAAAAAoD4qLS2VJKct43P69Gma+gDgQjT1AdjNGV8OOBrHWV8wsN8AAAAAgPrOWcv4AABci6Y+AK/gTvsNMOMfAAAAAAAArkJTHwDkvP0Gymf8m81mmvoAAAAAAABwOpr6APAbjs74BwAAAID6znz0qEPnN2zYkDX5AeAiaOoDAAAAAADAYSUlJZKkjA0bHIrj6+urMaNHq3GTJg7FKSstla+f460vvmQA4G5o6tdQEx+DGumc3ec39fNVWONGCvaiOO6Ui7fGcadc3C2OO+UiScE+BoU1bqQDX38lv6IzdseRpJKSYvn7BzgUw1lxnJVLs2bN1KZNG4fjAEBtsJwsqOsUAADwKKWlpZKkrl27qmHDhnbFOHHihH744Qe9tmaNM1NziLO+ZODLAQDOQlO/hoY38VcLFdl9fq+wyzTghoHqHOyvhl4Sx51y8dY47pSLu8Vxp1wkqSDIR11uGKjjb76uz+2O4r18fX018qaRatS4UV2nAgCXVHb6dF2nAACAR2rYsKGaNGls17mn//u/v458MSBJx44d08GDBx2O48wvGZzx5QC/PgAg0dSvsbMW6bQMdp9/sqxMx06f0alzFslL4rhTLt4ax51ycbc47pSLJB0vKdGx02fUqVMnBQUF2R3n119/1aFDh9wijrNyOXPmjPbt26dTFosaBdHUB+ABSs7WdQYAANRbjnwxIP3vywFnxXGnLwecgV8fAJ6Npn4NlVgsOutAw6/onEWFJWdVbJH8vSSOO+XirXHcKRd3i+NOufw2jk9gkPwb2//gqFOn3SeOk3IptkiFJWeV/+txnfNrYHccidkpAGqJn39dZwAAANyEO3w54K2/PpCozYCaoqkPAKgVzto0y5n8/Px077338vAI1DNlZVLW15cp71iAwpoXK7bnr/L1reusAABAfeCMpYnc4QsGyblfDlCbATVDUx8AUCucsWmW5LzZKadPn9aePXt0+vRpHhyBemTDtpaa9kJX/Xw00HqsbYsiLbx3j0YOyq/DzIDK+RsMaiCL3ecH+hjU2L+BAgzymjjulIu3xnGnXNwtjjvl4q1x3CkXd4vj7Fwua9TQof3OzhWdUWP/Bk5bqrWo4ISCAwMvfQLgrUpLqj2Upj4AoFa5y9qY5cxHjzp0Pj8TBTzHhm0tNfrxXhVK4MNHAzT68V5aOyeHxj7cTgOD1NCBxk0TX181bxikRj4Gr4njTrl4axx3ysXd4rhTLt4ax51ycbc47pTLb+MYGzVUw4b2N/VP+xj0S8MgFebny6+k2O44khQQEOjQFxVAnSqt/p5ebtnUT01N1bPPPiuTyaTu3bsrJSVFsbGxVY7/+OOPlZiYqG+//VatW7fWX//6V02ePNn6eVpamv7yl79UOO/MmTMK5BtAAKiXnLUckLPWkGSfAMC1ysqkaS90/W/Zart3ikUGGWTRtBe66E8x+SzFA7ey6WSJwi+zv2bZk/erNn24XWPDIhXa8DKviONOuXhrHHfKxd3iuFMu3hrHnXJxtzjulIsz4/xoOqI3P/pElg+32x2jXGBgoLKystSmTRuHYwG1zbegoNpj3a6pn56erqlTpyo1NVUxMTFatmyZhg0bpt27dys8PLzC+AMHDmj48OG6++67tXr1an3yySdKSEhQixYtdPPNN1vHBQcH67vvvrM5l4Y+ANRfzlgOyJlrSDoLXzIAlcv6+jKbJXcuZJFBPx8NUtbXl+m6Xr/WYmbAxZ08Z9Ep+dh9/vHSMuUVnlLBOYsae0kcd8rFW+O4Uy7uFsedcvHWOO6Ui7vFcadcnBnnP6dOy3SyUKNGjZLRaLQ7jtlsVkZGhvJPn1HbJsF2xwHqiqEGP5xxu6b+ggULNGHCBE2cOFGSlJKSos2bN2vp0qWaP39+hfEvvviiwsPDlZKSIul8c+aLL77Qc889Z9PUNxgMCgsLq5V7AAB4DmdsVOUu+wS445cMbHgFd5F3LMCp4wAAAOBcRqNRrVu3djjOnj17HM6jsonFgDtxq6Z+SUmJsrOzNX36dJvjcXFx2rFjR6Xn7Ny5U3FxcTbHhg4dqpdffllnz55VgwYNJEmFhYWKiIhQWVmZevXqpblz56p3795V5lJcXKzi4v+t41VQg58/AADqF3fZJ8DdvmRgM2K4k7Dm1VuftbrjAAAA4F4KCwtlMBg0duxYh+IEBARo/fr1atWqlUNx+HIAruRWTX2z2ayysjKFhobaHA8NDVVeXl6l5+Tl5VU6vrS0VGazWa1atVKXLl2Ulpamnj17qqCgQIsWLVJMTIy+/PJLderUqdK48+fP15w5c5xzYwAA1CJ3+ZIBcCexPX9V2xZFOnw0QJYL1tSXJIMsatOiSLE9WXoHAADAExUVFclisTi0jE9ubq42b96sP/7xjw7nExQUpL1799LYh0u4VVO/nMFwweZlFkuFY5ca/9vj/fv3V//+/a2fx8TE6Oqrr9bf/vY3LV68uNKYSUlJSkxMtL4vKChQu3btanYjAABA5qNHHTqf9f3hDL6+0sJ792j0471kkMWmsW/47/a5C+/dyya5AAAAHs6RZXzMZrPDXwyUx8nIyFBWVpa6du1qdxyJGf+onFs19Y1Go3x9fSvMys/Pz68wG79cWFhYpeP9/PzUvHnzSs/x8fHRNddco3379lWZS0BAgAICWFMVAAB7lZSUSJIyNmyo40zOY31/jByUr7VzcjTtha42m+a2aVGkhffu1chB+XWYHQAAANyFo+v7O2spIInlgFA5t2rq+/v7KyoqSpmZmRo5cqT1eGZmpkaMGFHpOdHR0dq4caPNsQ8++EB9+vSxrqd/IYvFopycHPXs2bPmORoMaqAabEV8gUAfgxr7N1CAQV4Tx51y8dY47pSLu8Vxp1y8NY475eJucdwpF3eM43euTI39G6hTp04KCgqyK8avv/6qQ4cOORRDks6cOaN9+/apqOCEggMDL30CvNZN/Q7pxj6HtP2b5jL9EqhWzYo0sMcx+fpKlguX0y8tqZMcAQAA4NmcsRSQxHJAqJpbNfUlKTExUfHx8erTp4+io6O1fPly5ebmavLkyZLOL4tz+PBhrVq1SpI0efJkvfDCC0pMTNTdd9+tnTt36uWXX9aaNWusMefMmaP+/furU6dOKigo0OLFi5WTk6MlS5bUOL8GBqmhAw2OJr6+at4wSI18DF4Tx51y8dY47pSLu8Vxp1y8NY475eJucdwpF3eOY2zUUA0b2teQ9ysp0WkHY0jSaR+DfmkYJL+SYunMKbvjwDv4Srq282/+O6iqd196tjbSAQAAgJdydMa/s5cDMpvNNPW9hNs19ceMGaNjx44pOTlZJpNJPXr00KZNmxQRESFJMplMys3NtY5v3769Nm3apGnTpmnJkiVq3bq1Fi9erJtvvtk65vjx47rnnnuUl5enkJAQ9e7dW9u2bVPfvn1rnN+mkyUKv8z+GX578n7Vpg+3a2xYpEIbXuYVcdwpF2+N4065uFscd8rFW+O4Uy7uFsedcvHWOM7K5T8FJ7T6w+1qetOt6tTSsYfYZs2aqU2bNg7FgGfwLSio6xQAAAAAh78cKLdnzx6H8+BLAffgdk19SUpISFBCQkKln6WlpVU4du211+rf//53lfEWLlyohQsXOiW3k+csOiUfu88/XlqmvMJTKjhnUWMvieNOuXhrHHfKxd3iuFMu3hrHnXJxtzjulIu3xnFWLkcKTuo/p07rlnF/sTtGOWetaVlcXOzw/j08VLuWwf4fqgAAAABuw1lr/LOEj/twy6Y+AACAM7njmpYGg0EWi2NdYx6qa2j2bMnXV5o5s+Jnc+dKZWXnxwAAAABexBn1EEv4uBea+gAAoN5wlzUt9+3bpy1btvBQXdt8faVZs87/828b+3Pnnj+enFw3eQEAAAC1wFnL+KDu0dQHAACoIWd8OeCMOJLj62KW51Evvhgob+T/trH/24Z+ZTP4AQAAAMABZWVSVpZkMkmtWkmxsefnGzmCpj4AAIAHcta6mJLz9gnwiC8HftvYf+IJqaSEhj4AAAAAl8jIkB54QPr55/8da9tWWrRIGjXK/rg09QEAADyQO+4T4DFfDsyc+b+Gvr8/DX0AAAAATpeRId1yi3ThVmqHD58//sYb9jf2aeoDAAB4MHfZJ8CZXw64fAPguXP/19AvKTn/nsY+AAAAACcpKzs/Q//Chr50/pjBIE2dKo0YYd9SPDT1AQAA4DZfDrh8A+AL19Avfy/R2AcAAAAugT29qicrS5rw82yVyVdPqGKdMcMyV76HypSVNVvXXVfz+DT1AQAA4DTO2PzXZSrbFLeyzXMBAAAA2HDmnl4u/2WuGzCZpDL5aq7O1xm/bew/prmaq1maqWSZTPbFp6kPAACA+qGsrPJNccvfl5XVfk4AAACAB3DWnl4u/2Wum2jVSrr9v4383zb2f9vQf0IztcXO7cho6gMAAKB+mD276s+YoQ8AAABcklv/MteNxMZKbdtKTx6eKVnON/Yf0xMKUIlmKllPGmaqXdvz4+zh49x0AQAAAAAAAACov3x9pUWLzv/zk4aZKpa/AlSiYvnrScP5CUUpKfZtkisxUx8AAAAAAAAAUIucseFucXGxAgICHI7jqo17R42S3nhD+vEvcxVQUGJt7D/TZK4uXzlTo0bZH5umPgAAAAAAAADA5Zy54a7BYJDFYnE4jis37h317VypYJYO/CVZnw6Zqf6Zc/XQylnSt5JG2b8EKE19AAAAAAAAAIDLOWvD3X379mnLli3uvXHv3LnSrFlScrLaz5yp9pJ020ypvc4fl+ze24umPgAAAAAAAACg1ji64a7ZbHZKHJcqK5OSkys27svfl5XZHZqmPgAAAAAAAAAAzjR7dtWf2TlDv5yPQ2cDAAAAAAAAAIBaQ1MfAAAAAAAAAAAPQVMfAAAAAAAAAAAPQVMfAAAAAAAAAAAPQVMfAAAAAAAAAAAP4ZZN/dTUVLVv316BgYGKiopSVlbWRcd//PHHioqKUmBgoC6//HK9+OKLFcasX79e3bp1U0BAgLp166YNGza4Kn0AAAAAXsYVNQoAAABgD7dr6qenp2vq1KmaMWOGdu3apdjYWA0bNky5ubmVjj9w4ICGDx+u2NhY7dq1S48++qjuv/9+rV+/3jpm586dGjNmjOLj4/Xll18qPj5eo0eP1meffVZbtwUAAADAQ7miRgEAAADs5XZN/QULFmjChAmaOHGiunbtqpSUFLVr105Lly6tdPyLL76o8PBwpaSkqGvXrpo4caLGjx+v5557zjomJSVFQ4YMUVJSkrp06aKkpCQNHjxYKSkptXRXAAAAADyVK2oUAAAAwF5+dZ3Ab5WUlCg7O1vTp0+3OR4XF6cdO3ZUes7OnTsVFxdnc2zo0KF6+eWXdfbsWTVo0EA7d+7UtGnTKoy5WFO/uLhYxcXF1vcnTpyQJOXl5dXklio4evSoJMlkMqmkpMQr4rhTLt4ax51ycbc47pSLt8Zxp1zcLY475eKtcdwpF3eL4065ODPOsWPHJEmFhYUqKCiwO44zlF/fYrHUaR6oW66qUS5E/eGZuXhrHHfKxd3iuFMu3hrHnXJxtzjulIu3xnGnXNwtjjvl4sw4Hlt/WNzI4cOHLZIsn3zyic3xJ5980tK5c+dKz+nUqZPlySeftDn2ySefWCRZjhw5YrFYLJYGDRpYXn31VZsxr776qsXf37/KXB5//HGLJF68ePHixYsXL171/HXo0CF7Hm3hJVxVo1yI+oMXL168ePHixYuXVL36w61m6pczGAw27y0WS4Vjlxp/4fGaxkxKSlJiYqL1/blz5/TLL7+oefPmFz0PAAAA3sFisejkyZNq3bp1XacCN+CKGuW3qD8AAADqt5rUH27V1DcajfL19a3wE9P8/HyFhoZWek5YWFil4/38/NS8efOLjqkqpiQFBAQoICDA5ljTpk2reysAAADwAiEhIXWdAuqYq2qUC1F/AAAAoLr1h1ttlOvv76+oqChlZmbaHM/MzNSAAQMqPSc6OrrC+A8++EB9+vSxrlVZ1ZiqYgIAAACA5LoaBQAAALCXWzX1JSkxMVEvvfSSVqxYoT179mjatGnKzc3V5MmTJZ3/Weqdd95pHT958mT99NNPSkxM1J49e7RixQq9/PLLeuihh6xjHnjgAX3wwQd6+umntXfvXj399NP68MMPNXXq1Nq+PQAAAAAexhU1CgAAAGAvt1p+R5LGjBmjY8eOKTk5WSaTST169NCmTZsUEREh6fyOxrm5udbx7du316ZNmzRt2jQtWbJErVu31uLFi3XzzTdbxwwYMECvv/66HnvsMc2cOVMdOnRQenq6+vXrV+v3BwAAAMCzuKJGAQAAAOxlsJTv2AQAAAAAAAAAANya2y2/AwAAAAAAAAAAKkdTHwAAAAAAAAAAD0FTHwAAAAAAAAAAD0FTHwAAAAAAAAAAD0FTHwAAAAAAAAAAD0FTHwAAAAAAAAAAD0FTHwAAAAAAAAAAD0FTHwAAAAAAAAAAD0FTHwAAAAAAAAAAD0FTHwAAAAAAAAAAD0FTHwAAAAAAAAAAD0FTHwAAAAAAAAAAD0FTHwAAAAAAAAAAD0FTHwAAAAAAAAAAD0FTHwAAAAAAAAAAD0FTHwAAAAAAAAAAD0FTHwAAAAAAAAAAD0FTHwAAAAAAAAAAD0FTHwAAAAAAAAAAD0FTHwAAAAAAAAAAD0FTHwAAAAAAAAAAD0FTHwAAAAAAAAAAD0FTHwAAAAAAAAAAD0FTHwAAAAAAAAAAD0FTHwAAAAAAAAAAD0FTHwAAAAAAAAAAD0FTHwAAAAAAAAAAD0FTHwAAAAAAAAAAD0FTHwAAAAAAAAAAD0FTHwAAAAAAAAAAD0FTHwAAAAAAAAAAD0FTHwAAAAAAAAAAD0FTHwAAAAAAAAAAD0FTHwAAAAAAAAAAD0FTHwAAAAAAAAAAD0FTHwAAAAAAAAAAD0FTHwAAAAAAAAAAD0FTHwAAAAAAAAAAD0FTHwAAAAAAAAAAD0FTHwAAAAAAAAAAD0FTHwAAAAAAAAAAD0FTHwAAAAAAAAAAD0FTHwAAAAAAAAAAD0FTHwAAAAAAAAAAD0FTHwAAAAAAAAAAD0FTHwAAAAAAAAAAD0FTHwAAAAAAAAAAD0FTHwAAAAAAAAAAD0FTH0C9ExkZKYPBIIPBoDfffLPKcTfccIMMBoPS0tJsjqelpVnP9/f317Fjx6qMUVpaqpYtW1rHz549u9Jxmzdv1qhRo9SmTRv5+/uradOmuuKKK3TjjTfq+eef1/79+23GHzx40BrzUq+DBw9W8y9zabt379akSZPUuXNnBQUFqVGjRmrfvr2uu+46zZw5Uzt27KhwTvnf+8K/Y1XGjRtX4R4aNGigVq1a6U9/+pPee+89p93P1q1brde40HXXXXfRf2fl7rvvPmuMzMxMp+UGAAAA90VNYT9vqynK1fTv/1slJSVaunSpbrjhBoWFhcnf31+hoaH63e9+pyVLlqi4uLha9zp16tQqxz3xxBMyGAwaN26cA3cJwF341XUCAFCXZs+erREjRlTa1K2Os2fPKj09XQkJCZV+vnnzZh09evSiMe69914tWbJEktSoUSN16tRJDRs21E8//aR33nlH77zzjkwmk5577rlKz+/Tp48CAgKqjB8YGFjNu7m4V199VePHj1dJSYkaNGig8PBwNWvWTPn5+fr444/18ccf67333tMXX3zhlOu1bNlSnTp1kiQVFRXp+++/18aNG7Vx40YlJSVp3rx5TrmOI86ePavXX3/d+v4f//iHhgwZUocZAQAAoLZRU1Sft9YUjvz9v/32W40YMcLa9I+MjFSvXr105MgRbdmyRVu2bNGCBQv09ttvq3v37hfNY9myZfrrX/+q1q1bO+W+ALgvZuoDqLd8fX315Zdfav369Xad36lTJxkMBv3jH/+ockz5Z1dccUWln69Zs0ZLliyRj4+PFi1apGPHjunbb7/V559/rvz8fH377beaMWOGWrZsWeU11q1bp+3bt1f5CgsLs+v+fuvgwYOaMGGCSkpKNH78eP3888/64Ycf9K9//UsHDx6UyWTSCy+8oG7dujl8rXLDhg2z3sMXX3whs9mshx56SJI0f/587dy502nXstf7778vs9mspk2bSpIyMjJ06tSpuk0KAAAAtYaaovq8taZw5O+/f/9+xcbGav/+/br++uv1zTff6MCBA/rXv/6ln3/+WZ999pmuvvpq/fjjj9ZxVfH19VVRUZFbTH4C4Ho09QHUW7fddpskac6cObJYLDU+Pzw8XIMGDdKnn36qH374ocLnJ0+e1Ntvv6327dsrJiam0hivvPKKJGn8+PG6//77K8yO6datm5544gn99a9/rXF+zvT666+ruLhYV1xxhf7+979XeCANCwvTlClTtGrVKpfl4O/vr2eeeUa9evWy5lTXygusKVOmqHv37jp16pQ2bNhQx1kBAACgtlBTVJ+31hSO/P3Hjh2rX3/9VYMHD9b7779fYSZ+3759tXXrVl155ZX69ddfFR8fX2UeY8aMkY+Pj1566SX9/PPPDt8XAPdGUx9AvTV+/HhFRkbqm2++0dq1a+2KMXbsWEnS6tWrK3z2xhtv6MyZM7rjjjuq/Cnujz/+KEnWh0p3VZ5nz5495eNTd//TYTAYNHDgQEnSvn376iwPSTpx4oQ2btwoSbr99tt1++23S9JFZ1kBAADAu1BTVJ+31hT2/v0//PBDffrpp2rQoIFefvll+fv7VzquSZMmevHFFyVJO3fu1EcffVTpuK5du+rWW29VcXGxnnzyyRrlAsDz0NQHUG81aNBAM2bMkHR+Zs25c+dqHOPPf/6zAgMD9eqrr1b4rPyhvPwhvTLBwcGSpH/96181vnZtKs8zJydHZ8+erdNc7JkB5Qpr165VUVGRrrrqKnXr1k233367DAaDPvroI5lMprpODwAAALWAmqL6vLWmsPfvX/4l0PDhwxUREXHRsdHR0brqqqtszqvMrFmz5OvrqxUrVuinn36qUT4APAtNfQD12rhx43T55Zdrz549dv30MiQkRDfeeKN++OEHm/UYf/75Z23dulV9+/atcu1LSfr9738v6fzs7v/7v//T559/rrKysprfiIuV5/nDDz9o2LBheu+993T69Olaz8NiseiTTz6RJHXs2LHWr/9b5TPy77jjDknnN7QaMGCAysrK9Nprr9VlagAAAKhF1BTV4601hb1//x07dkiSrr322mpdZ9CgQZJ00X0ArrjiCt1+++0qKSlhtj7g5WjqA6jX/Pz8NHPmTElScnKyXQ+/5bNmfrvsyquvvqpz585ddEaNJD3yyCOKioqSxWLRiy++qL59+yo4OFgDBw7U9OnT9cUXX1zy+u3bt5fBYKj05ayf4N5www265557JEkfffSRhg8frpCQEF111VWaPHmy3nnnHZcXDiUlJfrrX/+qnJwcSdLo0aNder2LOXjwoLZv3y6DwaBbb73VepwleAAAAOofaorq8daawt6//+HDhyVJHTp0qNZ1ysddar388tn6aWlpOnDgQA3uBIAnoakPoN6Lj49Xp06d9N1331X6k9dLGTZsmIxGo9auXWv9Genq1avl5+dn0/CtTJMmTbR9+3Y9//zz6tq1qyTp9OnT+uSTT/T000/rmmuu0U033aTjx49XGaNPnz6KiYmp9NW7d+8a309Vli1bpvXr1+vaa6+Vr6+vSktL9dVXX2nZsmW68cYbddVVV+nrr7922vXee+89DRw4UAMHDlSfPn1kNBr13HPPSZKmTZtmXQezLqxevVoWi0WxsbFq166d9fjo0aPVoEEDffnll079WwAAAMC9UVNUjzfWFPb+/U+ePClJatSoUbWuUz6u/LyqdOzYUfHx8Tp79qzmzp1bw7sB4Clo6gOo93x9fa0za+bOnavS0tIand+gQQONHj1ax44d06ZNm5STk6NvvvlGQ4cOVYsWLS55fmBgoBITE7V7924dPnxYGRkZmjZtmtq3by9JeuuttzRq1Kgqz1+3bp22b99e6WvlypU1updLGTVqlLZu3apffvlFmZmZmjt3rvr27StJ+vbbb3XDDTfo6NGjTrlWfn6+PvnkE33yySfKyclRYGCghg0bpg0bNmjBggVOuYa9ytc2LZ+ZX85oNCouLk4Ss/UBAADqE2qK6vPGmsKev3+TJk0kSadOnarWNcrHlZ93MbNmzZKfn5/+8Y9/aP/+/TW5FQAegqY+AOh8c/aKK67QDz/8YFczNj4+XtL5Zm95w7f8WE20bt1aI0eO1IIFC/T999/rwQcflCRt2bLFuu6jOwgODtYNN9ygxx57TJ999pnWrVsnHx8f5efna/ny5U65xl133SWLxSKLxaLS0lLl5+dr06ZNuummm5wS317/+te/9N1336lBgwb685//XOHz8jX2X3vtNbs2SgMAAIBnoqaoGW+tKar792/Tpo0kVbvpXj6u/LyLad++vcaNG6fS0lIlJyfX9BYAeACa+gCg8zNrZs2aJcm+mTX9+/dXp06dtHHjRq1evVrBwcH605/+5FBOfn5+euaZZxQWFibpfDPZXd1yyy26+eabJbl3ns6watUqSdLZs2fVvHnzCmuOls/eP3z4sP75z3/WZaoAAACoRdQUjvHGmuJif/8BAwZIkj7++ONqxdq2bZskKTo6ulrjH3vsMTVo0ECvvvqqvv/++5qkDcAD0NQHgP+69dZb1a1bNx04cEBpaWk1Pv+OO+5QcXGx/vOf/+jmm29WUFCQwzn5+PgoIiJC0vlNndzZ5ZdfLsn983TE2bNnlZ6eLklq3ry5QkNDK301btxYEkvwAAAA1DfUFI7xxpqiqr9/+a9+N23apJ9++umiMT799FN9+eWXkqQxY8ZU67oREREaP368ysrKmK0PeCGa+gDwXz4+Pnr88cclSU888YR1g6rqio+P1+DBgzV48GDdfffd1TonPz//op8fP35cu3fvliR16tSpRvk406XylKQdO3ZIqts8Xe29996T2WxWo0aNdPDgQeXl5VX6Wr9+vSQpIyNDp0+fruOsAQAAUFuoKarmrTWFvX//IUOGqF+/fjp79qwmTJhQ5X8rJ0+e1KRJkyRJ/fr10+DBg6ud24wZM+Tv7681a9Zoz5491T4PgPujqQ8Av/HnP/9ZPXv21E8//VTj9SYvv/xyffjhh/rwww+r/ZPI4cOH64477tA///nPCg9xOTk5GjFihE6ePKlWrVpp6NChNcqnKuPGjZPBYNC4ceOqfc68efMUGxurNWvW6OTJkzafmUwmTZ48WVlZWTIYDLrrrruckmdNRUZGymAw2DUjqrrKZ96PHDnSOhu/MoMHD1arVq1UWFioDRs2uCwfAAAAuB9qisp5a03hyN//H//4h5o2baqPPvpIQ4cO1bfffmvz+eeff67rrrtOX331lZo2bVrjXwK3a9dOEydO1Llz56y/OAbgHfzqOgEAcCcGg0GPP/64brnlFpWVlbn8emVlZXrttdf02muvKTAwUB07dlRgYKCOHDmiI0eOSJKaNm2qtWvXqlGjRpXG+POf/6yAgIAqrzF//nzFxsY6lKfBYND27du1fft2+fj4qEOHDrrssst09OhRHTp0SKWlpfL19dWCBQsUFRVVaYz77rtPDz30UJXX2Lp1q3r06OFQnq50/Phxbdy4UdKlNyzz9fXVrbfeqoULF+of//iHdfNcAAAAeD9qisp5a03hyN+/U6dO2rZtm0aMGKEtW7aoR48eioyMVIsWLWQymfTzzz9LOv9lw1tvvWXXLxgeffRRrVixQkVFRY7fLAC3QVMfAC4watQo9erVSzk5OS6/1gcffKDNmzfrvffe0zfffKMjR47o+PHjaty4sfr166ehQ4dqypQpatmyZZUxvvjii4te49ixYzbv8/LyJEm9evWqdp7z5s3TkCFD9N577+mzzz7T4cOHdfDgQQUEBKhz584aNGiQ/u///k9XXnlllTEKCwtVWFhY5ec13Ujst8rKymQ2myVJV111VY3Ok6QGDRpU+Zm/v78kad26dSouLlZYWFi1fvI6duxYLVy4UB9++KHy8vKsm2MBAADA+1FTVOStNYWjf/+ePXtqz549eumll5SRkaGvv/5ahw8fVtOmTXXddddp1KhRuvvuuxUYGGjXfbVp00b33HOPFi9ebNf5ANyTwWKxWOo6CQBA7Th37pyaNWsmi8Win3/+WU2aNKnrlJzi3//+t6KionT99dfrn//8Z7XPy8jI0M0336wWLVpUWAvzyiuv1Ndff60lS5YoISHB2SkDAAAAHomaAgDqHmvqA0A98u233+rEiRO65557vObhW5J1rdIHH3ywRud99dVXkqSuXbvaHC8qKtK+ffsq/QwAAACoz6gpAKDu0dQHgHpkx44d8vPz0/3331/XqTjVjh071KVLFw0fPrza5+zZs0fLly+XJN14443W4xaLRY8++qiKiorUrFkzxcTEOD1fAAAAwFNRUwBA3WP5HQBAvbJ48WItW7ZM33//vUpLS9W5c2f9+9//lsVi0ZAhQ7Rv3z7rmqHLly/X3XffXccZAwAAAAAA/A8z9QEA9cqPP/6o77//Xq1bt1ZCQoKysrLUqFEjlZaW6tNPP1VJSYkGDhyoN954g4Y+AAAAAABwO8zUBwAAAAAAAADAQzBTHwAAAAAAAAAAD+FX1wnYKzU1Vc8++6xMJpO6d++ulJQUxcbGVjp269atuv766ysc37Nnj7p06VKt6507d05HjhxRkyZNZDAYHModAAAA7s9isejkyZNq3bq1fHyYC4PaRf0BAABQv9Sk/vDIpn56erqmTp2q1NRUxcTEaNmyZRo2bJh2796t8PDwKs/77rvvFBwcbH3fokWLal/zyJEjateunUN5AwAAwPMcOnRIbdu2res0UM9QfwAAANRP1ak/PHJN/X79+unqq6/W0qVLrce6du2qm266SfPnz68wvnym/q+//qqmTZvadc0TJ06oadOmOnTokM0XAwAAAPBOBQUFateunY4fP66QkJC6Tgf1DPUHAABA/VKT+sPjZuqXlJQoOztb06dPtzkeFxenHTt2XPTc3r17q6ioSN26ddNjjz1W6ZI85YqLi1VcXGx9f/LkSUlScHAwD9UAAAD1CEufoC6U/3dH/QEAAFC/VKf+8LjFQc1ms8rKyhQaGmpzPDQ0VHl5eZWe06pVKy1fvlzr169XRkaGrrjiCg0ePFjbtm2r8jrz589XSEiI9cVPXwEAAAAAAAAAdc3jZuqXu/AbC4vFUuW3GFdccYWuuOIK6/vo6GgdOnRIzz33nAYNGlTpOUlJSUpMTLS+L//5AwAAAAAAAAAAdcXjmvpGo1G+vr4VZuXn5+dXmL1/Mf3799fq1aur/DwgIEABAQF25wkAALxbWVmZzp49W9dpwEH+/v7y8fG4H68CAACgnqH+8A7Oqj88rqnv7++vqKgoZWZmauTIkdbjmZmZGjFiRLXj7Nq1S61atXJFigAAwItZLBbl5eXp+PHjdZ0KnMDHx0ft27eXv79/XacCAAAAVED94V2cVX94XFNfkhITExUfH68+ffooOjpay5cvV25uriZPnizp/NI5hw8f1qpVqyRJKSkpioyMVPfu3VVSUqLVq1dr/fr1Wr9+fV3eBgAA8EDlD9QtW7ZUw4YN2UTVg507d05HjhyRyWRSeHg4/y4BAADgdqg/vIcz6w+PbOqPGTNGx44dU3Jyskwmk3r06KFNmzYpIiJCkmQymZSbm2sdX1JSooceekiHDx9WUFCQunfvrnfffVfDhw+vq1sAAAAeqKyszPpA3bx587pOB07QokULHTlyRKWlpWrQoEFdpwMAAABYUX94H2fVHwaLxWJxYl5eq6CgQCEhITpx4oSCg4PrOh0AAFAHioqKdODAAUVGRiooKKiu04ETnDlzRgcPHlT79u0VGBho8xnPf6hL/PcHAACoP7yPs+oPj5ypX5dycnLUuHFjh2IYjUaFh4c7KSMAAFDb+Mmr9+DfJdwd9QcAAOCZ1Xs4698lTf0auvbaax2OERQUpL179/JgDQAAALiB1NRUPfvsszKZTOrevbtSUlIUGxtb6djt27frkUce0d69e3X69GlFRERo0qRJmjZtmnVMWlqa/vKXv1Q498yZMxVmZF0K9QcAAAAuRFO/hm688Ua1atXK7vPNZrMyMjJkNpt5qAYAAADqWHp6uqZOnarU1FTFxMRo2bJlGjZsmHbv3l3p83qjRo1077336sorr1SjRo20fft2TZo0SY0aNdI999xjHRccHKzvvvvO5tyaNvQl6g8AAABURFO/hpo3b67WrVvXdRoAAMCDlZVJWVmSySS1aiXFxkq+vnWdFVA/LViwQBMmTNDEiRMlSSkpKdq8ebOWLl2q+fPnVxjfu3dv9e7d2/o+MjJSGRkZysrKsmnqGwwGhYWFOZwf9QcAAHAU9Yf38anrBAAAAOqTjAwpMlK6/nrp9tvP/9/IyPPHXcFgMFz0NW7cOOu4N998s8L548aN00033VTl+/z8fE2aNEnh4eEKCAhQWFiYhg4dqp07d1aZ0+zZs63X9/HxUevWrXXHHXfo0KFDNuMiIyOVkpJS4fyUlBRFRkZWiDd58mSbcTk5OTIYDDp48GCVuaB+KykpUXZ2tuLi4myOx8XFaceOHdWKsWvXLu3YsaPCMjmFhYWKiIhQ27Zt9cc//lG7du26aJzi4mIVFBTYvAAAABxF/eGd9QdNfQAAgFqSkSHdcov088+2xw8fPn/cFQ/WJpPJ+kpJSVFwcLDNsUWLFjkU/+abb9aXX36pV155Rd9//73efvttXXfddfrll18uel737t1lMpn0888/Kz09XV9//bVGjx5tdx6BgYF6+eWX9f3339sdA/WP2WxWWVmZQkNDbY6HhoYqLy/voue2bdtWAQEB6tOnj6ZMmWKd6S9JXbp0UVpamt5++22tWbNGgYGBiomJ0b59+6qMN3/+fIWEhFhf7dq1c+zmAABAvUf98T/eVn+w/A4AAEAtKCuTHnhAslgqfmaxSAaDNHWqNGKEc38K+9vlP0JCQpy2JIgkHT9+XNu3b9fWrVuts5QjIiLUt2/fS57r5+dnzaN169a6++67df/996ugoEDBwcE1zuWKK65Qy5Yt9dhjj2nt2rU1Ph/1m8FgsHlvsVgqHLtQVlaWCgsL9emnn2r69Onq2LGjbrvtNklS//791b9/f+vYmJgYXX311frb3/6mxYsXVxovKSlJiYmJ1vcFBQU09gEAgN2oP2x5W/3BTH0AAIBakJVVcYbMb1ks0qFD58d5isaNG6tx48Z68803VVxcbHecvLw8ZWRkyNfXV74OVBRPPfWU1q9fr88//9zuGKhfjEajfH19K8zKz8/PrzB7/0Lt27dXz549dffdd2vatGmaPXt2lWN9fHx0zTXXXHSmfkBAgIKDg21eAAAA9qL+qJo31B809QEAAGqByeTcca5w2223WR+Uy1+vvvpqleP9/PyUlpamV155RU2bNlVMTIweffRRffXVV5e81tdff63GjRurYcOGatWqlbZu3aopU6aoUaNGdud/9dVXa/To0Zo+fbrdMVC/+Pv7KyoqSpmZmTbHMzMzNWDAgGrHsVgsFy0sLRaLcnJy1KpVK7tzBQAAqAnqD1veVn/Q1AcAAKgF1e3l1WXPb+HChcrJybF5/elPf7roOTfffLOOHDmit99+W0OHDtXWrVt19dVXKy0t7aLnXXHFFcrJydHnn3+uJ598Ur169dKTTz7p8D088cQTysrK0gcffOBwLNQPiYmJeumll7RixQrt2bNH06ZNU25urnXjs6SkJN15553W8UuWLNHGjRu1b98+7du3TytXrtRzzz2nsWPHWsfMmTNHmzdv1o8//qicnBxNmDBBOTk5FTZTAwAAcBXqD1veVn+wpj4AAEAtiI2V2rY9vylVZetaGgznP4+Nrf3cyoWFhaljx442x5o0aaLjx49f9LzAwEANGTJEQ4YM0axZszRx4kQ9/vjjGjduXJXn+Pv7W6/VvXt37du3T//3f/+nf/zjH9YxwcHBOnHiRIVzjx8/rpCQkErjdujQQXfffbemT5+ul19++aJ5A5I0ZswYHTt2TMnJyTKZTOrRo4c2bdqkiIgISec3e8vNzbWOP3funJKSknTgwAH5+fmpQ4cOeuqppzRp0iTrmOPHj+uee+5RXl6eQkJC1Lt3b23btq1a670CAAA4A/WHLW+rP5ipDwAAUAt8faVFi87/84X7b5a/T0lx7iZVdaVbt246depUjc6ZOXOm1qxZo3//+9/WY126dKl0fcrPP/9cV1xxRZWxZs2ape+//16vv/56jXJA/ZWQkKCDBw+quLhY2dnZGjRokPWztLQ0bd261fr+vvvu0zfffKNTp07pxIkT+ve//63/+7//k4/P/0qrhQsX6qefflJxcbHy8/O1efNmRUdH1+YtAQCAeo764+I8vf6gqQ8AAFBLRo2S3nhDatPG9njbtuePjxpVN3nZ69ixY/rd736n1atX66uvvtKBAwe0bt06PfPMMxoxYkSNYl1++eUaMWKEZs2aZT2WmJio9957T8nJydq9e7d2796tuXPn6v3339eDDz5YZazQ0FAlJiZq8eLFdt8bAAAA4OmoP6rm6fUHy+8AAADUolGjpBEjpKys85tStWp1/ievnjhDpnHjxurXr58WLlyo/fv36+zZs2rXrp3uvvtuPfroozWO9+CDDyomJkafffaZ+vXrp/79+2vz5s1KTk5WSkqKpPM/ld28ebP69et30VgPP/ywli5dqqKiIntuDQAAAPAK1B9V8+T6w2CxVLaqEi5UUFCgkJAQjRs3TpGRkXbHOXLkiJYvX67s7GxdffXVzksQAAC4XFFRkQ4cOKD27dsrMDCwrtOBE1zs32n589+JEycUHBxcRxmivqL+AAAA1B/ex1n1B8vvAAAAAAAAAADgIWjqAwAAAAAAAADgIWjqAwAAAAAAAADgIWjqAwAAAAAAAADgIWjqAwAAAAAAAADgIWjqAwAAAAAAAADgIWjqAwAAAAAAAADgIWjqAwAAAAAAAADgIWjqAwAAAAAAAADgIWjqAwAA1APjxo2TwWCwvpo3b67f//73+uqrryqMveeee+Tr66vXX3+9wmenTp3SI488ossvv1yBgYFq0aKFrrvuOr3zzjvWMdddd53NtcpfkydPto4xGAx68803K81169atMhgMOn78uM37Hj16qKyszGZs06ZNlZaWZn0fGRlZ6bWfeuqpGvy1AAAAADiC+sO19QdNfQAAgNoye7Y0d27ln82de/5zF/r9738vk8kkk8mkjz76SH5+fvrjH/9oM+b06dNKT0/Xww8/rJdffrlCjMmTJ+vNN9/UCy+8oL179+r999/XzTffrGPHjtmMu/vuu63XKn8988wzDuW/f/9+rVq16pLjkpOTK1z7vvvuc+jaAAAAgMeh/nAof3euP/xcGh0AAAD/4+srzZp1/p9nzvzf8blzzx9PTnbp5QMCAhQWFiZJCgsL0yOPPKJBgwbp6NGjatGihSRp3bp16tatm5KSktSqVSsdPHhQkZGR1hgbN27UokWLNHz4cEnnZ6ZERUVVuFbDhg2t13KW++67T48//rhuu+02BQYGVjmuSZMmTr82AAAA4HGoPxzizvUHM/UBAABqy8yZ5x+cZ83634yZ3z5Q//ZB28UKCwv16quvqmPHjmrevLn1+Msvv6yxY8cqJCREw4cP18qVK23OCwsL06ZNm3Ty5Mlay7Xc1KlTVVpaqhdeeKHWrw0AAAB4HOoPh7hz/UFTHwAAoDb99sE6IKBWH6jfeecdNW7cWI0bN1aTJk309ttvKz09XT4+5x8J9+3bp08//VRjxoyRJI0dO1YrV67UuXPnrDGWL1+uHTt2qHnz5rrmmms0bdo0ffLJJxWulZqaar1W+euVV15xKP+GDRvq8ccf1/z583XixIkqxz3yyCMVrr1161aHrg0AAAB4JOoPu7lz/UFTHwAAoLbNnCn5+0slJef/by3NkLn++uuVk5OjnJwcffbZZ4qLi9OwYcP0008/STo/S2bo0KEyGo2SpOHDh+vUqVP68MMPrTEGDRqkH3/8UR999JFuvvlmffvtt4qNjdXcC9bqvOOOO6zXKn+NHDnS4XuYMGGCjEajnn766SrHPPzwwxWu3a9fP4evDQAAAHgk6g+7uWv9QVMfAACgts2d+78H6pKSqjevcrJGjRqpY8eO6tixo/r27auXX35Zp06d0t///neVlZVp1apVevfdd+Xn5yc/Pz81bNhQv/zyS4UNqxo0aKDY2FhNnz5dH3zwgZKTkzV37lyVlJRYx4SEhFivVf4KDg52+B78/Pz0xBNPaNGiRTpy5EilY4xGY4VrBwUFOXxtAAAAwCNRf9jNXesPmvoAAAC16bdrWBYXV1zjshYZDAb5+PjozJkz1nUqd+3aZTPDZN26dXrzzTd17NixKuN069ZNpaWlKioqqpW8//znP6t79+6aM2dOrVwPAAAA8FjUHw5zx/rDr64TAAAAqDcq25Sq/P/OmmX73gWKi4uVl5cnSfr111/1wgsvqLCwUDfeeKNSUlL0hz/8QVdddZXNOd27d9fUqVO1evVqPfDAA7ruuut02223qU+fPmrevLl2796tRx99VNdff73NTJjTp09br1UuICBAl112mfX9gQMHlJOTYzOmY8eO1bqXp556SkOHDq30s5MnT1a4dsOGDZ0yUwcAAADwGNQfXlt/MFMfAACgtpSVVb4pVfnmVWVlLr38+++/r1atWqlVq1bq16+fPv/8c61bt05du3bVu+++q5tvvrnCOQaDQaNGjbL+BHbo0KF65ZVXFBcXp65du+q+++7T0KFDtXbtWpvz/v73v1uvVf667bbbbMYkJiaqd+/eNq8vvviiWvfyu9/9Tr/73e9UWlpa4bNZs2ZVuPZf//rX6v6ZUA+lpqaqffv2CgwMVFRUlLKysqocu337dsXExKh58+YKCgpSly5dtHDhwgrj1q9fr27duikgIEDdunXThg0bXHkLAAAAFVF/2IzxpvrDYLFYLC69gpcoKChQSEiIxo0bp8jISLvjHDlyRMuXL1d2drauvvpq5yUIAABcrqioSAcOHLA2/+D5LvbvtPz578SJE8zy92Lp6emKj49XamqqYmJitGzZMr300kvavXu3wsPDK4zftWuX9u7dqyuvvFKNGjXS9u3bNWnSJC1cuFD33HOPJGnnzp3WDdxGjhypDRs2aNasWdq+fXu1N02j/gAAANQf3sdZ9Qcz9QEAAADUWwsWLNCECRM0ceJEde3aVSkpKWrXrp2WLl1a6fjevXvrtttuU/fu3RUZGamxY8dq6NChNrP7U1JSNGTIECUlJalLly5KSkrS4MGDlZKSUkt3BQAAAG/msU39mvxE9rc++eQT+fn5qVevXq5NEAAAAIBbKykpUXZ2tuLi4myOx8XFaceOHdWKsWvXLu3YsUPXXnut9djOnTsrxBw6dOhFYxYXF6ugoMDmBQAAAFTGI5v66enpmjp1qmbMmKFdu3YpNjZWw4YNU25u7kXPO3HihO68804NHjy4ljIFAAAA4K7MZrPKysoUGhpqczw0NLTCZmcXatu2rQICAtSnTx9NmTJFEydOtH6Wl5dX45jz589XSEiI9dWuXTs77ggAAAD1gUc29Wv6E9lykyZN0u23367o6OhayhQAAACAuzMYDDbvLRZLhWMXysrK0hdffKEXX3xRKSkpWrNmjUMxk5KSdOLECevr0KFDNbwLAAAA1Bd+dZ1ATZX/RHb69Ok2xy/1E9mVK1dq//79Wr16tZ544olLXqe4uFjFxcXW9/z8FQAAAPAuRqNRvr6+FWbQ5+fnV5hpf6H27dtLknr27Kn//Oc/mj17tm677TZJUlhYWI1jBgQEKCAgwJ7bAAAAQD3jcTP17fmJ7L59+zR9+nS9+uqr8vOr3vcY/PwVAAAA8G7+/v6KiopSZmamzfHMzEwNGDCg2nEsFovNhKDo6OgKMT/44IMaxQQAAACq4nEz9ctV9+esZWVluv322zVnzhx17ty52vGTkpKUmJhofV9QUEBjHwAAAPAyiYmJio+PV58+fRQdHa3ly5crNzdXkydPlnS+Ljh8+LBWrVolSVqyZInCw8PVpUsXSdL27dv13HPP6b777rPGfOCBBzRo0CA9/fTTGjFihN566y19+OGH2r59e+3fIAAAALyOxzX1a/oT2ZMnT+qLL77Qrl27dO+990qSzp07J4vFIj8/P33wwQf63e9+V+E8fv4KAAAAeL8xY8bo2LFjSk5OlslkUo8ePbRp0yZFRERIkkwmk3Jzc63jz507p6SkJB04cEB+fn7q0KGDnnrqKU2aNMk6ZsCAAXr99df12GOPaebMmerQoYPS09PVr1+/Wr8/AAAAeB+Pa+r/9ieyI0eOtB7PzMzUiBEjKowPDg7W119/bXMsNTVV//znP/XGG29Y18IEAAAAUD8lJCQoISGh0s/S0tJs3t933302s/Krcsstt+iWW25xRnoAAACADY9r6ks1+4msj4+PevToYXN+y5YtFRgYWOE4AACAPSxFZ6SzZ2vvgg0ayBAYVHvXAwAAAOA2qD/gkU39mv5EFgAAwFUsRWd0blumLKdP1do1DQ0byWfQkBo9WI8bN07Hjx/Xm2++WeGzyMhI/fTTTxWOz58/X9OnT9fBgwfVvn17tWjRQvv371eTJk2sY3r16qWbbrpJs2fPliT9+OOPmjFjhj7++GP98ssvMhqNioqK0rPPPqvOnTvr4MGDmjt3rv75z38qLy9PrVu31tixYzVjxgz5+/vX+G8BAAAA1CfUH9Qfkoc29aWa/UT2QrNnz7b+iwcAAHDI2bPnH6j9GkgNauGh8GzJ+eudPSs5cbZMcnKy7r77bptjv314ls7vVfTcc89pzpw5lcYoKSnRkCFD1KVLF2VkZKhVq1b6+eeftWnTJp04cUKStHfvXp07d07Lli1Tx44d9c033+juu+/WqVOn9NxzzzntfgAAAACvRP1hVZ/rD49t6gMAALiVBv4yBAS4/DIWSSp1/k9tmzRporCwsIuOue+++7RgwQJNmTJFLVu2rPD57t279eOPP+qf//yn9ReUERERiomJsY75/e9/r9///vfW95dffrm+++47LV261KMfqgEAAIBaRf1Rr+sPn7pOAAAAAJ7htttuU8eOHZWcnFzp5y1atJCPj4/eeOMNlZWVVTvuiRMn1KxZM2elCQAAAMALUH9UjaY+AAAA9Mgjj6hx48Y2r61bt9qMMRgMeuqpp7R8+XLt37+/Qow2bdpo8eLFmjVrli677DL97ne/09y5c/Xjjz9Wed39+/frb3/7myZPnuzsWwIAAADgpqg/HENTHwAAAHr44YeVk5Nj8+rXr1+FcUOHDtXAgQM1c+bMSuNMmTJFeXl5Wr16taKjo7Vu3Tp1795dmZmZFcYeOXJEv//97/XnP/9ZEydOdPo9AQAAAHBP1B+OoakPAAAAGY1GdezY0eYVFFT5RlhPPfWU0tPTtWvXrko/b9Kkif70pz/pySef1JdffqnY2Fg98cQTNmOOHDmi66+/XtHR0Vq+fLnT7wcAAACA+6L+cAxNfQAAANRI3759NWrUKE2fPv2SYw0Gg7p06aJTp05Zjx0+fFjXXXedrr76aq1cuVI+PjySAgAAAKgc9UdFfnWdAAAAAGrHiRMnlJOTY3OsfIOokydPKi8vz+azhg0bKjg4uNJYTz75pLp37y4/v/89Tubk5Ojxxx9XfHy8unXrJn9/f3388cdasWKFHnnkEUnnZ8hcd911Cg8P13PPPaejR49azw8LC3PGbQIAAABwA9QfrkNTHwAAwBnOlshSS9ex19atW9W7d2+bY3fddZckadasWZo1a5bNZ5MmTdKLL75YaazOnTtr/PjxNj9dbdu2rSIjIzVnzhwdPHhQBoPB+n7atGmSpA8++EA//PCDfvjhB7Vt29YmpsVSK39BAAAAwPNRf9Tr+sNg8eTsa1FBQYFCQkI0btw4RUZG2h3nyJEjWr58ubKzs3X11Vc7L0EAAOByRUVFOnDggNq3b6/AwEBJkqXojM5ty5Tl9KlLnO08hoaN5DNoiAyBla85ieqr7N9pufLnvxMnTlQ5YwhwFeoPAABA/eF9nFV/MFMfAADAAYbAIPkMGiKdPVt7F23QgAdqAAAAoB6i/oBEUx8AAMBhhsAgiYdcAAAAALWA+gOev9UvAAAAAAAAAAD1BE19AAAAAAAAAAA8BE19AAAAAAAAAAA8BE19AAAAAAAAAAA8BE19AAAAAAAAAAA8BE19AAAAAAAAAAA8BE19AAAAAAAAAAA8hF9dJwAAAODpcnNzZTaba+16RqNR4eHhtXY9wNulpqbq2WeflclkUvfu3ZWSkqLY2NhKx2ZkZGjp0qXKyclRcXGxunfvrtmzZ2vo0KHWMWlpafrLX/5S4dwzZ84oMDDQZfcBAADqB+oP0NQHAABwQG5urrp06aIzZ87U2jWDgoK0d+/eGj9Y5+Xl6cknn9S7776rw4cPq2XLlurVq5emTp2qwYMHKzIyUj/99JPWrFmjW2+91ebc7t27a/fu3Vq5cqXGjRsnSYqMjNTUqVM1depU6/uffvrJmuPll1+u++67T5MmTbLGKS4uVnJyslavXq28vDy1bdtWM2bM0Pjx4+3/gwAOSE9P19SpU5WamqqYmBgtW7ZMw4YN0+7duyv9/7Ft27ZpyJAhmjdvnpo2baqVK1fqxhtv1GeffabevXtbxwUHB+u7776zOZeGPgAAcBT1B/WHRFMfAADAIWazWWfOnNGoUaNkNBpr5XoZGRkym801eqg+ePCgYmJi1LRpUz3zzDO68sordfbsWW3evFlTpkzR3r17JUnt2rXTypUrbR6qP/30U+Xl5alRo0aXvE5ycrLuvvtuFRYWKi0tTZMnT1bTpk01ZswYSdLo0aP1n//8Ry+//LI6duyo/Px8lZaW1vCvADjPggULNGHCBE2cOFGSlJKSos2bN2vp0qWaP39+hfEpKSk27+fNm6e33npLGzdutGnqGwwGhYWFuTR3AABQ/1B/2Kqv9QdNfQAAACcwGo1q3bp1XadRpYSEBBkMBv3rX/+yeTju3r27zSyVO+64QwsXLtShQ4fUrl07SdKKFSt0xx13aNWqVZe8TpMmTayNzCeeeEJr167Vm2++qTFjxuj999/Xxx9/rB9//FHNmjWTdH52DVBXSkpKlJ2drenTp9scj4uL044dO6oV49y5czp58qT1v+lyhYWFioiIUFlZmXr16qW5c+faNP0vVFxcrOLiYuv7goKCGtwJAACob6g/zquv9Qcb5QIAAHi5X375Re+//76mTJlS6WyXpk2bWv85NDRUQ4cO1SuvvCJJOn36tNLT0+3+eWpgYKDOnj0rSXr77bfVp08fPfPMM2rTpo06d+6shx56qFZ/Ogz8ltlsVllZmUJDQ22Oh4aGKi8vr1oxnn/+eZ06dUqjR4+2HuvSpYvS0tL09ttva82aNQoMDFRMTIz27dtXZZz58+crJCTE+iovagEAADwN9Yfr0dQHAADwcj/88IMsFou6dOlSrfHjx49XWlqaLBaL3njjDXXo0EG9evWq0TVLS0uVlpamr7/+WoMHD5Yk/fjjj9q+fbu++eYbbdiwQSkpKXrjjTc0ZcqUmt4S4FQGg8HmvcViqXCsMmvWrNHs2bOVnp6uli1bWo/3799fY8eO1VVXXaXY2FitXbtWnTt31t/+9rcqYyUlJenEiRPW16FDh+y/IQAAgDpE/eF6NPUBAAC8nMVikVSxcVmVP/zhDyosLNS2bdu0YsWKGs2SeeSRR9S4cWMFBQVpypQpevjhh60bVZ07d04Gg0Gvvvqq+vbtq+HDh2vBggVKS0vzitky8DxGo1G+vr4VZuXn5+dXmL1/ofT0dE2YMEFr167VDTfccNGxPj4+uuaaay46Uz8gIEDBwcE2LwAAAE9E/eF6NPUBAAC8XKdOnWQwGLRnz55qjffz81N8fLwef/xxffbZZ7rjjjuqfa2HH35YOTk5+umnn1RYWKhnnnlGPj7nHzlbtWqlNm3aKCQkxDq+a9euslgs+vnnn2t2U4AT+Pv7KyoqSpmZmTbHMzMzNWDAgCrPW7NmjcaNG6fXXntNf/jDHy55HYvFopycHLVq1crhnAEAANwd9Yfr0dQHAADwcs2aNdPQoUO1ZMkSnTp1qsLnx48fr3Bs/Pjx+vjjjzVixAhddtll1b6W0WhUx44d1bp16wozc2JiYnTkyBEVFhZaj33//ffy8fFR27Ztq39DgBMlJibqpZde0ooVK7Rnzx5NmzZNubm5mjx5sqTzy+Lceeed1vFr1qzRnXfeqeeff179+/dXXl6e8vLydOLECeuYOXPmaPPmzfrxxx+Vk5OjCRMmKCcnxxoTAADAm1F/uB5NfQAAgHogNTVVZWVl6tu3r9avX699+/Zpz549Wrx4saKjoyuM79q1q8xms1auXOm0HG6//XY1b95cf/nLX7R7925t27ZNDz/8sMaPH6+goCCnXQeoiTFjxiglJUXJycnq1auXtm3bpk2bNikiIkKSZDKZlJubax2/bNkylZaWasqUKWrVqpX19cADD1jHHD9+XPfcc4+6du2quLg4HT58WNu2bVPfvn1r/f4AAADqAvWHa/nVdQIAAADewGw2u/V12rdvr3//+9968skn9eCDD8pkMqlFixaKiorS0qVLKz2nefPmjqRaQePGjZWZman77rtPffr0UfPmzTV69Gg98cQTTr0OUFMJCQlKSEio9LO0tDSb91u3br1kvIULF2rhwoVOyAwAAKBy1B+X5s31B019AAAABxiNRgUFBSkjI6PWrhkUFCSj0Vjj81q1aqUXXnhBL7zwQqWfHzx48KLnX/gz2QvHX+p8SerSpUuF9csBAAAAVA/1R/XPl7y3/qCpDwAA4IDw8HDt3bu31mbKSOcf5MPDw2vtegAAAADcA/UHJJr6AAAADgsPD+chFwAAAECtoP4AG+UCAAAAAAAAAOAhaOoDAAAAAAAAAOAhaOoDAAAAAAAAAOAhaOoDAADU0Llz5+o6BTiJxWKp6xQAAACAi6L+8B7Oqj/YKBcAAKCa/P395ePjoyNHjqhFixby9/eXwWCo67RgJ4vFoqNHj8pgMKhBgwZ1nQ4AAABgg/rDuziz/vDYpn5qaqqeffZZmUwmde/eXSkpKYqNja107Pbt2/XII49o7969On36tCIiIjRp0iRNmzatlrMGAACezMfHR+3bt5fJZNKRI0fqOh04gcFgUNu2beXr61vXqQAAAAA2qD+8j7PqD49s6qenp2vq1KlKTU1VTEyMli1bpmHDhmn37t0KDw+vML5Ro0a69957deWVV6pRo0bavn27Jk2apEaNGumee+6pgzsAAACeyt/fX+Hh4SotLVVZWVldpwMHNWjQgIY+AAAA3Bb1h3dxVv3hkqb+4sWL1b9/f/Xt29d6LD8/X3l5ebryyisrjH/rrbf01ltvacWKFdWKv2DBAk2YMEETJ06UJKWkpGjz5s1aunSp5s+fX2F879691bt3b+v7yMhIZWRkKCsri6Y+AACosfKfS7JkC+B6rq4tAAAA3B31By7kko1yp06dqvfff9/m2NKlS20a67+Vk5OjV155pVqxS0pKlJ2drbi4OJvjcXFx2rFjR7Vi7Nq1Szt27NC1115b5Zji4mIVFBTYvAAAAADULlfWFgAAAIAncklT35XMZrPKysoUGhpqczw0NFR5eXkXPbdt27YKCAhQnz59NGXKFOtM/8rMnz9fISEh1le7du2ckj8AAAAAAAAAAPbyuKZ+uQt3erZYLJfc/TkrK0tffPGFXnzxRaWkpGjNmjVVjk1KStKJEyesr0OHDjklbwAAAAAAAAAA7OVxG+UajUb5+vpWmJWfn59fYfb+hdq3by9J6tmzp/7zn/9o9uzZuu222yodGxAQoICAAOckDQAAAAAAAACAE3jcTH1/f39FRUUpMzPT5nhmZqYGDBhQ7TgWi0XFxcXOTg8AAAAAAAAAAJfxuJn6kpSYmKj4+Hj16dNH0dHRWr58uXJzczV58mRJ55fOOXz4sFatWiVJWrJkicLDw9WlSxdJ0vbt2/Xcc8/pvvvuq7N7AAAAAAAAAACgplzW1P/mm2+0du1am/eStG7dOlkslgpja2LMmDE6duyYkpOTZTKZ1KNHD23atEkRERGSJJPJpNzcXOv4c+fOKSkpSQcOHJCfn586dOigp556SpMmTbL39gAAAADUElfWFgAAAICnMVgufAp2Ah8fn0o3spUqbnBb/pnBYFBZWZmzU3GagoIChYSEaNy4cYqMjLQ7zpEjR7R8+XJlZ2fr6quvdl6CAAAAcKry578TJ04oODi4rtOpt7yxtqgO6g8AAID6pSb1h0tm6j/++OOuCAsAAACgnqG2AAAAAGzR1AcAAADgtqgtAAAAAFs+dZ0AAAAAANSl1NRUtW/fXoGBgYqKilJWVlaVYzMyMjRkyBC1aNFCwcHBio6O1ubNmyuMW79+vbp166aAgAB169ZNGzZscOUtAAAAoB6pk6Z+Tk6OFi5cqIULF+rzzz+vixQAAAAAeAFHa4v09HRNnTpVM2bM0K5duxQbG6thw4YpNze30vHbtm3TkCFDtGnTJmVnZ+v666/XjTfeqF27dlnH7Ny5U2PGjFF8fLy+/PJLxcfHa/To0frss8/svk8AAACgnEua+tu2bdOdd96pTz/9tMJnjz32mKKiovTQQw/poYceUv/+/XXfffe5Ig0AAAAAHs7VtcWCBQs0YcIETZw4UV27dlVKSoratWunpUuXVjo+JSVFf/3rX3XNNdeoU6dOmjdvnjp16qSNGzfajBkyZIiSkpLUpUsXJSUlafDgwUpJSalRbgAAAEBlXNLUT09P17p169StWzeb41u2bNG8efPk6+ur+Ph4TZ48WUajUampqXrzzTddkQoAAAAAD+bK2qKkpETZ2dmKi4uzOR4XF6cdO3ZUK8a5c+d08uRJNWvWzHps586dFWIOHTr0ojGLi4tVUFBg8wIAAAAq45Km/s6dO9WvXz8FBwfbHF+2bJkMBoNefPFFpaWlacmSJcrKylKDBg2UlpbmilQAAAAAeDBX1hZms1llZWUKDQ21OR4aGqq8vLxqxXj++ed16tQpjR492nosLy+vxjHnz5+vkJAQ66tdu3bVuj4AAADqH5c09Y8cOaLOnTtXOL5lyxYFBwdr3Lhx1mOdO3fW8OHD9cUXX7giFQAAAAAerDZqC4PBYPPeYrFUOFaZNWvWaPbs2UpPT1fLli0dipmUlKQTJ05YX4cOHarBHQAAAKA+cUlT/9dff5XRaLQ59vPPP+vo0aMaOHCgfHxsL9uxY0eZzWZXpAIAAADAg7mytjAajfL19a0wgz4/P7/CTPsLpaena8KECVq7dq1uuOEGm8/CwsJqHDMgIEDBwcE2LwAAAKAyLmnqN2nSREeOHLE5lp2dLUmKioqqMN5gMCgwMNAVqQAAAADwYK6sLfz9/RUVFaXMzEyb45mZmRowYECV561Zs0bjxo3Ta6+9pj/84Q8VPo+Ojq4Q84MPPrhoTAAAAKC6/FwR9Morr9Q777yjU6dOqVGjRpKkDRs2yGAwaNCgQRXG79+/X61bt3ZFKgAAAAA8mKtri8TERMXHx6tPnz6Kjo7W8uXLlZubq8mTJ0s6vyzO4cOHtWrVKknnG/p33nmnFi1apP79+1tn5AcFBSkkJESS9MADD2jQoEF6+umnNWLECL311lv68MMPtX37dof+FgAAAIDkopn648eP1y+//KJrr71Wixcv1v3336/Vq1erXbt2uu6662zGlpWVadu2berZs6crUgEAAADgwVxdW4wZM0YpKSlKTk5Wr169tG3bNm3atEkRERGSJJPJpNzcXOv4ZcuWqbS0VFOmTFGrVq2srwceeMA6ZsCAAXr99de1cuVKXXnllUpLS1N6err69evn2B8DAAAAkItm6o8dO1YfffSRXnnlFe3atUsWi0VNmjTR3//+9wprXr777rsym80aOnSoK1IBAAAA4MFqo7ZISEhQQkJCpZ+lpaXZvN+6dWu1Yt5yyy265ZZbapQHAAAAUB0uaepL0sqVKzVhwgTt3LlTzZo109ChQ9W2bdsK4wICArRw4UKNGDHCVakAAAAA8GDUFgAAAMD/uKypL0kDBw7UwIEDLzpm6NChzNIHAAAAcFHUFgAAAMB5LllTHwAAAAAAAAAAOJ9LZuqvXbvWrvNGjx7t5EwAAAAAeDJqCwAAAMCWS5r6t956qwwGQ7XHWywWGQwGHrwBAAAA2KC2AAAAAGy5bE19Pz8/DR8+XL169XLVJQAAAADUA9QWAAAAwP+4pKl/00036d1339Xbb7+tn376SePHj9cdd9yhyy67zBWXAwAAAOClqC0AAAAAWy7ZKDcjI0OHDx/Ws88+q9LSUt1///1q3bq1brvtNmVmZrrikgAAAAC8ELUFAAAAYMslTX1JMhqNSkxM1FdffaVPP/1Ud955p95//339/ve/V3h4uGbNmqUff/zRVZcHAAAA4CWoLQAAAID/cVlT/7f69u2rZcuWyWQyKS0tTR07dtSTTz6pzp0768MPP6yNFAAAAAB4AWoLAAAA1Hcu2yi3MoGBgYqLi5PJZNL333+vI0eO6PTp07WZAgAAAAAvQG0BAACA+qpWmvplZWV65513tGLFCr333nsqKytTr169lJSUpMGDB9dGCgAAAAC8ALUFAAAA6juXNvV3796tFStWaPXq1crPz1fz5s2VkJCg8ePH68orr3TlpQEAAAB4EWoLAAAA4DyXNPWXL1+uFStW6PPPP5fBYFBcXJzGjx+vESNGqEGDBq64JAAAAAAvRG0BAAAA2HJJU3/y5Mlq0KCBbrzxRt11111q06aNJGnXrl0XPa9v376uSAcAAACAh6K2cI49e/Y4HMNoNCo8PNwJ2QAAAMARLlt+5+zZs9q4caM2btxY7XPKyspclQ4AAAAAD0VtYb/CwkIZDAaNHTvW4VhBQUHau3cvjX0AAIA65pKm/l133eWKsAAAAADqGWoLxxQVFclisWjUqFEyGo12xzGbzcrIyJDZbKapDwAAUMdc0tRfuXKlK8ICAAAAqGeoLZzDaDSqdevWdZ0GAAAAnMCnrhMAAAAAAAAAAADV45KZ+gkJCXadl5qa6uRM3BcbVQEAAACXRm0BAAAA2HJJU//FF1+s9liDwWD95/rw4M1GVQAAAED1UVsAAAAAtlzS1N+yZUu1xuXm5io5OVn79++3eQD3ZmxUBQAAAFRfbdQWqampevbZZ2UymdS9e3elpKQoNja20rEmk0kPPvigsrOztW/fPt1///1KSUmxGZOWlqa//OUvFc49c+aMAgMDa5QbAAAAcCGXNPWvvfbai37+66+/at68eVqyZImKiooUHR2tp59+2hWpuC02qgIAAAAuzdW1RXp6uqZOnarU1FTFxMRo2bJlGjZsmHbv3l3p5Jni4mK1aNFCM2bM0MKFC6uMGxwcrO+++87mGA19AAAAOEOtbpRbVFSkp556Sh06dNDzzz+vyMhIZWRk6JNPPtHAgQNrFCs1NVXt27dXYGCgoqKilJWVVeXYjIwMDRkyRC1atFBwcLCio6O1efNmR28HAAAAQB1xVm2xYMECTZgwQRMnTlTXrl2VkpKidu3aaenSpZWOj4yM1KJFi3TnnXcqJCSkyrgGg0FhYWE2LwAAAMAZaqWpb7FY9NJLL6lTp0569NFH1bBhQy1fvlzffPONbrrpphrHK59NM2PGDO3atUuxsbEaNmyYcnNzKx2/bds2DRkyRJs2bVJ2drauv/563Xjjjdq1a5eDdwYAAACgNjmztigpKVF2drbi4uJsjsfFxWnHjh0O5VlYWKiIiAi1bdtWf/zjHy9ZexQXF6ugoMDmBQAAAFTGJcvv/Nabb76pRx99VN99952Cg4M1b948TZ061aGfnv52No0kpaSkaPPmzVq6dKnmz59fYfyFa1zOmzdPb731ljZu3KjevXvbnYc72LNnj8MxjEYj6/IDAADA7Tm7tjCbzSorK1NoaKjN8dDQUOXl5dmdZ5cuXZSWlqaePXuqoKBAixYtUkxMjL788kt16tSp0nPmz5+vOXPm2H1NAAAA1B8ua+pv375djzzyiD799FP5+/tr2rRpmjFjhi677DKH4pbPppk+fbrN8ZrMpjl37pxOnjypZs2aVTmmuLhYxcXF1vfuNlOmsLBQBoNBY8eOdThWUFCQ9u7dS2MfAAAAbslVtUW5CzfWtVgsNd5s97f69++v/v37W9/HxMTo6quv1t/+9jctXry40nOSkpKUmJhofV9QUKB27drZnQMAAAC8l0ua+n/605/07rvvysfHR3fddZeSk5PVtm1bp8R2xmya559/XqdOndLo0aOrHOPuM2WKiopksVg0atQoGY1Gu+OYzWZlZGTIbDbT1AcAAIDbcWVtYTQa5evrW6GOyM/Pr1BvOMLHx0fXXHON9u3bV+WYgIAABQQEOO2aAAAA8F4uaeq/8847MhgMCg8PV15enu65555LnmMwGPTuu+9W+xr2zqZZs2aNZs+erbfeekstW7ascpynzJQxGo1q3bp1XacBAAAAuIQrawt/f39FRUUpMzNTI0eOtB7PzMzUiBEjHMr7tywWi3JyctSzZ0+nxQQAAED95bLldywWiw4cOKADBw5Ua3x1f97qyGya9PR0TZgwQevWrdMNN9xw0bHMlAEAAADcg6tqC0lKTExUfHy8+vTpo+joaC1fvly5ubmaPHmypPOTfQ4fPqxVq1ZZz8nJyZF0fknMo0ePKicnR/7+/urWrZskac6cOerfv786deqkgoICLV68WDk5OVqyZEm18wIAAACq4pKmfnUftu1h72yaNWvWaPz48VqzZo3+8Ic/uCw/AAAAAM7jytpCksaMGaNjx44pOTlZJpNJPXr00KZNmxQRESFJMplMys3NtTmnd+/e1n/Ozs7Wa6+9poiICB08eFCSdPz4cd1zzz3Ky8tTSEiIevfurW3btqlv374uvRcAAADUDy5p6pc/ALtKTWfTrFmzRnfeeacWLVqk/v37W2f5BwUFKSQkxKW5AgAAALCfq2sLSUpISFBCQkKln6WlpVU4ZrFYLhpv4cKFWrhwoTNSAwAAACpw2fI7rlTT2TTLli1TaWmppkyZoilTpliP33XXXZU+pAMAAAAAKtqzZ4/DMYxGo8LDw52QDQAAQP3kkU19qWazabZu3er6hAAAAADASxUWFspgMGjs2LEOxwoKCtLevXtp7AMAANjJY5v6AAAAAIDaUVRUJIvFolGjRsloNNodx2w2KyMjQ2azmaY+AACAnWjqAwAAAACqxWg0qnXr1nWdBgAAQL3mU9cJAAAAAAAAAACA6qGpDwAAAAAAAACAh6CpDwAAAAAAAACAh2BNfUiS9uzZ49D5RqORja4AAAAAAAAAwMVo6tdzhYWFMhgMGjt2rENxgoKCtHfvXhr7AAAAAAAAAOBCNPXruaKiIlksFo0aNUpGo9GuGGazWRkZGTKbzTT1AQAAAAAAAMCFaOpD0vnlc1q3bl3XaQAAAAAAAAAALoKNcgEAAAAAAAAA8BA09QEAAAAAAAAA8BA09QEAAAAAAAAA8BA09QEAAAAAAAAA8BBslAun2bNnj8MxjEajwsPDnZANAAAAAAAAAHgfmvpwWGFhoQwGg8aOHetwrKCgIO3du5fGPgAAAODFHJ0QxGQgAABQn9HUh8OKiopksVg0atQoGY1Gu+OYzWZlZGTIbDbzgA4AAAB4IWdNCGIyEAAAqM9o6sNpjEajWrduXddpAAAAAHBTzpgQxGQgAABQ39HUBwAAAADUKiYEAQAA2I+mPtwOG+4CAAAAuBTqBgAAUF/R1IfbYMNdAAAA1IXU1FQ9++yzMplM6t69u1JSUhQbG1vpWJPJpAcffFDZ2dnat2+f7r//fqWkpFQYt379es2cOVP79+9Xhw4d9OSTT2rkyJEuvpP6wZl1Q0BAgNavX69WrVo5FIcvBwAAQG2iqQ+3wYa7AAAAqG3p6emaOnWqUlNTFRMTo2XLlmnYsGHavXt3pc+SxcXFatGihWbMmKGFCxdWGnPnzp0aM2aM5s6dq5EjR2rDhg0aPXq0tm/frn79+rn6lryes+qG3Nxcbd68WX/84x8dzolJRQAAoDbR1IfbYX1NAAAA1JYFCxZowoQJmjhxoiQpJSVFmzdv1tKlSzV//vwK4yMjI7Vo0SJJ0ooVKyqNmZKSoiFDhigpKUmSlJSUpI8//lgpKSlas2aNi+6k/nG0bjCbzUwqAgAAHommPgAAAIB6qaSkRNnZ2Zo+fbrN8bi4OO3YscPuuDt37tS0adNsjg0dOrTSZXrKFRcXq7i42Pq+oKDA7uujZphUBAAAPA1NfXgtNs4CAADAxZjNZpWVlSk0NNTmeGhoqPLy8uyOm5eXV+OY8+fP15w5c+y+JgAAAOoPmvrwOmy4CwAAgJowGAw27y0WS4Vjro6ZlJSkxMRE6/uCggK1a9dOTXwMaqRzdufR1M9XYY0bKdiL4rhTLpIU7GNQWONG8is6I8tJfmEBAADsU5PnCJr68DrO3nA3KytLXbt2dSin4uJiBQQE1HkMiV8fAAAAlDMajfL19a0wgz4/P7/CTPuaCAsLq3HMgICASp/1hjfxVwsV2Z1Lr7DLNOCGgeoc7K+GXhLHnXKRpNPB/upyw0CF7dmlsvxcu+MAAID6rez06WqPpakPr+Xo2pjOnPFvMBhksVjqPIbErw8AAADK+fv7KyoqSpmZmRo5cqT1eGZmpkaMGGF33OjoaGVmZtqsq//BBx9owIABNY511iKdlv2/GjhZVqZjp8/o1DmL5CVx3CkXSTp1zqJjp8+o1D9ACmpkdxwAAFDPlZyt9lCa+kAVnDXjf9++fdqyZYtDcZwRQ/rfrw/MZjNNfQAAAEmJiYmKj49Xnz59FB0dreXLlys3N1eTJ0+WdH5ZnMOHD2vVqlXWc3JyciSdnwRy9OhR5eTkyN/fX926dZMkPfDAAxo0aJCefvppjRgxQm+99ZY+/PBDbd++vcb5lVgsOutAw7nonEWFJWdVbJH8vSSOO+UiScUWqbDkrPJ/Pa5zfg3sjiNJZaWl8vVzvEx3RpyGDRsqJCTE4VwAAEA1+flXf6gL0wC8gqMz/s1ms8NxnBEDAAAAFY0ZM0bHjh1TcnKyTCaTevTooU2bNikiIkKSZDKZlJtru6RK7969rf+cnZ2t1157TRERETp48KAkacCAAXr99df12GOPaebMmerQoYPS09PVr1+/Wrsv1J6SkhJJUsaGDXWciXP5+fnp3nvvpbEPAIAboqkP1EN79uxxOAZr8wMAAG+RkJCghISESj9LS0urcKw6SyLecsstuuWWWxxNDR6gtLRUktS1a1c1bNjQ7jjHjh3TwYMH3SLO6dOntWfPHp0+fZqmPgAAboimPlCPOHOfANbmBwAAAP6nYcOGatKksd3nn/7v5njuEgcAALgvmvpAPeKsfQJYmx8AAAAAAACoGzT1a6iJj0GNdM7u85v6+SqscSMFe1Ecd8rFW+M4O5fLW7ZQaFio3XGCfQwKa9xIfkVnZDlZYHccAADcGf8bB6C+Mx896nAMNtwFAMD5aOrX0PAm/mqhIrvP7xV2mQbcMFCdg/3V0EviuFMu3hrHnXKRpNPB/upyw0AF7tyqo3t22R1HkgICAtWocSOHYgAA4Apl/13CAgDqG2du/suGuwAAOB9N/Ro6a5FOy2D3+SfLynTs9BmdOmeRvCSOO+XirXHcKRdJ+rWoRMdOn9GbH3xgd4xyPj6+GvGnG9Wosf3rfQYFBalJk2CHcwEAwEbJ2brOAADqhLM2/2XDXQAAXIOmfg2VWCw660AztOicRYUlZ1Vskfy9JI475eKtcdwpF0k6dfasCkvOOvyQf+LECf3www/6x9p1dseQmP0DAHARP/+6zgAA6pSzNtt1xjI+ZaWl8vVzvIXBckAAAG/gsU391NRUPfvsszKZTOrevbtSUlIUGxtb6ViTyaQHH3xQ2dnZ2rdvn+6//36lpKTUbsKAF3L0If/0f5c1cOTLAWb/AAAAAO7Jmcv4OAsTggAA3sAjm/rp6emaOnWqUlNTFRMTo2XLlmnYsGHavXu3wsPDK4wvLi5WixYtNGPGDC1cuLAOMgZwMc6aAQQAAADAfThrGZ9jx47p4MGDLAcEAMB/eWRTf8GCBZowYYImTpwoSUpJSdHmzZu1dOlSzZ8/v8L4yMhILVq0SJK0YsWKWs0VQO3gJ70AAACAe3LWL3zdZTkgnvcBAHXN45r6JSUlys7O1vTp022Ox8XFaceOHU67TnFxsYqLi63vCwoKnBYbgPO44096fX19NWb0aDVu0sShOBQLAP6/vbuPjaJc+zj+my7dbXkRoWsK5UBFgwGERCwqL+kjJ8YSiAmhGJuTUBMFTNM/lG6MoWoR2kMIkUBFeZEAIURQkgOexOdpHignFWtpTETKyaPFkIisp24PbD1YqrKFMs8fdau1i9Kd2e7M7veTTHRmZy6u+Qfmvuae6wYAAPaxa+xACx8AQLK5rqgfDofV09Oj3Nzcfsdzc3PV3t5u25+zceNGrV+/3rZ4ABLDaZ/0Rhf/PfTuu3HHiGKwAAAAANjHjrEDLXwAAE7guqJ+lGEY/fZN0xxwzIrKykoFAoG+/c7OTk2cONG2+ADs5ZRPeu1Y/Dcah8ECAAAAYD872vjY0f6TL3MBAPFyXVHf7/fL4/EMmJV/6dKlAbP3rfD5fPL5fLbFA5BenNLvM5oLgwUAANzJaxjKlBn39VkZhkZ6M+UzlDJxnJRLqsZxUi5Oi2Ncv66R3kwd/5//jjuPKI9nmJ599hmNGnWH5VgAgBRwo/u2T3VdUd/r9aqgoED19fVaunRp3/H6+notWbIkiZkBgH3sXCvAjh7/di0izGLEAAAMTqYhDbdQxBzl8ShneLZGZBgpE8dJuaRqHCfl4rQ4EZnKGZ6t/En58mXFPxEwci2ii8GLunzxoq7fae251ufL0oiRIyzFAAA4wI3rt32q64r6khQIBFRaWqrZs2dr7ty52r17t4LBoMrKyiT1ts5pa2vTgQMH+q5paWmRJHV1deny5ctqaWmR1+vV9OnTk3ELAPC77ForwM4e/07CegMAgHRRd7Vbk8ZkxX19a/t/VHfiYy0fd7dyh49JiThOyiVV4zgpF6fF6Yux/G7ljo0/l69CX+nv/2iSeeLjuGNEeb1e7dmzx3L3grFjx2rChAmW8wEAxMfT2Xnb57qyqF9SUqKOjg5VV1crFAppxowZqqurU35+viQpFAopGAz2u2bWrFl9/3/69GkdOnRI+fn5+vrrr4cydQAYFCf0+LdrEWG74kTXGwhevCj/XXfFHUdixj8AwPmu3jT1gzLivv7KjR61d/2gzpumRqZIHCflkqpxnJSL0+LYlcu/f/hRoatdKi4ult/vjztOMBjUsWPHVFS8LO4YUT6fT0eOHNH48eMtxfH7/Zo0aZLlfAAg3RiD+IjMlUV9SSovL1d5eXnM3/bv3z/gmGnG/4keALidlZcDdi8ibDWO01oT8WIAAAAA8fL7/crLy4v7+nA4LNM0bXs58MQTT8QdIyo7O1vnzp2jsA8ACeTaoj4AID05rTURrYAAAACQbE55ORAOh3X06FE1NjZq2rRpcceJRCLy+eJfsyCKrwYApCqK+gAAV3JCa6JoK6Aff/yRoj4AAABcz+rLga6uLhmGoeXLl1vKwzAMWzou0FIIQKqiqD9IXsNQpuL/hyUrw9BIb6Z8hlImjpNySdU4TsrFaXGclEuqxnFSLomIM2bEcI0YOSKuGD5DGunN1JV/tytjEKvUx9Jz44Y8w6z/s5ydna1Ro+6wHAeApBvdyc4AAABXuXbtmuUZ/+fPn1dDQwMthQDgd1DUH6RMQxpuoYg0yuNRzvBsjcgwUiaOk3JJ1ThOysVpcZyUS6rGcVIuTotzo6dHOcOz9cnJD+POw24ZGRn684I/a/jwbEtxfL6suF92ACnD4ss6AADSlZUZ/+Fw2HKMaBwntRSSmPEPwD4U9Qep7mq3Jo3Jivv61vb/qO7Ex1o+7m7lDh+TEnGclEuqxnFSLk6L46RcUjWOk3JxWpzWtguqO/GxFi9erLFjx8ady4ULX6mp6ZTlOG1tbfrwHx/KPP5R3DGivF6v9uzZo9zcXEtxursj8nqt9UMdO3asJkyYYCkGEA9PZ2eyU8AQ2bFjh15//XWFQiHdf//9qq2tVWFh4S3PP3nypAKBgD7//HPl5eXppZdeUllZWd/v+/fv1zPPPDPgup9++klZWfGPJQAAg+eUlkKSPe2AWG8AgERRf9Cu3jT1gzLivv7KjR61d/2gzpumRqZIHCflkqpxnJSL0+I4KZdUjeOkXJwWJxpj2J1jNHJc/A/m5qXLtsSJXLqs0NUu2z5VLipeFneMKDv6odILFcliWG/lCxc4fPiwVq9erR07dmj+/Pl6++23tWjRIn3xxRcx/864cOGCFi9erFWrVumdd95RU1OTysvLddddd2nZsl/+3rzjjjv05Zdf9ruWgj4AuI8dLYUk+9oBsd4AAImiPgAAKccpnyrb0Q/Vzl6oDFwAxLJlyxatWLFCK1eulCTV1tbq2LFj2rlzpzZu3Djg/F27dmnSpEmqra2V1Lvg+qeffqrNmzf3K+obhqFx48YNyT0AABLPCc/YrDcAIIqiPgAAiMmOgYvVOHa9YGDgAiCW7u5unT59WmvWrOl3vKioSKdOnYp5TXNzs4qKivodW7hwofbu3avr168rMzNTUm+7hvz8fPX09OiBBx5QTU2NZs2adctcIpGIIpFI334n7Z8AICWl4noD4XCYZ2NgiFHUBwAAjue0gQsLpQGpIRwOq6enZ8D6Ibm5uWpvb495TXt7e8zzb9y4oXA4rPHjx2vq1Knav3+/Zs6cqc7OTr3xxhuaP3++zp49qylTpsSMu3HjRq1fv96eGwMA4DZYfcaOam1ttSUXno2B20dRHwAApA0nLZTGjP/k6emRGhulUEgaP14qLJQ8nmRnhWQyDKPfvmmaA4790fm/Pj5nzhzNmTOn7/f58+frwQcf1Jtvvqlt27bFjFlZWalAINC339nZqYkTJw7uRgAAGEJOW0RY4uUA0gdFfQAAgNtk10JpfKqcPEePSi+8IP3rX78c+9OfpDfekIqLk5cXksPv98vj8QyYlX/p0qUBs/Gjxo0bF/P8YcOGKScnJ+Y1GRkZeuihh3T+/Plb5uLz+eTz+QZ5BwAAJI/TFhGW7Hk5wIsBuAFFfQAAgEGy61NlDK2jR6Unn5R+nlTdp62t9/jf/kZhP914vV4VFBSovr5eS5cu7TteX1+vJUuWxLxm7ty5+uCDD/odO378uGbPnt3XT/+3TNNUS0uLZs6caV/yAAA4hFNaZdr1coCvBuAGFPUBAACQ8np6emfo/7agL/UeMwxp9WppyRJa8aSbQCCg0tJSzZ49W3PnztXu3bsVDAZVVlYmqbctTltbmw4cOCBJKisr01tvvaVAIKBVq1apublZe/fu1bvvvtsXc/369ZozZ46mTJmizs5Obdu2TS0tLdq+fXtS7hEAADdwwssBO78aoN0mohLR/pOiPgAAAFJeY2P/lju/ZZrSN9/0nrdgwZClBQcoKSlRR0eHqqurFQqFNGPGDNXV1Sk/P1+SFAqFFAwG+86fPHmy6urqVFFRoe3btysvL0/btm3TsmXL+s65cuWKnnvuObW3t2v06NGaNWuWPvroIz388MNDfn8AAKQbKy8H7PpqINpus7GxUdOmTYs7jsSMf7dLVPtPivoAAABJ0traaun6SCRiSw/udBgohEL2nofUUl5ervLy8pi/7d+/f8CxRx99VJ999tkt423dulVbt261Kz0AADDErH41YOciwsz4d69Etv+kqA8AADDE7HrINwxDZqx+MoOUDgOF222JarF1KgAAAGDbIsJ2zvi3Y0JQOkwGskui239S1AcAABhidjzknz9/Xg0NDbYNFMLhcEo/oBcW9n7m2tYW+8HaMHp/Lywc+twAAACQmpw049+OCUHpMBnILolu/0lRHwAAIEms9vu0GiOdeDy9fSuffLK3gP/r8Yxh9P63tpZFcgEAAOAcds34t2NCEOsEDE6i239S1AcAAEBaKP7nOv1fiUcLP64asFDV/86v0fR/9kjF65KUHQAAABCb1Yk8dkwIYp2AwUl0+0+K+gAAAEgPHo+mv7dWF9dJHz1apVCo9yH6v07WKGPdWqm6OtkZAgAAAI5k9zoBtP+01v6Toj4AAADSQ1WVJClj7VotqP55v6ZGihb0f/4dAAAAQGy0/7w9iW7/SVEfAAAA6SNauF+7VvrrX6Xubgr6AAAAAGyXyPafGXYkCAAAALhGVZXk9fYW9L1eCvoAAAAA7Bdt/7myRg0N0qFDUkOD9PWKGk1/b2380/RFUR8AAADppqbml4J+d3fvPgAAAADYqapKqq5Wxrq1WtBYo7/8RVrQ+Kv1vCxMLqL9DgAAANTa2mo5ht/vd/5iVzU1va13og/R0X2JGfsAAAAA7JWg9p8U9QEAANJYV1eXDMPQ8uXLLcfKzs7WuXPnnFvY/21BX+r/kP3rfQAAAAAJY8ekokgkIp/PZzlOwicnVVX9UtC3qf0nRX0AAIA0du3aNZmmqeLiYvn9/rjjhMNhHT16VOFw2LlF/Z6e2LNiovs9PUOfEwAAAJBG7JxUZBiGTNO0HCfhk5Nitf9kpj4AAACs8vv9ysvLsxzH0W181q279W/M0AcAAAASzq5JRefPn1dDQ4PzJyclqP0nRX0AAABYllZtfAAAAABYYnVSUTgctiVOQiWw/SdFfQAAAFiWVm18AAAAAOCPJLD9J0V9AAAA2MbRM2UAAAAAYKgksP1nhqWrAQAAAAAAAADAkKGoDwAAAAAAAACAS1DUBwAAAAAAAADAJSjqAwAAAAAAAADgEhT1AQAAAAAAAABwCYr6AAAAAAAAAAC4hGuL+jt27NDkyZOVlZWlgoICNTY2/u75J0+eVEFBgbKysnTPPfdo165dQ5QpAAAAACdLxNjiyJEjmj59unw+n6ZPn673338/UekDAAAgzbiyqH/48GGtXr1ar7zyis6cOaPCwkItWrRIwWAw5vkXLlzQ4sWLVVhYqDNnzujll1/W888/ryNHjgxx5gAAAACcJBFji+bmZpWUlKi0tFRnz55VaWmpnnrqKX3yySdDdVsAAABIYa4s6m/ZskUrVqzQypUrNW3aNNXW1mrixInauXNnzPN37dqlSZMmqba2VtOmTdPKlSv17LPPavPmzUOcOQAAAAAnScTYora2Vo8//rgqKys1depUVVZW6rHHHlNtbe0Q3RUAAABS2bBkJzBY3d3dOn36tNasWdPveFFRkU6dOhXzmubmZhUVFfU7tnDhQu3du1fXr19XZmbmgGsikYgikUjf/vfffy9Jam9vt5T/5cuXJUmhUEjd3d0pEcdJuaRqHCfl4rQ4TsolVeM4KRenxXFSLqkax0m5OC2Ok3KxM05HR4ckqaurS52dnXHHsUP0zzdNM6l5IHESNbZobm5WRUXFgHN+r6jP+MOduaRqHCfl4rQ4TsolVeM4KRenxXFSLqkax0m5OC2Ok3KxM45rxx+my7S1tZmSzKampn7HN2zYYN53330xr5kyZYq5YcOGfseamppMSea3334b85rXXnvNlMTGxsbGxsbGxpbm2zfffGPPgywcJ1Fji8zMTPPgwYP9zjl48KDp9XpvmQvjDzY2NjY2NjY2Nun2xh+um6kfZRhGv33TNAcc+6PzYx2PqqysVCAQ6Nu/efOmvvvuO+Xk5PzunwMAAIDUYJqmrl69qry8vGSnggRLxNhisDEZfwAAAKS3wYw/XFfU9/v98ng8Az5DvXTpknJzc2NeM27cuJjnDxs2TDk5OTGv8fl88vl8/Y7deeed8ScOAAAA1xk9enSyU0ACJWpscatzbhVTYvwBAACA2x9/uG6hXK/Xq4KCAtXX1/c7Xl9fr3nz5sW8Zu7cuQPOP378uGbPnh2znz4AAACA1JeoscWtzrlVTAAAAGAwXFfUl6RAIKA9e/Zo3759am1tVUVFhYLBoMrKyiT1frr69NNP951fVlamixcvKhAIqLW1Vfv27dPevXv14osvJusWAAAAADhAIsYWL7zwgo4fP65Nmzbp3Llz2rRpk06cOKHVq1cP9e0BAAAgBbmu/Y4klZSUqKOjQ9XV1QqFQpoxY4bq6uqUn58vqXfV42Aw2Hf+5MmTVVdXp4qKCm3fvl15eXnatm2bli1blqxbAAAAAOAAiRhbzJs3T++9955effVVVVVV6d5779Xhw4f1yCOPDPn9AQAAIPUYZnRVJwAAAAAAAAAA4GiubL8DAAAAAAAAAEA6oqgPAAAAAAAAAIBLUNQHAAAAAAAAAMAlKOoDAAAAAAAAAOASFPUBAAAAAAAAAHAJivoAAAAAAAAAALgERX0AAAAAAAAAAFyCoj4AAAAAAAAAAC5BUR8AAAAAAAAAAJegqA8AAAAAAAAAgEtQ1AcAAAAAAAAAwCX+H6dg8OaLOIdsAAAAAElFTkSuQmCC", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "fig = plt.figure(figsize=(16, 16))\n", "\n", "vert_coord = 0.99\n", "fig.text(\n", " 0.5,\n", " vert_coord,\n", " \"THIS RUN = \" + case_name + \" \" + start_date + \" to \" + end_date,\n", " ha=\"center\",\n", " va=\"center\",\n", " fontsize=14,\n", " color=\"royalblue\",\n", ")\n", "vert_coord = vert_coord - 0.015\n", "if base_case_name is not None:\n", " fig.text(\n", " 0.5,\n", " vert_coord,\n", " \"BASELINE RUN = \"\n", " + base_case_name\n", " + \" \"\n", " + base_start_date\n", " + \" to \"\n", " + base_end_date,\n", " ha=\"center\",\n", " va=\"center\",\n", " fontsize=14,\n", " color=\"red\",\n", " )\n", " vert_coord = vert_coord - 0.015\n", "\n", "fig.text(\n", " 0.5,\n", " vert_coord,\n", " \"Other runs = 1979-01-01 to 2023-12-31\",\n", " ha=\"center\",\n", " va=\"center\",\n", " fontsize=14,\n", ")\n", "vert_coord = vert_coord - 0.015\n", "\n", "fig.text(\n", " 0.5,\n", " vert_coord,\n", " \"Validation data = ERA5 1979-01-01 to 2023-12-31\",\n", " ha=\"center\",\n", " va=\"center\",\n", " fontsize=14,\n", ")\n", "vert_coord = vert_coord - 0.03\n", "\n", "ax = plotnmse(\n", " fig,\n", " nmse_cmip6[\"AM\"],\n", " nmse_cesm2[\"AM\"],\n", " nmse_dat[\"AM\"],\n", " nmse_base_dat[\"AM\"],\n", " 0.3,\n", " 0.7,\n", " vert_coord - 0.16,\n", " vert_coord,\n", " \"NMSE, SLP, AM\",\n", ")\n", "ax = plotnmse(\n", " fig,\n", " nmse_cmip6[\"DJF\"],\n", " nmse_cesm2[\"DJF\"],\n", " nmse_dat[\"DJF\"],\n", " nmse_base_dat[\"DJF\"],\n", " 0.05,\n", " 0.45,\n", " 0.57,\n", " 0.72,\n", " \"NMSE, SLP, DJF\",\n", ")\n", "ax = plotnmse(\n", " fig,\n", " nmse_cmip6[\"MAM\"],\n", " nmse_cesm2[\"MAM\"],\n", " nmse_dat[\"MAM\"],\n", " nmse_base_dat[\"MAM\"],\n", " 0.55,\n", " 0.95,\n", " 0.57,\n", " 0.72,\n", " \"NMSE, SLP, MAM\",\n", ")\n", "ax = plotnmse(\n", " fig,\n", " nmse_cmip6[\"JJA\"],\n", " nmse_cesm2[\"JJA\"],\n", " nmse_dat[\"JJA\"],\n", " nmse_base_dat[\"JJA\"],\n", " 0.05,\n", " 0.45,\n", " 0.37,\n", " 0.52,\n", " \"NMSE, SLP, JJA\",\n", ")\n", "ax = plotnmse(\n", " fig,\n", " nmse_cmip6[\"SON\"],\n", " nmse_cesm2[\"SON\"],\n", " nmse_dat[\"SON\"],\n", " nmse_base_dat[\"SON\"],\n", " 0.55,\n", " 0.95,\n", " 0.37,\n", " 0.52,\n", " \"NMSE, SLP, SON\",\n", ")" ] } ], "metadata": { "kernelspec": { "display_name": "cupid-analysis", "language": "python", "name": "cupid-analysis" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.11.4" }, "papermill": { "duration": 575.272453, "end_time": "2025-10-10T22:54:30.887446", "exception": null, "input_path": "/glade/derecho/scratch/richling/tmp/tmpptm1l7b3.ipynb", "output_path": "/glade/work/richling/CUPid_pr_test/CUPiD/examples/key_metrics/computed_notebooks/atm/Global_PSL_NMSE_compare_obs_lens.ipynb", "parameters": { "CESM_output_dir": "/glade/campaign/cesm/development/cross-wg/diagnostic_framework/CESM_output_for_testing", "base_case_name": "b.e23_alpha17f.BLT1850.ne30_t232.092", "base_end_date": "0101-01-01", "base_regridded_output": true, "base_start_date": "0001-01-01", "case_name": "b.e30_beta02.BLT1850.ne30_t232.104", "end_date": "0101-01-01", "lc_kwargs": { "threads_per_worker": 1 }, "obs_data_dir": "/glade/campaign/cesm/development/cross-wg/diagnostic_framework/CUPiD_obs_data", "product": "/glade/work/richling/CUPid_pr_test/CUPiD/examples/key_metrics/computed_notebooks//atm/Global_PSL_NMSE_compare_obs_lens.ipynb", "regridded_output": false, "serial": false, "start_date": "0001-01-01", "subset_kwargs": {}, "ts_dir": null, "validation_path": "atm/analysis_datasets/fv0.9x1.25/seasonal_climatology/nmse_validation/PSL/" }, "start_time": "2025-10-10T22:44:55.614993" } }, "nbformat": 4, "nbformat_minor": 5 }