{ "cells": [ { "cell_type": "markdown", "id": "3f230d52-dca7-4ce4-98cc-6267fc04893d", "metadata": { "editable": true, "papermill": { "duration": 0.006629, "end_time": "2025-10-13T17:49:07.388099", "exception": false, "start_time": "2025-10-13T17:49:07.381470", "status": "completed" }, "slideshow": { "slide_type": "" }, "tags": [] }, "source": [ "# Normalized Mean Square Error\n", "\n", "This notebook computes the normalized mean square error of atmospheric surface pressure.\n", "It is compared to ERA5 observations, as well as the CESM2 large ensemble and CMIP6 model output." ] }, { "cell_type": "code", "execution_count": 1, "id": "2292c691-9bd9-44d2-8a3f-cb90dbe2e383", "metadata": { "editable": true, "execution": { "iopub.execute_input": "2025-10-13T17:49:07.395652Z", "iopub.status.busy": "2025-10-13T17:49:07.395471Z", "iopub.status.idle": "2025-10-13T17:49:10.740942Z", "shell.execute_reply": "2025-10-13T17:49:10.740516Z" }, "papermill": { "duration": 3.349548, "end_time": "2025-10-13T17:49:10.742257", "exception": false, "start_time": "2025-10-13T17:49:07.392709", "status": "completed" }, "slideshow": { "slide_type": "" }, "tags": [ "hide-input" ] }, "outputs": [], "source": [ "import glob\n", "import os\n", "\n", "import matplotlib.pyplot as plt\n", "import numpy as np\n", "import xarray as xr\n", "\n", "from nmse_utils import nmse\n", "from averaging_utils import seasonal_climatology_weighted" ] }, { "cell_type": "markdown", "id": "9d67416c-a2d4-403b-85f4-647aa0a816eb", "metadata": { "editable": true, "papermill": { "duration": 0.003997, "end_time": "2025-10-13T17:49:10.753268", "exception": false, "start_time": "2025-10-13T17:49:10.749271", "status": "completed" }, "slideshow": { "slide_type": "" }, "tags": [] }, "source": [ "## Parameters\n", "\n", "These variables are set in `config.yml`" ] }, { "cell_type": "code", "execution_count": 2, "id": "b7486e94-e493-4369-9767-90eb15c0ac3a", "metadata": { "editable": true, "execution": { "iopub.execute_input": "2025-10-13T17:49:10.760829Z", "iopub.status.busy": "2025-10-13T17:49:10.760374Z", "iopub.status.idle": "2025-10-13T17:49:10.764008Z", "shell.execute_reply": "2025-10-13T17:49:10.763694Z" }, "papermill": { "duration": 0.008173, "end_time": "2025-10-13T17:49:10.764806", "exception": false, "start_time": "2025-10-13T17:49:10.756633", "status": "completed" }, "slideshow": { "slide_type": "" }, "tags": [ "parameters", "hide-input" ] }, "outputs": [], "source": [ "CESM_output_dir = \"\"\n", "case_name = \"\"\n", "start_date = \"\"\n", "end_date = \"\"\n", "base_case_output_dir = None\n", "ts_dir = None\n", "base_case_name = None\n", "base_start_date = None\n", "base_end_date = None\n", "obs_data_dir = \"\"\n", "validation_path = \"\"\n", "regridded_output = False\n", "base_regridded_output = None" ] }, { "cell_type": "code", "execution_count": 3, "id": "4eaf6efe", "metadata": { "execution": { "iopub.execute_input": "2025-10-13T17:49:10.772916Z", "iopub.status.busy": "2025-10-13T17:49:10.772757Z", "iopub.status.idle": "2025-10-13T17:49:10.775412Z", "shell.execute_reply": "2025-10-13T17:49:10.774964Z" }, "papermill": { "duration": 0.007549, "end_time": "2025-10-13T17:49:10.775908", "exception": false, "start_time": "2025-10-13T17:49:10.768359", "status": "completed" }, "tags": [ "injected-parameters" ] }, "outputs": [], "source": [ "# Parameters\n", "case_name = \"b.e30_beta02.BLT1850.ne30_t232.104\"\n", "base_case_name = \"Obs\"\n", "CESM_output_dir = \"/glade/campaign/cesm/development/cross-wg/diagnostic_framework/CESM_output_for_testing\"\n", "start_date = \"0001-01-01\"\n", "end_date = \"0101-01-01\"\n", "base_start_date = \"0001-01-01\"\n", "base_end_date = \"0101-01-01\"\n", "obs_data_dir = (\n", " \"/glade/campaign/cesm/development/cross-wg/diagnostic_framework/CUPiD_obs_data\"\n", ")\n", "ts_dir = None\n", "lc_kwargs = {\"threads_per_worker\": 1}\n", "serial = False\n", "regridded_output = False\n", "base_regridded_output = True\n", "validation_path = (\n", " \"atm/analysis_datasets/fv0.9x1.25/seasonal_climatology/nmse_validation/PSL/\"\n", ")\n", "subset_kwargs = {}\n", "product = \"/glade/work/richling/CUPid_pr_test/CUPiD/examples/key_metrics/computed_notebooks//atm/Global_PSL_NMSE_compare_obs_lens.ipynb\"\n" ] }, { "cell_type": "code", "execution_count": 4, "id": "9dfe1566-abe3-4b23-a59c-113334a0458f", "metadata": { "editable": true, "execution": { "iopub.execute_input": "2025-10-13T17:49:10.780806Z", "iopub.status.busy": "2025-10-13T17:49:10.780566Z", "iopub.status.idle": "2025-10-13T17:49:10.783788Z", "shell.execute_reply": "2025-10-13T17:49:10.783532Z" }, "papermill": { "duration": 0.006173, "end_time": "2025-10-13T17:49:10.784199", "exception": false, "start_time": "2025-10-13T17:49:10.778026", "status": "completed" }, "slideshow": { "slide_type": "" }, "tags": [ "hide-input" ] }, "outputs": [], "source": [ "# Want some base case parameter defaults to equal control case values\n", "if base_case_name is not None:\n", " if base_case_output_dir is None:\n", " base_case_output_dir = CESM_output_dir\n", "\n", " if base_start_date is None:\n", " base_start_date = start_date\n", "\n", " if base_end_date is None:\n", " base_end_date = end_date\n", "\n", " if base_regridded_output is None:\n", " base_regridded_output = regridded_output\n", "if base_case_name == \"Obs\":\n", " base_case_name = None\n", "if ts_dir is None:\n", " ts_dir = CESM_output_dir" ] }, { "cell_type": "markdown", "id": "74c7803f-a8c5-445d-9233-0aa2663c58bd", "metadata": { "editable": true, "papermill": { "duration": 0.001963, "end_time": "2025-10-13T17:49:10.788254", "exception": false, "start_time": "2025-10-13T17:49:10.786291", "status": "completed" }, "slideshow": { "slide_type": "" }, "tags": [] }, "source": [ "## Read in the current case" ] }, { "cell_type": "code", "execution_count": 5, "id": "7f4132b5-db1f-4ae8-92df-07dd531b650e", "metadata": { "editable": true, "execution": { "iopub.execute_input": "2025-10-13T17:49:10.792597Z", "iopub.status.busy": "2025-10-13T17:49:10.792494Z", "iopub.status.idle": "2025-10-13T17:49:10.796101Z", "shell.execute_reply": "2025-10-13T17:49:10.795684Z" }, "papermill": { "duration": 0.006395, "end_time": "2025-10-13T17:49:10.796606", "exception": false, "start_time": "2025-10-13T17:49:10.790211", "status": "completed" }, "slideshow": { "slide_type": "" }, "tags": [ "hide-input" ] }, "outputs": [], "source": [ "def fix_time_dim(dat):\n", " \"\"\"CESM2 output sets time as the end of the averaging interval (e.g. January average is midnight on February 1st);\n", " This function sets the time dimension to the midpoint of the averaging interval.\n", " Note that CESM3 output sets time to the midpoint already, so this function should not change CESM3 data.\"\"\"\n", " if \"time\" not in dat.dims:\n", " return dat\n", " if \"bounds\" not in dat.time.attrs:\n", " return dat\n", " time_bounds_avg = dat[dat.time.attrs[\"bounds\"]].mean(\"nbnd\")\n", " time_bounds_avg.attrs = dat.time.attrs\n", " dat = dat.assign_coords({\"time\": time_bounds_avg})\n", " return xr.decode_cf(dat)" ] }, { "cell_type": "code", "execution_count": 6, "id": "caf05d8b-a711-40fb-b88a-c10472a49d30", "metadata": { "execution": { "iopub.execute_input": "2025-10-13T17:49:10.802339Z", "iopub.status.busy": "2025-10-13T17:49:10.802235Z", "iopub.status.idle": "2025-10-13T17:49:10.805672Z", "shell.execute_reply": "2025-10-13T17:49:10.805409Z" }, "papermill": { "duration": 0.00742, "end_time": "2025-10-13T17:49:10.806088", "exception": false, "start_time": "2025-10-13T17:49:10.798668", "status": "completed" }, "tags": [] }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "/glade/campaign/cesm/development/cross-wg/diagnostic_framework/CESM_output_for_testing/b.e30_beta02.BLT1850.ne30_t232.104/atm/proc/tseries\n" ] } ], "source": [ "if regridded_output:\n", " file_path = f\"{ts_dir}/{case_name}/atm/proc/tseries/regrid\"\n", "else:\n", " file_path = f\"{ts_dir}/{case_name}/atm/proc/tseries\"\n", "print(file_path)" ] }, { "cell_type": "code", "execution_count": 7, "id": "70c3794a", "metadata": { "execution": { "iopub.execute_input": "2025-10-13T17:49:10.810654Z", "iopub.status.busy": "2025-10-13T17:49:10.810545Z", "iopub.status.idle": "2025-10-13T17:49:10.814179Z", "shell.execute_reply": "2025-10-13T17:49:10.813714Z" }, "papermill": { "duration": 0.006501, "end_time": "2025-10-13T17:49:10.814724", "exception": false, "start_time": "2025-10-13T17:49:10.808223", "status": "completed" }, "tags": [] }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "WHATS HAPPENIGN HERE None\n" ] } ], "source": [ "print(\"WHATS HAPPENIGN HERE\",base_case_name)" ] }, { "cell_type": "code", "execution_count": 8, "id": "318b8c9a-344f-41d5-87be-593847e4b6f1", "metadata": { "execution": { "iopub.execute_input": "2025-10-13T17:49:10.819746Z", "iopub.status.busy": "2025-10-13T17:49:10.819501Z", "iopub.status.idle": "2025-10-13T17:49:10.823610Z", "shell.execute_reply": "2025-10-13T17:49:10.823379Z" }, "papermill": { "duration": 0.007166, "end_time": "2025-10-13T17:49:10.824063", "exception": false, "start_time": "2025-10-13T17:49:10.816897", "status": "completed" }, "tags": [] }, "outputs": [], "source": [ "if base_case_name is not None:\n", " if base_regridded_output:\n", " base_file_path = f\"{ts_dir}/{base_case_name}/atm/proc/tseries/regrid\"\n", " else:\n", " base_file_path = f\"{ts_dir}/{base_case_name}/atm/proc/tseries\"\n", " print(base_file_path)" ] }, { "cell_type": "code", "execution_count": 9, "id": "ccca8e3a-a52f-4202-9704-9d4470eda984", "metadata": { "editable": true, "execution": { "iopub.execute_input": "2025-10-13T17:49:10.828727Z", "iopub.status.busy": "2025-10-13T17:49:10.828628Z", "iopub.status.idle": "2025-10-13T17:49:16.034943Z", "shell.execute_reply": "2025-10-13T17:49:16.034651Z" }, "papermill": { "duration": 5.209512, "end_time": "2025-10-13T17:49:16.035787", "exception": false, "start_time": "2025-10-13T17:49:10.826275", "status": "completed" }, "slideshow": { "slide_type": "" }, "tags": [ "hide-input" ] }, "outputs": [], "source": [ "dat = (\n", " fix_time_dim(xr.open_mfdataset(f\"{file_path}/*PSL*.nc\", decode_times=False))\n", " .sel(time=slice(start_date, end_date))\n", " .PSL\n", " / 100.0\n", ")\n", "\n", "# Ensure all datasets have the same coordinates as the output data\n", "# (Avoid round-off level differences since all data should be on the same grid)\n", "lon = dat.lon.data\n", "lat = dat.lat.data\n", "\n", "if base_case_name is not None:\n", " base_dat = (\n", " fix_time_dim(\n", " xr.open_mfdataset(f\"{base_file_path}/*PSL*.nc\", decode_times=False)\n", " )\n", " .sel(time=slice(base_start_date, base_end_date))\n", " .assign_coords({\"lon\": lon, \"lat\": lat})\n", " .PSL\n", " / 100.0\n", " )" ] }, { "cell_type": "code", "execution_count": 10, "id": "073a2ad0-81e6-4817-9024-4b9b718fabb4", "metadata": { "editable": true, "execution": { "iopub.execute_input": "2025-10-13T17:49:16.041853Z", "iopub.status.busy": "2025-10-13T17:49:16.041574Z", "iopub.status.idle": "2025-10-13T17:49:28.528110Z", "shell.execute_reply": "2025-10-13T17:49:28.527799Z" }, "papermill": { "duration": 12.49019, "end_time": "2025-10-13T17:49:28.528956", "exception": false, "start_time": "2025-10-13T17:49:16.038766", "status": "completed" }, "slideshow": { "slide_type": "" }, "tags": [ "hide-input" ] }, "outputs": [], "source": [ "# --Compute seasonal and annual means\n", "dat = seasonal_climatology_weighted(dat).load()\n", "\n", "if base_case_name is not None:\n", " base_dat = seasonal_climatology_weighted(base_dat).load()" ] }, { "cell_type": "markdown", "id": "e0527e3e-cd26-46b5-8c1e-08882109e12e", "metadata": { "editable": true, "papermill": { "duration": 0.002541, "end_time": "2025-10-13T17:49:28.539379", "exception": false, "start_time": "2025-10-13T17:49:28.536838", "status": "completed" }, "slideshow": { "slide_type": "" }, "tags": [] }, "source": [ "## Read in validation data and other CMIP models for comparison (precomputed)" ] }, { "cell_type": "code", "execution_count": 11, "id": "126e65b3-2b8c-400c-af02-2ad0b0f82e6e", "metadata": { "editable": true, "execution": { "iopub.execute_input": "2025-10-13T17:49:28.546612Z", "iopub.status.busy": "2025-10-13T17:49:28.546330Z", "iopub.status.idle": "2025-10-13T17:49:32.674620Z", "shell.execute_reply": "2025-10-13T17:49:32.674191Z" }, "papermill": { "duration": 4.13242, "end_time": "2025-10-13T17:49:32.675945", "exception": false, "start_time": "2025-10-13T17:49:28.543525", "status": "completed" }, "slideshow": { "slide_type": "" }, "tags": [ "hide-input" ] }, "outputs": [], "source": [ "# ---ERA5\n", "era5 = xr.open_dataset(\n", " os.path.join(obs_data_dir, validation_path, \"PSL_ERA5.nc\")\n", ").assign_coords({\"lon\": lon, \"lat\": lat})\n", "era5 = era5 / 100.0 # convert to hPa\n", "\n", "# ---CESM2\n", "lens2 = xr.open_dataset(\n", " os.path.join(obs_data_dir, validation_path, \"PSL_LENS2.nc\")\n", ").assign_coords({\"lon\": lon, \"lat\": lat})\n", "lens2 = lens2 / 100.0 # convert to hPa\n", "\n", "# ---CMIP6\n", "modelfiles = sorted(\n", " glob.glob(f\"{os.path.join(obs_data_dir,validation_path)}/CMIP6/*.nc\")\n", ")\n", "datcmip6 = [\n", " xr.open_dataset(ifile).assign_coords({\"lon\": lon, \"lat\": lat}).mean(\"M\")\n", " for ifile in modelfiles\n", "]\n", "datcmip6 = xr.concat(datcmip6, dim=\"model\")\n", "datcmip6 = datcmip6 / 100.0" ] }, { "cell_type": "markdown", "id": "22cc331d-413c-4a87-bd89-812ad118cf8c", "metadata": { "editable": true, "papermill": { "duration": 0.003709, "end_time": "2025-10-13T17:49:32.686477", "exception": false, "start_time": "2025-10-13T17:49:32.682768", "status": "completed" }, "slideshow": { "slide_type": "" }, "tags": [] }, "source": [ "## Compute the NMSE" ] }, { "cell_type": "code", "execution_count": 12, "id": "6857717d-7514-45b5-ba33-a774f38b7c3e", "metadata": { "editable": true, "execution": { "iopub.execute_input": "2025-10-13T17:49:32.694242Z", "iopub.status.busy": "2025-10-13T17:49:32.694047Z", "iopub.status.idle": "2025-10-13T17:49:33.441857Z", "shell.execute_reply": "2025-10-13T17:49:33.441535Z" }, "papermill": { "duration": 0.753956, "end_time": "2025-10-13T17:49:33.442673", "exception": false, "start_time": "2025-10-13T17:49:32.688717", "status": "completed" }, "slideshow": { "slide_type": "" }, "tags": [ "hide-input" ] }, "outputs": [], "source": [ "nmse_dat = []\n", "nmse_cesm2 = []\n", "nmse_cmip6 = []\n", "if base_case_name is not None:\n", " nmse_base_dat = []\n", "else:\n", " nmse_base_dat = {key: None for key in [\"AM\", \"DJF\", \"MAM\", \"JJA\", \"SON\"]}\n", "for ivar in era5.data_vars:\n", " nmse_dat.append(nmse(era5[ivar], dat[ivar]))\n", " nmse_cesm2.append(nmse(era5[ivar], lens2[ivar]))\n", " nmse_cmip6.append(nmse(era5[ivar], datcmip6[ivar]))\n", " if base_case_name is not None:\n", " nmse_base_dat.append(nmse(era5[ivar], base_dat[ivar]))\n", "nmse_dat = xr.merge(nmse_dat)\n", "nmse_cesm2 = xr.merge(nmse_cesm2)\n", "nmse_cmip6 = xr.merge(nmse_cmip6)\n", "if base_case_name is not None:\n", " nmse_base_dat = xr.merge(nmse_base_dat)" ] }, { "cell_type": "markdown", "id": "1014f119-fc3f-428b-99ca-ab9de700148d", "metadata": { "editable": true, "papermill": { "duration": 0.002307, "end_time": "2025-10-13T17:49:33.448904", "exception": false, "start_time": "2025-10-13T17:49:33.446597", "status": "completed" }, "slideshow": { "slide_type": "" }, "tags": [] }, "source": [ "### Set up the plot panel" ] }, { "cell_type": "code", "execution_count": 13, "id": "53494900-0145-4ab2-85b8-5ed6ae347892", "metadata": { "editable": true, "execution": { "iopub.execute_input": "2025-10-13T17:49:33.455055Z", "iopub.status.busy": "2025-10-13T17:49:33.454888Z", "iopub.status.idle": "2025-10-13T17:49:33.459631Z", "shell.execute_reply": "2025-10-13T17:49:33.459037Z" }, "papermill": { "duration": 0.00911, "end_time": "2025-10-13T17:49:33.460206", "exception": false, "start_time": "2025-10-13T17:49:33.451096", "status": "completed" }, "slideshow": { "slide_type": "" }, "tags": [ "hide-input" ] }, "outputs": [], "source": [ "def plotnmse(fig, cmip6, cesm2, cesm3, cesm_baseline, x1, x2, y1, y2, titlestr):\n", " ax = fig.add_axes([x1, y1, x2 - x1, y2 - y1])\n", "\n", " cmip6 = cmip6.sortby(cmip6, ascending=False)\n", " binedges = np.arange(0, cmip6.size, 1)\n", " ax.bar(\n", " binedges,\n", " cmip6,\n", " width=1,\n", " bottom=0,\n", " edgecolor=\"black\",\n", " color=\"gray\",\n", " label=\"CMIP6\",\n", " )\n", "\n", " ax.plot(cmip6.size + 1, cesm3, \"o\", color=\"blue\", label=\"THIS RUN\")\n", " if cesm_baseline is not None:\n", " ax.plot(cmip6.size + 1, cesm_baseline, \"x\", color=\"red\", label=\"BASELINE\")\n", "\n", " ax.fill_between(\n", " np.arange(0, cmip6.size + 3, 1) - 0.5,\n", " np.arange(0, cmip6.size + 3, 1) * 0 + np.array(cesm2.min()),\n", " np.arange(0, cmip6.size + 3, 1) * 0 + np.array(cesm2.max()),\n", " color=\"salmon\",\n", " alpha=0.5,\n", " label=\"LENS2\",\n", " )\n", "\n", " ax.set_xlim(-0.5, cmip6.size + 2 - 0.5)\n", " ax.set_xticks([])\n", " ax.set_ylabel(\"NMSE\", fontsize=14)\n", " ax.set_title(titlestr, fontsize=16)\n", "\n", " ax.legend()\n", "\n", " return ax" ] }, { "cell_type": "code", "execution_count": 14, "id": "56b4cd99-a27e-4f28-86c2-8013e7c7bc78", "metadata": { "editable": true, "execution": { "iopub.execute_input": "2025-10-13T17:49:33.465854Z", "iopub.status.busy": "2025-10-13T17:49:33.465565Z", "iopub.status.idle": "2025-10-13T17:49:33.978056Z", "shell.execute_reply": "2025-10-13T17:49:33.977366Z" }, "papermill": { "duration": 0.516497, "end_time": "2025-10-13T17:49:33.979272", "exception": false, "start_time": "2025-10-13T17:49:33.462775", "status": "completed" }, "slideshow": { "slide_type": "" }, "tags": [ "hide-input" ] }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAABfUAAAQGCAYAAACer1CDAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjUsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvWftoOwAAAAlwSFlzAAAPYQAAD2EBqD+naQABAABJREFUeJzs3Xd0FFUbBvBnd9M76UAqEHrvPZEWyof0XgURFVFAVFCRJoKAiIqoqBCKFAWkQ6gBQmgBQpWeXggJpPfd+/0Rd8mym2Q3hRB8fufsUWbu3HtndmaSvHPnvRIhhAAREREREREREREREb30pBXdASIiIiIiIiIiIiIi0g2D+kRERERERERERERElQSD+kRERERERERERERElQSD+kRERERERERERERElQSD+kRERERERERERERElQSD+kRERERERERERERElQSD+kRERERERERERERElQSD+kRERERERERERERElQSD+kRERERERERERERElQSD+kRERFQuRnwejRGfR1d0NyrU1xsS0eXdCMQl5lV0V4iIiIiIiOgVYVDRHSAiov+WLu9G6FX++Go3xCXmYeScGLSqb4Kv33PUWu5WaDbeW/YIvm3N8clYO9Xyrzckwv9cOlZ95IT6nsaq5XK5wN7ANBy9kI7w2Fxk5wpYmUvhaGuABjWM0aONObxcjYrtn9++JGw4kKK2zNhQgqr2BujQ2BTDe1jB3FT9Gbpyf5p4GePb6U5a6y2sjHJ/AGD1x06o62Gsse30bx/h6r1sbF9cHbbWsmL34VWTlqHAun1JuBOeg9jEPKRlKGBlLoOrkwH6e1uiU1NTSCQSje3SMxVYvz8Zp0Iy8DRFjipWMnRuaoZxfaw1vsOXRcjdLMxYGY+xva0w/n82ZVJnTq7A1iMpOHohHY+e5MHSTIq2DU0xoa+NxvkUFZ+Lk5czcOFWFmIe5yE5TY4qljI0rW2MUT2t4eZsqHO7Bc9tJakUsLaQop6HMYZ2s0TjWiZq6w+dTcPSjU/wZj9rjPS1Vi1XXj+6crKVYcuX1QEAO0+k4l5kDu5F5CAsLhcKBbBimiOa1jYpdPu7ETnY7J+MuxE5eJKigI2lFLVcjDCkqyWaeKlvp/zOCvP8vUrpdlg2/PYn49bDbOTJAfeqhhjcxRJdW5nrvJ/lLS4xD1v8U3A7PBvxT+XIyFKgipUMnlUNMaSrFZrX1X4MnyTLsXZvEs7dyERqhgJOtgbo1tocI3pYwdBA81rVhfI+eHy1m8a65DQ5Todk4uz1TITF5CAhWQ5TYynquhthUBdLtKpvqrHNqSsZOB6cjgdRuXiaKodCAE62BmhR1wTDulvCwUb9z6qyvDaiH+fiyPl03IvMxd2IHCQmy9XO2cJcvJWJzf4puBeZAyGA2m5GGOlrpXX/nncrNBvvL38EhYDG9aWLYxfTsf14KsJjc2EgA+rXMMYb/7NGHXfNcxvIP16/70lGyN0sZGYLuDgYoE9HC/TrbAGpVPMc0Oc+BZTsui6KPj8vsnIU2HMqDXcjcnAvMgdR8XkQAti8sBqc7Ur257g+18zTVDkOnknD3cgc3I3IQVyiHAC0XhtFUd5Xn/89q7zoc/5evZeFoGuZuPfvMU7PEsX2U6EQ2H0qDfsD0xD1OA+mxhI0rW2Cia9bw8VR8/o8cj4d1x9k425EDkJjcpCbB3w8xhY921mUaP/+6+cwERGVHu/ARET0Qo3tbaWxbMOBFJibSjDoNcsX0ge5QmDWj49x6XYW7Kxl8G5uBmsLGRKT5Yh4lIu/T6TCxEiiU1BfqXMzU3hUzf8j8GmKAudvZeIP/xScvZGJ1R87w8iwZIGpoqzZlYQV07Q/FPgvS06T4+DZdNT3MELHxmawNJciKVWOs9czMe/XBPTpYI4PR6n/oZ+ZrcD0bx/hflQuWtQ1QZeW5ngYlYPtx1MRcjcL333oBFPjlzOwX5YUCoE5vzzGxVtZqOdhhI5NrRDzOBeHzqYj+HYWVn/krBZsWLc3GScuZcCzmiHaNzaFuYkED2NyceRCBk5dycTXUx00AvHF6d3eHPY2+W3k5AqEx+Xh/I1MnLuRiYWTHdCuUfEBSQtTqca9Ji1TYOeJVDjZyuDbVj0QbmH27Ltd9ddTAICdtQw2FlI8SVEU2VZgSAbm/ZoAQwMJOjY1hUMVAzx+mofAkEwEXcssNOjTxMsYTbw0A5wONprBnJC7WfhkVTwMZBK81tIM5iZSBIZkYNG6RMQl5mFUT/0CruUl+nEeTlxKR/0axqjvaQwzEykSkvIQdC0T52/GY+Lr1hp9fZIsx7vL4vD4qRwdGpvCxckQNx5kw29f/gOMr9510BrULY2TlzOwcutT2NvI0Ky2MextDPA4KQ+nr2Tiwq0sTB5gg2Hd1c+fwKsZeBCVizruRrD79xq4H5WDvwNScfhcGr770Ame1Z79zCjLa+P6/WxsOJACqRRwdzbE0xR5sdscvZCOr/wSYW0hRY825pBIgIDLGfhk1WN8Ot4O3VoX/jAoO0eBrzckwshIgqxsoVMfC/rjUDJ+35MMR1sZ+nayQGa2wIngdLz/zSN8/Z5mEDIsNhdTl8chO0fAp7kZ7G1kuHAzCz/8+RQPo3M07tf63qcA/a/rouj78yIpVYGfdyYByH+AaGkmRUp6ydvX95oJj83Fb3uSIZEA1R0MYGIkQVaO/t/ri6Tv+XvobDr8z6XDxEgCxyoypGcV/3bct1ueYP+ZdLhXNcQAbws8TVXgxKV0BP+TiR9mOqt+p1NauzcJj57IYW0hha2VDI+eFH8dFua/fg4TEVHZYFCfiIheKG2jiTccSIGFqbTMRhoX59jFDFy6nYVW9U2w6B0HGMjUA0ZPkuVISNbvj7XOzczQpeWzPzJzcgWmLIvDg6hcHAtOR68SjuQqTDUHA4TczcaFm5lo3aD4IOd/ibO9AfYud4Hsue81I0uBKcseYf+ZdAx8zVItALftSAruR+VieHdLvDWgimq58k2MbUdSXtj5WZH8z6fj4q0svNbSDJ+/Yad6o+Hg2TQs2/gEa3YlYda4ZwG2VvVNMNLXCjVd1B+AHQ9Ox5drE/HtlqdYN6eqXn3o3cFCY6R6wOUMLPgtAduOpOgW1DfTvJ/EJeZh54lUONsZFPldfvWOA2q7GcHWWoZvNz/B3sC0Itv6fU8SBIAfZjqhVoEHgXcjcvDO13HYeCC50KC+LueUXC6w/I8nAICVM5xUDxvH9bHGe8sewW9fMrybm2kdWfqiNa5ljF3LXDSC8AlJeZi8JA7r9yejX2dLtYcoa3YlIf6JHB8Mr4J+nfMf7AohsHTjE/ifS4f/+bK/f7o4GeKrdxzQuoGJWl8jeuViytI4/L4nCV1bmcG+wOj7maPstD6cPXAmDcv/eIL1+5Mxb5KDanlZXhuNvUyw6iMn1KxuCGMjKXzfL/qNt9QMBb7f9gTWFlL8MssZjrb5+zHS1xqTF8fi+21P0KahKSzNtD+o/H1PMp4kyzGihxXW7U3WqY9KUfG58NuXDBdHA6z+xBkW/474HeBjgSlLH+Ufqy+qqt2fV255gvRMga/edUDbhvnX94TXBWatisf+M+no0tIczeo8exCg730K0P+6Loq+Py+szaVYOjW/fStzGT5ZFY+Lt7JK3L6+14ybsyG+ne4IL1cjmJlIMW5+DCIfvbwp4Upy/vb3tsDQbpZwczbEnfAcvLfsUZFtXLmThf1n0tGoljGWTXVUXds92pjjox/isXLLE6ycoT5oYuZoO1R3MICznQE2+yfjt936XRsF/dfPYSIiKhuv/pAzIiKi59x6mA0A6NvRQiOgDwC21jLUdtN9lL42RoYSVVqMuxE5papLm7G9rSGTAr/uToIQL/eIu9QMBZb/kYhBn0Sh5weReOfrOJy5lqF3PVfvZeHT1fHo/1EUfN+PwJi5Mfh9TxKyctRHi8mkEo2APgCYmUjRql5+YCjm8bOAhhAC+8+kw9RYgjG91UcRj/S1hqWZFAeC0kt1nOUKgc2HkjF6boyq71uPpECh0F6nLvvqty9JlcZlw4EUdHk3QvVR5vCPfJSLX3Y+xVuLY1V1jZ0XgzW7kpCZpTnKbv+/QYJJ/WzUUhT1amcBd2cDnLiUjowC2/VsZ6ERtASALi3N4eJogPDYXCSnlXw0o1Lr+vnfW1nUVZy2jUz1SlsVk5AHO2uZWkAfyE8VYWslw9O00o1mvHwnP31L11bqKcHMTKQY08sKckX+KFVdFJzjYffJVIyfn38+Dv88Guv3Jxd6Pp65moEPv3uE1z+MhO/7EZiwMBbbjqRA/lx5QwOJ1lH19jYGaOBpjDw58OjJs2svIyt/ZGxVewO83ulZEFIikeDNfjaQSp6dk/ro8m4Ert7LVv2/8vP1hkQAQPM6JmjbyFSjr25OhnithTny5MDNh+r37cLetvJubgZA/Z4ClO21Uc3eAPU9jWFspNufbicvZyAtU2CAj6UqIArkj/Ad1MUKaZkCJy9rvwffeJCNnSdSMXlgFa1vjRTn0Nl0yBXA6J5WqoA+AHhWM0L3NuaIeZyHy3eeBQMjH+Xi2v1sNK1trAroA4CBTIKJr9sAAPafUT8H9L1PAfpf14Upyc8LUxMpWtYzhZV56dsvyTVjayVDEy8TmJmU/E//Q2fTVCnN/M+lq11XIXeffZ9ZOQr47UvCuH/vLf1mRmH2j/G48SBb57ZKcv7WcTeGZzUjyHR8q0d5Tk3oa612bTeva4JW9Uxw7X42Ih/lqm3Toq5JmaWa+S+fw0REVHYY1Cciov8cS/P8H3/Rj8t5pNq/fw/p+kemPlwcDdCngwUeROXi6AX9A+QvSp4cmPndI9x8kI0ebczRvbUZIh/l4otfEnD0gm6BSADYcyoVM1bG41ZoDto1MsUAH0vY28jwx6EUfPR9PHLzig+45+QKXLmbBYkkPx+5UlR8HhKT5WhY01gjxY6RoQSNaxkjIUleqvPlx7+e4q/jqWhVzwT9vS0hVwis+TsJK7c+LfG+Nq1tokoj08TLGGN7W6k+ymDa6ZAMHDybjmr2BujRxhx9O1nC0kyKrYdT8NEP8ciTPztuObkCt8Ny4OpkoDVw0aKeKXLz8nNt60L5wKwszv/gf/KDRvqkxHpRPKoa4kmyHA+i1IPA9yNz8CRFjmaF5DuOfpz/5sBm/2Qcu5heaIBXGZxuWU+znpb/5pa+ek+/EZM/73wKv/3JqOdpjL4d8wOD6/cnax2V/dvuJMz5JQFRj/LQuZkZ+nW2hJGhBL/8nYSFvyfo1F5ymhz/hOXAxCh/vhGlmw+zkZsHtKxrojHPhZ21DJ7VDXE7LAc5ufo9UBvb2wpOtjLV/ys/HRoX/5aH7N+YlUzHv5LO3cgEAHhU0/1NibK8NrRRBlm1nTPKB5vazpmsf9PuNKltjP91LNnbEc/a1jzWyrav3Xt2Dynq/K7rYQQLU4mqDFD29yl9vYifF0Upr2umOLVcjDDw3xSJNV0M1a4r5feQkysw87t4bDiQAhMjCQZ1sUKHJqa4ei8b0799hFNXdPtdpaTnrz6u3suGibEEDWtqpkBrWd9EVaY8/NfPYSIiKjtMv0NERJVG9OM8+O1L0rouIUn3Ebydmpphy+EUrN2bhLgneWjb0BRervmjastKdo5CFbRupOWPxrIwtrc1Dl9Ix7p9SfBpYVbiCSW3H09BWobuo4l7trPQebRaYrIcbs4G+Po9R1Uga0hXK0xeHIfvtz1B+8amxY4eDIvNxQ9/PkVNF0Msf99RbaSY8hX4vwNSMbTbcznUMxTYfjwFQuTngz1/MxPxT+UY29tKLVVJdHz+H67VHbTvU3XH/OVR8XklTnFyJyIHv37qrErnMb6PNaYuf4R9gWno1tpMlVtbn31V5qX2P5deaCqX7m3MMaSr5sSJGw4kw29fMgIuZahyE0c/zoVCFH4cXP49DtHxeWhZr+j9/ScsG2Gx+fnHLQpJ8VGYA2fScOFmfqA0J1cg8lEezt/MhJerISb209zHivbuoCr49KfHmPrNI3RsYgqHf/OzB4ZkolFNY8wYaat1u2MXM3Ds4rMgl7GhBOP+Z43hz+Vyj4rPHy2q7dyzNJPC2kKqOod1dS8iB799VlWVG35MbznGzI3B3ydTMbaPtep8Cf4nf6LK1g1MMG+SPUz+HSkuhMDKrU+x93QaTl3JQOdmZmr1xyXm4dDZNCgEkJgkR9D1TKRlKDB9hK3a9a4MGimvsedVdzDAg6hcxCTkaeS3Lsr4/9ng6r1sPHoi1yttVkaWAqeuZMDIUIJGtbTftwNDMnA/KgfZOQJhsbm4+E8WqtrJ8IaO7ZTm2tBVUfe0gvez5/26KwmJKXIsnap9Qnqd2v53wlFtI4pVbRcIFhZ1fkskElR3MMSdiBxk5ShgYiQt0/tUSbyInxdFtl9O10xxarkaYbCZFDtPpKKWi5HW62rbkRTcCs1Bt1ZmmD3+WUqZQa9Z4t2lcfjmjydoWa/4NwZKev7qKjNbgcRkOTyrGWp9sObiYPhvP3I11pWF//o5TEREZYdBfSIiqjRiHudhw4GUUtdT280IH4+xw+rtT7H7ZBp2n8x/DdrBRobmdU0wwMdS7/Q7p65kICIu/w/Ap6kKnLueicdJ+ZPYdWpaPjnvba1lGNzFEpsOpmD3qVQM7qI5CbEudhxP1WvCt6a19XsF/Y3/2ailOXJzNkTP9ubYfTINZ65monubwidsBIB9p1MhVwBTh1TRePV7eHcrbD+WiuPBGZpB/UyF2vliIAMmD7DB0G7qEzKn//uKu7mp9kCD+b8BiPTMkqdRGehjqZaf29REijG9rTH/twQcPpeuCuqXdF8L42Cj/Xvq720Bv33JuHQ7SxXUT8/MH9lpUchxMNPxOKRlKvD1+kRIJfnHW18HgjTf4LCxkMK3rQUcq7x8r/43qW2ClTOcMP+3BLW3ZhyryNCznbkqcK5kbSHF5AE2aNfIFI62MqRlKBByNxtrdiVhzd9JMDeRoG+nZ+eo8nsxN9H+0E45Ga0+Rve2VuuXtYUMHZqYwf9cOiIf5aJG9fz7365/740zRtiqAvpAfrB1Un8b7AtMw/HgdK1B/YLXnqmxBB+PsdO41pXnUnlee/r4dssTPE1R4I3/WcPaQvu5duZaJvzPPTtH67gZ4fOJdmpvIBSmtNeGrpT3NG3XsqmxFFKp5jG9ejcLu06mYcrgKjrtS6FtZypgY6n92Gn7Pos7B8xMJf+WEzAxKrv7VEm9iJ8XRbb/kl0zBR06lw4DGTCpv3pKmZouRujZ1gJ7A3X7mV+S81cfOp9zWeWT2vC/fg4TEVHZYVCfiIgqjVb1TfD1e9pHEN4KzS52YrSCerQxh09zMwT/k4kbD7JxNyIHNx/mwP9cOo6cT8f7w6rg9c6WxVf0r1NXMnHqSqbask5NTTFvkr3GK/JlaXh3K+w7nYY/DqWgVzuLQv9IK8qWL6uXQ8/yGciA+p6aD0ga1zTG7pNpuB+VU+wf+LfC8tOaXLiVhUu3NV+5l8kkiHikOaLO2c4Ax1e7Qa4QePxUjuPB6Vi7Nwk3H2Zj7pv2WvPulxdto36Vy+5HPet7Sfe1MEIIHDqbjkPn0hEWk4v0TAUKpkFP1HNC6OLk5ArMXfMYEY/yMPF1a9XbBPpY9ZGTaqLcnFyB6Me52HQwBav+eorIR7n4YLj2ke8V5fzNTHz5ewLaNjLForcd4Gwnw6MncvxxKBlLNz7Bw+hcvDv42USEntWM1CZpNjGSoltrA9R0McTbS+Lgtz8ZfTpYaM1NX1Zqa0ljZP9v/vS0AoGcf0LzU1QcCNKe197YUIKIOM0HCk1rm+D4ajfkyQXiEvOwLzANSzYk4nZ4NqYOfbm+P6Xfdifh2MUMtK5vgpE9C39o9slYO3wy1g5pmQrcj8zB73uS8PaSOMx/ywHN6xR+vpfFtVFeMrMVWLrpCep7GqG/d9lOSlwZHTqbppqXRKljEzONeTPKi7a35/R5Q64ipGcqEJuQB3dnAzhU0exnk9rG2Buo28/8V4HyjZ6CmtY2eWHXfUWfw0RE9GK8vL8ZEBERlTMjQwnaNzZD+8b5o0xzcgW2HU3Bur3J+HH7U3RsYqbzpGSfT7BDl5bmkMsFIh7l4pedSTgdkol1+5Ixoa+NWllljL+QOSnV1hX3PMDMRIpRPa3w4/YkbD2SoppY8GVhZS7VGpys8m+qo3Qtk7U+LzU9v8wfh0r2loZMKoGznQFG+lpDKpVgzd9J2HcmDf3+fWhT3Ki04ka16ULbyNUqllJIJertlnZfn/fDn0+x62QaHKvI0L6xKWytZDD897e/DQdS1OYiMP93dGJaIccho5jjkJMr8MUvj3HlTjZG+lphVE9rreX0YWQogWc1I3w63g63w3Ow93QahnW3emmCWynpcixam4DqjoaYPc5Oda67OUsxa5ydKm9+P28LVHcoOo2BZzUj1PUwxvX72Yh+nAdXp/zy5sWMGs3IUqjOYV1p+w6VOeQVBb7+lHQF5AoU+YbU8xNVF2Qgk8DF0RBvD6yC7ByBvwPS0LqBKdo0MFXrR3lee7pYvz8Zm/1T0KyOMea/Za9TrnsLUyma1jbBkimOGDc/BkvWJ2LzwmpaJ18vj2ujKMrzIS1TofHGQWa2AgqF+jH9fU8yEpPlWDzFodQPk8xNpXp9n8WdAxn/jmo2+/dNldLep3Thfy5dI5+6s50BarkavZCfF9renlO+IfeyXDPPUx73KoW8pWGrx898fc9ffel6zhX2dpQunn+jR6lpbZP/xDlMREQvxsvxFxEREdFLwMhQgjG9rHHpnyxcu5+NGw+zNdJKFEcmyw9CLpjsgIlfxuKPQyno2MRMLZ2P8g+llPTC/7hVTpqpyx9Vr3e2xM4TqdhxPBUDvHV/u0CpPHPqp6QroFAIjUDR05R/90+HYKQymLNvhUuxuXiL06qeCdb8DVy9m60K6ivzxxY2KZwy/6xLITmMdZGUKoebk3pQ92lq/qj5gt9xWe7r01Q5dp9KQ43qhlj1kZNa+pQnyXKNQG11B0NIJYUfB2UOY225nHNyBeb88hgXb2VheHdLvFnGue9lMgm8XA0Rm5CH+5E5L01Q/8aDbKRlCjTxMtY4xyUSCZrWNsGt0Bzcj8wtNqgPANb/TuKdnfMsgJ+f0zgTUfG5GmnBUjMUSE5ToEGN8hl9qTw3dy1zKXVdLeuZYPepNFy9m6UK6itzOhc2J0D04zxIJUC1UqSDKc76/clYvz8ZTb2MsegdBxgb6f+ApJ6nMc5czUR0fJ7aJNxA+V8b2lR3NMCdiBxEP87TCIpqu589iMqfWHX8/Fit9f22O38+j4GvWeK9IVW0llG17WCAW6E5eJIs13gormq7QC5vZc7uKC35y4XIf1PHzlqmmtCzNPcpXX073anQdS/i50VRb8+9DNeMNsqfV09Ttb/9pc/PfH3PX32ZGkthZy1DbGIe5Aqh8RAv6nHuv/0oeT555Rs92vwXzmEiInox+PiViIjoOSbGpU97YWQowdsDbSBE/uSDBVmYSuFoK0PUo1xV8P55tx7mj7CqWb34PyoNDSR4o68NsnIE1h9I1ruvO46nYsOBFJ0/z7/SXZQ8OXArNEdj+bUH+ftXy6X4YGQ9j/xULLdCs4spWbyEf9PNyArECVwcDWBnLcONB9nIzFZ/uJGTK3DtfjbsrGWFTiqni+v3NfuuXFbL5dl3rO++SpWjq7UM4o5NyIMQQIu6JmoBfeDZ8S/IyFCCuh5GiHyUp/U7vvRPJgwNnvVRqWDQcmg3S7w1oOigX0kpH4IV9YbLi5b37+WbVEggK+nf69tQh1NHLhe4F5kDiQRwtH12gjbxyj/ewf9opmMKvpX5b5nySelQ18MIKekKrQFXfamuvQIBtPqexjA0AIJvZ0EI9S82MVmO0Ohc1PUwgpGh/vdk5bUhL+KE8duXhPX7k9HEyxhfTXHQuE50lajlvgK8uGvjeUWdMxf/XVbwnGnT0BS925trfBr/myKsjrsRerc3RwMtqdQ02zb5t+1MjXXKtht7GRcoX3hfb4flqB6aKZX0PlVWXsTPi6KU5zVTHOWlq+2aMjeVoqq9AaIf5+Gxljk+lKPGa+rwM1/f87ckGnsZIytb4IaWn4XBt5RtlM859F8/h4mIqOwwqE9ERP85x4PTcfmO5h/EQP7I26t3syGTAvV0CGAUpUMTM3i5GuLS7Sxcu6/+x2mPNuaQK4Bf/k7S6Mfjp3nYdjQVUinQtZVuuWe7tjJDLRdDHDijmUe1OFu+rI7jq910/uibE3bdviTkyZ/tY0RcLg4FpcPcVIIOTZ5NIpwnF4iIy0X0Y/UAYj9vC8ik+alk4p9o7ltahgL3Ip89OLgfmaP1tfaUdDl+350EAGhd/1m7EokEfTqYIzNbYONzD0U2+ycjNUOBPh3MSzU3ws6AVLXJTDOzFKq2CuYX1ndfLc3yf5V7/FQzqOxkm/8H+c2H2VAUCMI8fpqn8aBJqU/H/Hzav+5WPy8Pnk1DeFweXmthrvZmQU6uwOc/5wcth3S1xNsDiw9aJibLERGXW2jqAW3uRuTgxoP867JBjfIJdJREPU8jSKX5c2o8eC5/cmhMDo4HZ8DQQL3PNx9ma1zzcrnAz38n4dETOVrVM1GbJLl5HRNUtTfAsYvpuF/gu8/IUmDjwRTIpIBvW/X7RHJa/jEu7KGhrgb65L/NsmzjE611PUmWIzz22fX6T1g2cnI176txiXnY4p//ZkjrBs/uH+amUrzWwhyxCXnYc/pZ3n4hBH7bnQSFeHZO6quoawPID+hvOJCCRrWM8dW7RQf0c3JFoQ/aDp5Nw+2wHFR3MFCNOldu8yKuDW18WpjD3FSCvwNS1e4jicly7DieAgtTCbybP3sLbXh3K8wcbafx6dku/7zq1NQUM0fb4bWWxf886tnOHDIpsOlQitp+hMbk4Mj5dFRzMFCbe8DVyRCNaxkj5G42zt149iAgTy6wdm/+PbJPB/VzQN/7VFl6ET8vilKe10xxLM2kkEiAhEKuKd+25siTA7/tUv9eQmNycOhc/s/8jgV+5hdG3/O3JP737zm1dm+yWhq6y7ezcPGfLDSuZaxKgVYe/svnMBERlR0+fiUiov+cW6E52HkiFfY2MjSuZQxHWwPk5QmEx+Xi0j9ZUAhgUn8bONiU/sfkuD7W+PznBPjtTcaK6c8CGaN8rXD5dhYOnU3HrYfZaFHPBGYmUjx6koega5nIzBZ4e6CNzn9USiQSTOpvg09WPdbIxVuR7KxlSMtQYNJXcWjbwATpWQLHg9ORkyfw4Sg7tRQzCUlyjF8QCydbmVr6Ac9qRvhguC1Wbn2CcfNj0aahCarZGyA9SyA2IQ9X72WhZ1sLTB+ZPwHnoXPpOBCUhqZexnCyM4CpkQSPnshx7kb+ce3czBRdW6kHBIZ1t0LQtUxsPZKKe5H5aU4eROfgws0s1HIxxLDuhU+cqYs6bkaY9FUcfFqYwchAgtMhGYhLlKNPB3O1EYf67qubsyHsrGU4cSkDJkYSONjIAEl+SiY7axk6NzPFqSuZePvrODSvY4KnKXKcu5GFZnWMEZug+dCgRxtzBFzKwIngDMQl5KFJbRPEJuTh9JUMOFaR4a3+Nmrlv93yBMH/ZMHWSgpTYwn89iVp1Pl8uqbfdifB/1w6Ph5ji57tNINPB86k4cLN/OBebh4Qk5CHoGsZyJMDb/S1hp2WeS5OXs5A5CPtD7O6tDRDq/rFB5KUNvsnq+q6+e8bM1sOp6jyI/dub45GtfK/MwcbA4z0tcKmgyl4d2kcOjQ2y58o96kcgSEZyM0DJg+wUUsh8eXaBEgk+YF+e2sZ0jIVuHY/G5GP8uBoK8O0EeoTycpkEswcZYtPVsXjgxWP0KWlGcxMpAgMyUBsohwT+lpr3Cf+Dsh/+2ZsbyuM/5+Nzvv+vNYNTDGmlxU2HkzBmLkxaNXAFE62BkhJlyMmPg/XHmRjQl9ruFfNzxG/+VAKrj/IVt1XZdL87+/CzUzk5gGDu1iqjp3SpP42CLmbhe+3PcXl21lwcTTE9QfZuPEgG63qm8C3hJNqNqtjglNXMjH/twS0aWACI0MJalQzQttGpjh0Ng0bDuQ/EKnrboRtRzTnDCg4qWVOrsB7yx7Bs5oharoYwt7GAOmZCtwOy8a9yFyYGkvw8Rj1760sr43kNDl+3vlse7kcSE5X4OsNiaplBVN9WJpJ8f5QWyxen4jJS+LwWgszSCXAicsZeJqiwOxxdqqHHmXN1ckQ4/pYY+3eZLy5KBbezcyQlZ1/38+TC3w40lZjkvJpI2wxdXkc5q55DO/mZrC3luHCrSw8jM5F7w7maPbcBMT63qcA/a7r4pTk58VPO56q3jZ6GJ3/IOznnU9VaYVG9LCCm7NuP+9Lcs0UPFee/PtmScFlbw+00Uh18zxTEynquBvh2v1sfL0hES6OBpBI8gcfONkaYHh3K5y7kYkjFzIQEZeHZnVNkJwqx4nLGciTC8waZ69TWrmSnL/X72fhQFD+d6l8c+r6g2zVPro65c+ro9Ssjgl6dzDHgTPpeGtx/u8nT1MVOHEpHWYmEo37MADsP5OmGtn/MDr/AeuBoGe56zs0NkXHpro9bPivn8NERFQ2GNQnIqL/nKFdLVHN3gDB/2TiTngOgq5nQi4XqGIlQ6dmZujbyUJtJGFptG9shjpuRgi5l43Ld7JU9RobSbFimhN2n0rFiUsZOHwuHVk5AtYWUjSrY4KBPpYagYzitKpvimZ1jHHlTunT1JQVAxmw7H1HrNmVhMPn05GWqUCNakYY3dsKHRrrPtLufx0tUMvFEH8dT8W1e9kIupYJc1MpHKvIMLiLldpIZe9mpkjPVOCf0Gxcv5+NrBwBK3MpGtU0Rvc25ujS0kxjBJqpsRQrpjthw/5knLqSgav3smBrJcPgLpYY28da9UdrSU0ZUgUnL2Vgf1A6EpLy4FDFAG/1t8GQbppzIOizrzKpBAvesseaXUk4ciEdGf9OptqlpTksTKX4ZIwdnGyTcTokA38HpMLJ1gCDu1piRA8r9JgaqdG2TCrBwskO2HokBUfOp+ePijSTwretOSa8bqORI1v5VsiTFEWhk6kqJ3jUlTIwA+Sne7Awy5+Q9PXOFoWeM/cic3EvUnuKmJouhnoF9S/eytKYYPDirWdv2jTxMkajWs/WTehrgxrVjbDvdCou3c5CepYCFqZSNPEywQAfS7RrpN72650tcfFmJkLuZiMlXQ6ZVIJqDgYY1dMKQ7tZaQ22Nqtjgu8+dML6fckIuJyBvDzAo6oh3uhrg26tSxb01tUbfW3Q2MsEO0+k4srtLKRlKmBlLoWznQHG9bFGtwJvE/XuYAEjIwnuhOcg+HYW8vIEbCxlaNPAFH06Wqhy6RdkZy3Djx87Y+2eJJy7mYlzNzLhWMUA4/9njeHdrUo8cev/OljgUWIejl/KwB+HUiBX5I8kbtvIVHXeyhXAX8dSC61DGdQ3MZZg/P+sEXInC1fuZCM5LQMGMgmc7AwwqIslBnexVL0Zo1SW10ZmttCYdDPruWXP5+/u3sYc1hZSbPZ/FvTzcjXCrLFWel0PJTG6lzWc7Qyw43gq9pxKg8G/b6uM/5816mpJKeJR1RCrP3bG73uScOFmFjKzFajuYIj3hlRBf2/NB3/63qcA/a/ropTk58WpKxkaD9xPXXn2ZoJvW3OdA6IluWa0TdpacNm4Ptaw1mGA/+xxdli9/SnOXM1AepaAEPkpgZxsDWBkKME3Hzhi6+EUnLiUgR3HU2BsKEHjWsYY5Wulc8AZ0P/8jX6cp7GPMY/zEPNv3vgmXsZqQX0AmDHCFjWqGWFfYBp2BqTC1FiKdo1MMfF17QMqbjzI1mjjxr8PUwDAyVamc1D/v34OExFR2ZAIbbkHiIiIiIiIiIiIiIjopcOc+kRERERERERERERElQSD+kRERERERERERERElQRz6hMRERHp6H5kDgKvZhRbztnOQOsksERUMiF3sxByN6vYcrVcjHTOa01EREREVFkxqE9ERESko/tROYVOellQEy9jBvWJylDI3Sydrj3ftuYM6hMRERHRK48T5RIRERERERERERERVRLMqU9EREREREREREREVEkwqE9EREREREREREREVEkwqE9EREREREREREREVEkwqE9EREREREREREREVEkwqE9ERERUyQQEBEAikWDevHkV3RUiIiIiIiJ6wRjUJyIiIipnJ06cwLBhw+Dq6gpjY2PY2tqiY8eO+Pbbb5GVlaV1Gw8PD3h4eLzYjlK5io+Px+LFizF48GB4enpCIpFAIpEUuY1CocCqVavQvHlzmJmZwcrKCt7e3tizZ4/W8so6i/pERkaqbfP06VPMnDkTtWrVgrGxMRwcHDB48GDcvHmzRPsZFxeHN998E1WrVoWJiQlq166NBQsWICcnp0yOSXHu3buHoUOHwsHBAaampmjcuDFWrVoFhUKhUfbBgweYN28eXn/9dVSvXh0SiaRE192LetAWEhKCOXPmoG3btnB0dISxsTFq1KiBd999F9HR0YVup+sxEULg4MGDeOedd9C4cWNYW1vDzMwMTZo0wVdffaX1fhUeHo63334bLVq0gIODA4yNjeHu7o4+ffrg2LFjJdrHTz/9FL6+vnBwcIBEIoGPj0+ZH5PCLFmyBD169ICrqytMTU1hZ2eHli1bYsWKFcjIyNAoXx7nMBEREVFxJEIIUdGdICIiInoV5eXlYcqUKVizZg3Mzc3Rq1cv1KpVC8nJyTh8+DAePHiA2rVrY//+/ahVq5batsrAYlhYmEa9AQEBeO211zB37lyO1q9ElN+bRCKBl5cXoqKikJGRgcJ+HRdCYMiQIdixYwdq1qyJXr16ITs7G7t370Z8fDx++OEHvPfee2rbFHY+3L9/H3/88Qfq1auHW7duqZYnJiaiXbt2uHfvHtq1a4d27dohNjYWO3bsgIGBAY4fP442bdrovI9xcXFo06YNIiMj0b9/f9SuXRuBgYE4c+YMevbsif3790MqfTauSN9jUpxbt26hffv2yMjIwNChQ1G9enUcPHgQ169fx6RJk7BmzRq18n5+fnjjjTcgk8lUx8bV1VXrdVeUF3VNtm3bFhcuXECrVq3Qpk0bGBsb4/z58zh9+jTs7e1x+vRp1K1bV20bfY5JVlYWTE1NYWxsDB8fHzRq1AhZWVnw9/fHvXv30KpVK5w8eRKmpqaqbY4ePYohQ4agXbt28PT0hJWVFaKjo7F7926kpKRg0aJF+PTTT3Xex3nz5mH+/PkwMjJC7dq1cePGDXh7eyMgIKDMjklRPD09YW9vj0aNGsHR0RFpaWkICAjAzZs30aRJEwQFBcHMzExVvqzPYSIiIiKdCCIiIiIqFzNnzhQARKtWrURUVJTaury8PPHFF18IAKJWrVoiOTlZbb27u7twd3fXWu+JEycEADF37txy6jmVh7i4OHHy5EmRkpIihBCiTp06oqhfx//66y8BQHTo0EFkZGSolj9+/Fi4u7sLY2NjERoaqlPb7733ngAgvvnmG7XlU6ZMEQDEjBkz1JYHBQUJmUwm6tevL+RyuY57KMTYsWMFALF69WrVMoVCIcaNGycAiLVr16qV1/eYFKdz584CgNi/f79qWU5OjujatasAII4fP65W/sGDB+Ls2bOq42tsbFzodVeUF3VN/vDDD+L+/fsay5csWSIAiN69e2us0+eY5OTkiEWLFomnT5+q1ZGTkyP69u0rAIilS5eqrcvOztZ6jkRHRwsnJydhaGioUV9Rbty4IS5duiRycnJEbGysACC8vb0LLV+SY1KUzMxMrcvHjBkjAIhVq1apLS/rc5iIiIhIF/xtg4iIiKgc3L17V0ilUmFrayvi4uIKLTdy5EgBQMyZM0cIIURoaKgAoPWjDBgWDCBeunRJ9OjRQ1hYWAgrKyvRv3//QgO9Dx8+FBMnThSurq7CyMhIODs7i3HjxomwsDCNsspAWlRUlBg3bpxwcnISEolEnDhxosj99vb2FgBEVlaWmDNnjqhZs6YwMDBQ9V25Xhtl4Ldg/9etWycAiHXr1omjR4+KDh06CDMzM2FrayvGjh0rEhISNOo5fvy46Nmzp6hataowMjISVatWFd7e3uLXX38tsu8vWnHBv1GjRmkEY5VWrlwpAIgvvvii2HYyMzNFlSpVhJGRkYiPj1dbV716dSGVSkVqaqrGdv3799caCC9MSkqKMDY2FjVq1BAKhUJtXUxMjJBKpaJdu3ZF1lGagOidO3cEAPHaa69prDt37pwAIEaMGFFkHSUJ6s+dO7fQa7bguZyQkCCmTZsmPDw8hJGRkXBwcBBDhw4VN2/e1Ks9bfLy8oSZmZkwNzdXW14Wx0QpKChIABB9+vTRuV8DBgwQAERISIjO2xSkS1C/MIUdk5LavXu3ACCmTZtWZDkG9YmIiOhFMCjLUf9ERERElM/Pzw8KhQJvvfUWnJycCi03Z84cbN68GWvXrsWCBQtgY2ODuXPnYuXKlQCAadOmqco+n1c6ODgYy5Ytg4+PDyZPnowrV65g165duH79Om7cuAETExNV2fPnz8PX1xfp6eno27cvatWqhbCwMPzxxx84ePAgzp49ixo1aqjVr0zNYmtri2HDhiEnJwdWVlY67f/AgQNx9epV+Pr6wtbWVqNufe3duxf79u1D37598c477+DUqVPYsGEDHjx4gMDAQFW5/fv3o2/fvrCxsUG/fv1QtWpVPH78GCEhIfjjjz/w5ptvlqofL9KjR48A5KcDeZ5y2fHjxzF//vwi69m5cyeePn2KwYMHw8HBQaMNe3t7WFhYFNnGa6+9Vmx/z549i+zsbHTv3l0jp3jVqlXRqFEjnD9/HllZWWrnZllRpmfp0aOHxrrWrVvDxsYGJ0+eLPN2fXx8EBYWhvXr18Pb21vtOrWxsQGQfy21bdsW9+/fh4+PD4YPH46wsDBs374d+/fvx5EjR9CuXbsS90EikUAmk6mlNgLK9pgYGhoCAAwMdPsTMjExEefPn4eZmVmpr/+SKOyYlNT+/fsBAA0bNiyT+oiIiIhKg0F9IiIionIQFBQEAOjatWuR5erWrYtq1aohOjoakZGRcHV1xbx58+Dn5weg8BzpQH6QaevWrRg2bJhq2dixY7Fx40bs2rULw4cPBwDk5uZi+PDhUCgUCA4ORpMmTVTlAwMD4ePjgw8++AB79+5Vq//GjRt444038Ouvv0Imk+mz+4iJicG1a9dga2ur13aF2bNnDwICAtChQwcAgFwuR7du3RAQEIBz586hbdu2AIC1a9dCCIGAgAA0btxYrY7ExESd2tq1axdCQkJ07puPj0+RE3mWlDIAHxoainr16qmtCw0NBQDcvXu32Hp+//13AND6QMPBwQGPHj1CWlqaRmBfnzaA/MlYAcDLy0vrei8vL1y9ehUPHz5E/fr1dapTH0W1L5FIUKtWLQQHByMjI0MtJ3ppKb/79evXw8fHR+s1+/HHH+P+/fuYPXs2vvrqK9Xy8ePHo2fPnhg3bhxu375d4gD09u3bkZqaiiFDhqgtL8tjsnbtWgDaHxAA+fN/+Pn5QS6XIyYmBnv27EFSUhJ+/vlnWFpalmS3SqWwY6KrlStXIikpCUlJSThz5gyCg4PRo0cPjB07tox7SkRERKQ/BvWJiIiIykFcXBwAwNXVtdiyrq6uiImJQWxsrE7llTp37qwW0AeACRMmYOPGjbh48aIqqL9v3z6EhYVh4cKFagF9AOjYsSP69euHXbt2ISUlRW0kvpGREZYuXap3QB8A5s+fX2YBfQAYOXKkKqAPADKZDOPGjUNAQAAuXryoCuorFZzIU8nOzk6ntnbt2oX169fr1b/yCOr36tULW7ZswZIlS9ClSxfV6PbExETVmxxJSUlF1hEaGooTJ07Azc0N3bt319rG2rVrMX/+fCxbtky1/MKFC9i3b59ObSglJycDAKytrbWuV55bynJlTZ/2yzKoX5ycnBxs2bIFdnZ2+Pzzz9XW+fr6wtfXF/7+/ggKCkLHjh31rj8yMhLvv/8+TE1NsXDhQrV1ZXVMDh06hF9++QX16tXDxIkTtZYJCwtTe2vEwsIC69atw+jRo/Xan7JQ1DHR1cqVKxEeHq769+jRo/HTTz+p3lggIiIiqkgM6hMRERFVMCEEAGikLClO8+bNNZa5uLgAUA/Enjt3DgBw+/ZtraOI4+LioFAocPfuXbRs2VK13NPTE/b29nr1Sal169Yl2q4wuu7r0KFDsXPnTrRp0wYjRoxAly5d0KlTJzg6Ourclp+fn+pNiYo0YsQIrFu3DidOnECjRo3Qs2dP5ObmYteuXaqUTsU9cFG+ufDGG29oHQU+f/58HDx4EMuXL8fZs2fRtm1bxMbGYvv27ahfvz6uXbum1oZy9HJB48ePh4eHR6n3Vxfazt9p06ap0ty8jG7fvo3MzEz4+PhoDZz7+PjA398fISEhegf1nzx5gt69eyM+Ph4bNmxAnTp1yqrbKsHBwRg2bBisra3x119/wdjYWGs5Hx8fCCGQm5uLsLAwrFmzBmPHjsWFCxfw/fffq8r5+fkhLCxMbdv+/fujadOmZdLf4o6Jruewso9xcXE4ceIEPv74Y7Rp0wb+/v6qew8RERFRRWFQn4iIiKgcODs74/bt24iMjCw20BYVFaXaRh/aRt8q813L5XLVsidPngAA/vjjjyLrS09PV/t3UXMBFKc022qj674OGzYMhoaGWLlyJX755ResXr0aEokEPj4+WLFiRZkFDl8EAwMDHDx4EEuWLMHmzZuxZs0aWFtbY8CAAZg5cyZq166tkSO/IIVCAT8/P0ilUkyYMEFrGRcXF1y8eBFz587FwYMHceHCBbi6umLBggXw8PDA8OHD1dp4fvQykB/M9fDwUH1HhY3ET0lJAVD4qHFdaJs/YPz48bCxsdG5fV3nhSgrynYLuyaU172+bzA8ffoU3bp1w82bN/HTTz9pHRFf2mNy5coV9OjRAxKJBP7+/mjQoEGx/TI0NISXlxeWLVuGjIwM/PDDD+jVqxd69eoFID+o/3wefw8PjzK5NnU5JkWdw9o4OztjxIgRqFWrFlq3bo0PP/wQ27ZtK3VfiYiIiEqDQX0iIiKictC+fXsEBATg2LFj6NatW6Hlbt++jZiYGFSvXl2v1Dv6UAbs9u7di//97386b6fvmwO6bKscLZ6Xl6cx4WZZpWUZOHAgBg4ciJSUFAQFBWHnzp34/fff4evrizt37hQ7qvtlyakPAMbGxpg7dy7mzp2rtlw5AWrBNyued+jQIURFRcHX1xdubm6FlqtevTp+++03jeXKUfEF23h+hHVByrztyjzuz7t37x6kUmmpJk1VvtWib/tCCNy/fx/VqlWDubl5idsvCeX1p5z4+HnK5fo8bHjy5Am6deuGK1eu4Mcff8TkyZO1livNMbl8+TK6d+8OuVyOw4cPo1WrVjr3T6lHjx5YvXo1AgICVEF95blb1nQ9JkWdw0Vp1aoVqlSpUm79JyIiItIHg/pERERE5WDcuHFYsmQJfv31V8yYMaPQEdWLFi0CAI2R1DKZDDk5OWXSlzZt2gAAzp49q1dQvzxUqVIFABAdHQ13d3fVcoVCgatXr5ZpW1ZWVujZsyd69uwJuVyOtWvX4vz58/D19S1yu5clp35RlG9dKOdN0KaoCXKLI5fLsXXrVhgYGGDQoEE6bdO2bVsYGxvjyJEjEEKoPdiJjY3F9evX0aZNG9XcAGVN+R0cPnwYs2bNUlt34cIFJCUlqQLLZU2ZoqjgWyNKdevWhYmJCS5evKh1QlrlqHVdR6oXDF7/8MMPePfddwstW9JjcvnyZXTr1g15eXnw9/dX3UP0FRMTAwAaD/DKmj7HpKTS0tKQnJys9xtVREREROVBM7EmEREREZVa7dq18cEHHyAxMRF9+/ZFbGys2nqFQoGFCxdi06ZNqFmzJmbOnKm23tbWFgkJCcjKyip1X/r16wc3NzesWLECp06d0lifm5uLwMDAUrejC+Wo7+dz1q9YsQKhoaGlrv/YsWNaj1l8fDwA7RPoPs/Pzw9CCJ0/2vK8lxVlepSCtm/fjrVr16JVq1YYOHCg1u0eP36MvXv3wt7eHq+//nqh9efm5iIzM1NtmUKhwMyZM3Hnzh1MnToV1apV06mvVlZWGDZsGB4+fIiff/5ZtVwIgdmzZ0OhUGDSpEk61VUStWvXRufOnXHixAkcOHBAtTw3N1c1QW15ta+cFFqZSqsgIyMjjBgxAgkJCVi8eLHauqNHj+LgwYOoVauW2kTQhXny5Am6du2KK1eu4LvvvsN7771XZPmSHBNlQD83NxcHDx5Eu3btimzjwoULWq+58PBw1f6W18MUQP9jUpTw8HCtI/lzc3Mxbdo0KBSKct0XIiIiIl1xpD4RERFROVm6dCmSk5Oxdu1aeHl5oU+fPqhZsyZSUlJw+PBh3Lt3D15eXjhw4IBG6o0uXbogODgYffv2RadOnWBkZISOHTvqPZEmkJ/CZfv27ejVqxe8vb3RtWtXNGzYEAAQERGB06dPw87ODrdv3y6T/S7KG2+8gaVLl2LevHkICQlBzZo1ERwcjBs3bsDb21sj17a+PvzwQ0RERKhyZEskEgQGBuLChQto3769ToHT8jR+/HjV/ysf9BRctnz5crXJidu0aQNXV1fUq1cPJiYmuHDhAgICAlCjRg389ddfhU6Uu2HDBuTm5mLs2LEwMjIqtD+PHj1CgwYN0KNHD3h6eiInJwf+/v64ffs2+vTpoxGELs6SJUtw4sQJTJkyBUePHkXt2rVx+vRpnDlzBr6+vhg3blypj0lRfvrpJ7Rv3x4DBgzA0KFDUa1aNRw6dAjXrl3Dm2++iddee02tfEJCgtoDtdzcXCQkJKi1r8ukyXXr1kW1atWwdetWmJmZwcXFBRKJBO+88w6sra3x9ddf4+TJk/jyyy8RFBSENm3aICwsDNu3b4eZmRnWrVundSLj5w0cOBAhISGoW7cunjx5otPEwfocE+WI96dPn6Jnz544cuQIjhw5ola/jY0Npk2bpvr3V199hdOnT8Pb2xtubm4wMDDAgwcPcODAAeTk5GD69Ol63bdu376NJUuWAIDqgdPt27dV34m9vT2WL19eqmNSmCtXrmDQoEHo1KkTvLy8YG9vj0ePHuHo0aOq+VGUb1cVVJbnMBEREZFOBBERERGVqyNHjoghQ4aIatWqCUNDQ2FjYyPatWsnvvnmG5GRkaF1m9TUVDFp0iRRtWpVIZVKBQAxd+5cIYQQJ06cUPt3QaGhoQKAGDdunMa6qKgo8cEHHwgvLy9hbGwsrKysRL169cSbb74pjh07plYWgPD29tZ7X729vUVxv2JevnxZdO3aVZiZmQkrKyvRr18/ce/ePTFu3DgBQISGhqrKrlu3TgAQ69at06hH23HYunWrGDp0qKhZs6YwMzMT1tbWomnTpmLp0qUiLS1N7/0pawCK/BTcdyGEmDt3rmjUqJGwtLQUJiYmol69euLzzz8XycnJRbZTr149AUDcunWryHIpKSlizJgxokaNGsLExERYWlqKdu3aiV9//VXI5fIS7WNMTIyYMGGCcHJyEkZGRqJWrVpi/vz5IisrS2t5fY9Jce7cuSMGDx4s7OzshLGxsWjQoIH4/vvvte6P8nop6qOrc+fOCW9vb2Fpaam1748fPxbvv/++cHd3F4aGhsLe3l4MHjxYXL9+Xec23N3dS3S8dD0muhwPd3d3tW327t0rhg8fLmrWrCnMzc2FoaGhqF69uhgwYIA4cOCAzvumpLyudW2/pMdEm/DwcDF9+nTRokULYWdnJ2QymbC2thZt27YVX3/9daH3kLI+h4mIiIiKIxGiiNmmiIiIiIiIiIiIiIjopcGc+kRERERERERERERElQSD+kRERERERERERERElQSD+kRERERERERERERElQSD+kRERERERERERERElQSD+kRERERERERERERElQSD+kRERERERERERERElQSD+kRERERERERERERElQSD+kRERERERERERERElQSD+kRERPSfMm/ePEgkEgQEBKgtl0gk8PHxKXU9ZWn8+PGQSCQICwsrtzbKio+PDyQSSUV3g4iIiIiI6JXHoD4RERG9NEaMGAGJRIKtW7cWWS4xMRHGxsawt7dHTk7OC+pd2fPz84NEIoGfn19Fd+WlUJkeYmij7H9Rn127dqnKK7//gh9TU1PUrl0bU6dORVxcXJHtPXz4EFKpFBKJBKtWrSq0XFhYWJF9Ku56K+jUqVOYOXMmXnvtNVhbW0MikWD8+PFFbhMVFYXJkyfDzc0NRkZGqFatGt544w1ERkZqlNV2TJ7/dO3aVWO78+fPo1+/frC3t4exsTFq166NL774ApmZmTrvW0H+/v7w8fGBlZUVLC0t4ePjA39//zI7JsXZvHkzWrduDXNzc1SpUgW9e/dGcHCw1rJ79+7F1KlT0aFDB5ibm0MikWDevHl6t/kirr/c3Fzs2LED48ePR7169WBubg5LS0u0adMGq1evhlwuL3RbXY9JYmIi1qxZg9dffx01atRQ/azo1atXod/hzp07MXjwYHh5ecHKygoWFhZo0KABpk2bhujoaL33c9OmTZg8eTJatmwJY2PjIu/zpTkm2oSHh+Ptt99GixYt4ODgAGNjY7i7u6NPnz44duyY1m3K4xwmIiKi8mVQ0R0gIiIiUpo4cSK2bt2KdevWYfjw4YWW27RpE3JycjBmzBgYGRmVSdv//PMPzMzMyqSusrJ48WLMmjUL1atXr+iukB4mTpwIFxcXrevq1q2rsaxr167o2LEjACAhIQHHjx/HqlWrsGvXLly+fBkODg5a61q7di2EEJBIJPj999/x3nvvFdmvJk2aoH///hrLGzZsWMweqbe5fv16mJmZwc3NDSkpKUWWf/DgAdq3b4/4+Hh0794dw4YNw71797B+/XocOHAAQUFBqFmzpqp806ZNMXfuXK11bd++HTdv3oSvr6/a8p07d2LYsGGQyWQYNGgQnJ2dcebMGSxcuBDHjx/HsWPHYGxsrPM+/vHHHxg9ejTs7e0xbtw4SCQS/Pnnn+jZsyc2bdqEUaNGleqYFOerr77CZ599Bjc3N7z99ttIS0vD1q1b0aFDB9XDhoK++eYbnDx5ElZWVqhWrRru379fqvbL04MHDzB48GBYWlqiS5cueP3115GcnIy9e/diypQpOHToEHbv3q3x1o8+x+Svv/7CO++8g+rVq6NLly6oXr06oqKisGPHDhw6dAjLli3DzJkz1er/+++/cfXqVbRq1QpVq1YFAISEhOD777/H+vXrERgYiAYNGui8n59//jnCw8Nhb2+PqlWrIjw8vMyPSWHu3buHbdu2oV27dmjbti2srKwQHR2N3bt348CBA1i0aBE+/fRTtW3K+hwmIiKiF0AQERERvSQUCoXw8PAQUqlUREREFFquSZMmAoC4fv263m3MnTtXABAnTpwoRU/Lpp5169YJAGLdunWl6svLwNvbW5T2V8tx48YJACI0NLRsOvWCKft/9uxZncorv//FixerLZfL5aJ3794CgPjiiy+0bpuXlyeqV68uqlatKkaNGiUAiEuXLmktGxoaKgCIcePG6bU/2ly8eFHcuHFD5OXlibNnzxZbb58+fQQA8d1336kt//PPPwUA4evrq1O72dnZws7OThgYGIi4uDjV8oyMDGFvby8MDQ1FcHCwarlCoRBTpkzRenyL8uTJE2FjYyPs7e3V7kExMTHC2dlZ2NjYiCdPnqhto+8xKcrdu3eFgYGBqF27tkhKSlItv3HjhjAzMxM1a9YUubm5atucOnVK3L17VygUCrFlyxYBQMydO1fvtl/E9RcVFSVWr14t0tPT1ZanpaWJli1bCgDizz//VFun7zE5duyY2Ldvn5DL5Wr13L59W1hbWwtDQ0MRHR2tti4zM1Nrf3/77TcBQAwePFiv/Txy5IgICwsTQgixePHiIu/zJTkmRcnOztbYdyGEiI6OFk5OTsLQ0FA8ffpUbV1ZnsNERET0YjD9DhEREb00JBIJ3njjDSgUCqxfv15rmUuXLuHq1ato3bo1GjZsiJiYGMydOxdt27aFo6MjjI2N4eHhgXfffRfx8fF6ta0tp35kZCRGjBgBW1tbWFhYwNvbG6dOndJaR05ODn744Qf4+vrC1dUVxsbGcHR0xMCBA3HlyhW1suPHj8cbb7wBAHjjjTfU0osULFNYOoz169ejbdu2sLCwgIWFBdq2bav1mAUEBKjScVy+fBm+vr6wtLSEtbU1BgwYoHeqjcDAQHh7e8Pc3Bx2dnYYNmyY1jQqAPT6bjw8PFT99/T0VB2Lgt/J33//jREjRqBWrVowMzODtbU1OnXqhB07dui1Dy87qVSqSn1x6dIlrWX8/f0RHR2NkSNHqs6j33//vdz71rJlSzRo0AAymazYsllZWfD394eTkxOmTp2qtm7IkCFo2rQp/P398fDhw2Lr+vvvv5GYmIj//e9/cHJyUi0/c+YMEhIS0L9/f7Ro0UK1XCKR4MsvvwQA/PzzzxBC6LR/f/31F5KSkjB16lS4urqqlletWhXTpk1DUlIS/vrrL7Vt9DkmxVm3bh3y8vLw2WefwdraWrW8QYMGGDt2LB48eIDjx4+rbdOpUyd4eXmVak4LXa4/AAgKCkKfPn1ga2sLExMT1K1bF/PmzUNGRoZO7VSvXh3vvPOOxltR5ubmmDFjBgDg5MmTauv0PSZdunRBnz59IJWq/6lbp04dDBs2DLm5uQgKClJbZ2JiorW/Q4YMAQC9337o1q0b3N3ddSpbkmNSFCMjI419B4Bq1aqhffv2yM3N1XhzoCzPYSIiInoxGNQnIiKil8obb7wBqVQKPz8/rYG4devWAchPcQLk5wL+5ptv4OTkhBEjRmDq1KmoWbMmfvrpJ7Rr1w7Jyckl7ktsbCzatWuHrVu3onXr1nj//fdha2uL7t2749y5cxrlnzx5gmnTpiE7Oxu9e/fG9OnT4ePjgwMHDqB9+/a4ePGiqmz//v3Rr18/AEC/fv0wd+5c1ac406dPx/jx4xEVFYWJEyfizTffRHR0NMaPH68KAj0vODgYnTp1goGBgSrX865du9CtWzdkZWXpdDyOHTuGLl264Pz58xg8eDDeeusthIaGokOHDnj69KlGeX2+m2nTpqFJkyYAgA8++EB1LArmdZ49ezZu3ryJjh074oMPPsCQIUNw584dDB48GD/88INO+1BZKM99AwPt2TKVAfyxY8fitddeg6urKzZv3lzkdxkTE4OffvoJixcvxvr16xEVFVX2HS8gMTEReXl5cHd31xpw9vT0BACcOHGi2LqU+/vmm2+qLX/06JFaXQXZ2NigSpUqCA8P1+nBAQDVxNc9evTQWKdM+6NPgFVfFdW+Ltffjh074O3tjYCAAPTv3x/Tpk2DhYUF5s+fj27duiE7O7tUfTA0NASgec6X5TEprI3C7N+/H4B+KarKkr79LUpiYiLOnz8PMzMz1KhRo9T1ERERUcViTn0iIiJ6qbi6uqJ79+7w9/fHqVOn4O3trVqXnZ2NzZs3w8zMTJVzv0uXLoiLi4OFhYVaPRs2bMC4ceOwatUqfPbZZyXqy+zZsxEdHY0vv/xSrY41a9Zg8uTJGuWrVKmCiIgIjRz4N2/eRNu2bfHpp5/iyJEjAPKD+klJSdi9ezf69++v86SEp0+fxsqVK1GvXj2cPXtWNXJ1/vz5aNu2Lb799lsMHDhQlaNdaf/+/di6dSuGDRumWjZ27Fhs3LgRu3btKnIOAwBQKBR46623kJeXh1OnTqnqF0Jg9OjR2Lx5s8Y2+nw306ZNQ0hICK5evYpp06bBw8NDo74DBw5oBKPS0tLQvn17zJkzBxMnTtRpXgQ/Pz+93lDo378/mjZtqnP53377DYcOHdK6btasWYWOClaSy+VYu3YtAGh8jwDw+PFj7N27F40aNULjxo0BAKNHj8bixYuxY8cOjZzvSkeOHFGdf0B+oPD999/HsmXLtI7sLa0qVapAJpMhPDxclfu/oNDQUADA3bt3i6wnPDwcx44dQ/Xq1dGzZ0+1dcr5BpR1FZScnKx62HT37l213P2FuXfvHgDAy8tLY51ymbJMebh37x4sLCzg7Oz8Qtsv7vpLTU3Fm2++CZlMhrNnz6rOu4LX/7Jly/D555+XuA/Kc/754H1ZHZPU1FRs374dJiYm6NSpk9Yyu3btQkhICDIyMnDz5k34+/vD09MTCxYs0Hd3ykRhx0QXYWFh8PPzg1wuR0xMDPbs2YOkpCT8/PPPsLS0LOuuEhER0YtWkbl/iIiIiLTZtm2bACDGjh2rtlyZL1qXXL8KhUJYWVkJHx8fteWF5cIHILy9vVX/zs7OFiYmJsLR0VEj37JcLhe1a9fWK6d+3759hZGRkcjJyVEtKy6nvrYc1xMmTBAAxLZt2zTKK4/PxIkTVctOnDghAIjOnTtrlFeumzFjRrH9P3nypAAg+vbtq7EuLCxMyGQynXPqF/bdlDSn9zfffCMAiICAAJ3KK/P/6/rRdc4DZf+L+hTMZa38/rt27Srmzp0r5s6dK9577z1Rp04dAUC0bdtWpKWlabSzfPlyAUAsW7ZMteyff/4RAMRrr72mUf7Ro0di7ty5IiQkRKSkpIj4+HixZ88eUa9ePQFAzJo1S6f9e54uube7dOkiAIhVq1apLd+xY4fqmLz11ltFtqO8Zj///HONdampqcLKykoYGhqKy5cvq62bOnWqqo3NmzfrtE9eXl4CgEbeeiWZTCZq165d6PalzUduaGgoqlevrnVdRESEACB69OhR6PbllVN/w4YNAoB45513tPbLwMBA1KxZU+82lX755RcBQHTp0kVjXWmPidLIkSMFALFgwYJCyzx/Dbds2VLcv39f9x3Roric+oUp6pjoQnl/V34sLCzExo0bi92OOfWJiIgqB47UJyIiopdO//79YWdnh+3bt2PVqlWqUYXKUYsTJkxQK79z50788ssvuHz5Mp4+fQq5XK5aFxMTU6I+3LlzB1lZWejSpYvGyGqpVIr27dtrHWEcEhKCpUuXIjAwEHFxccjNzVVbn5CQgKpVq5aoTwBUufm15f9XLgsJCdFY17x5c41lLi4uAICkpKRi27169SoAaB3h6u7uDldXV62j38vyu4mPj8eSJUtw8OBBhIeHIzMzU229rvUp03mUl7Nnz6Jt27Y6lz927BiOHTumtqxdu3Y4fvy41lH9a9euhVQqxciRI1XL6tati1atWiEgIAAPHz5Ue6PB0dER8+bNU/3b0tISffv2RatWrdCwYUOsWLECH3/8MapUqaLHXupmxYoV6NixI9577z3s3bsXjRs3xv3797F79240btwY165dKzKPt0KhwLp16yCRSDSuewCwsLDAihUr8Oabb6Jdu3YYPHgwnJ2dERQUhEuXLqFu3bq4ffu2qg3l6OWCbGxsMG3atLLc7UKFhIRg165dass8PDx0flOnohR133F1dUXNmjVx584dpKam6j0KfP/+/Xjvvffg7u6OTZs2lUV3NXz66afYvHkzevbsiU8//bTQcn5+fvDz80NycjKuXLmCzz77DC1atMDOnTvRpUsXAPn3y5UrV2psW/AaK62ijomu57CPjw+EEMjNzUVYWBjWrFmDsWPH4sKFC/j+++/LrK9ERERUMRjUJyIiopeOkZERRo8eje+++w5//vknJk6ciMjISBw7dgxeXl7o3Lmzquw333yDmTNnwsHBAT169ICLiwtMTU0BACtXrixxnmdlvndHR0et6wtO1qkUFBSkCvz06NEDXl5esLCwgEQiwa5du3D16tVS551OSUmBVCpVpR15vk9SqVTrPAIFJ5hUUuZpLhhoL4wux+P5oH5ZfjdPnjxBq1atEBERgQ4dOqBbt26wsbGBTCZDSEgIdu/eXepjW1EWL16MWbNmQaFQICwsDPPmzcPGjRsxadIkbNy4Ua3suXPncOvWLXTv3h3VqlVTWzdu3DhcvHgR69atw8KFC4tt19nZGb1798bGjRtx8eLFEqX4KE6TJk1w8eJFzJ07FydOnMCJEydQq1Yt/PLLL0hKSsJHH32k9VxWOnLkCCIiItC1a1etefOB/Pk1qlWrhqVLl2L37t2Qy+Vo2bIljh07hq+//hq3b99WtREWFob58+erbe/u7q4KiCqvk+TkZNjZ2amVS09Ph1wu13ot6SokJESjfW9vb1VQ39rautB5QFJSUtT6+CIp29Z23wPyz6U7d+4gJSVFr6C+v78/Bg0aBCcnJxw/flzrA8/SHpP58+dj8eLF6NKlC3bu3KnTZLDW1tbw8fHBwYMHUadOHYwdOxahoaEwNDREUlKSxncIlF1Qv7hjUtw5/DxDQ0N4eXlh2bJlyMjIwA8//IBevXqhV69eZdJfIiIiqhgM6hMREdFLaeLEifjuu++wdu1aTJw4EX5+flAoFGqjdfPy8rBw4UJUq1YNISEhasFBIQSWLl1a4vaVQaL4+Hit65UTdBa0aNEiZGdnIzAwEB06dFBbd+7cOdVo99KwsrKCQqHA48ePNQLs8fHxUCgUsLKyKnU7z9P3eJT1d/P7778jIiJCY34DAFiyZAl2796tc13lnVO/pKRSKWrUqIH169cjPDwcmzZtwqBBg9C/f39VGeWEsUeOHNE6+SyQv3/z58/XKU++vb09ACAjI6P0O1CIunXrYtu2bRrLlYHsli1bFrptYRPkPq+wIOWYMWMglUpVb6ooRy8XxsvLC8HBwbh3755GUL+ofPu6Gj9+fJGj8r28vHD27FnExcVp5JAvi/ZLSnlP0XbfK7hcn3vPoUOHMGDAANjb2+PEiROFTt5ammMyf/58zJs3Dz4+Pti7d6/qoaKurKys0LZtW+zatQv3799HvXr14OHhUeQ5VBq6HJPizuGi9OjRA6tXr0ZAQACD+kRERJUcg/pERET0UmrUqBFatWqFoKAg3L59G35+fpDJZBg3bpyqTEJCApKTk9G1a1eN0b7BwcEa6Vn0UadOHZiYmCA4OBhZWVlqaVAUCgWCgoI0tnnw4AFsbW01AvoZGRm4fPmyRnnliFFdRsorNWvWDFeuXEFAQACGDh2qtu7kyZMAUC4B6CZNmgDIn6j3o48+UlsXHh6OyMhItWUl+W6KOh4PHjwAALz++usa606fPq3HnuQHvZXHShceHh4vJKivJJFI8N1336F58+aYPXs2+vbtC5lMhvT0dGzbtg1mZmYYMWKE1m3PnTunmuBTl6DdhQsXAEDrxMTlKTU1FXv37oWtrS26d++utUxiYiJ2794NW1tbDBgwQO82zpw5g7CwMPTu3Vvn0e3e3t7YsmULDh8+rJFCyd/fX1WmvHh7e+Ps2bM4fPgwxo4d+0LbL+r6a9asGQBove9ER0fjwYMHqFGjhs6j9A8dOoT+/fvD1tZW9fZGYUp6TObNm4f58+fD29sb+/fv12kSbW2Uab2UbzaVF32OSUm9qH0hIiKi8lf88B0iIiKiCjJx4kQA+aN0Hz58iN69e6ulInB0dISpqSkuX76sNtL46dOnmDp1aqnaNjIywtChQxEfH49vvvlGbd1vv/2mNZ++u7s7nj59ips3b6qWyeVyzJw5E48fP9Yob2trCwCIiorSuV/Khxrz589XpZ4A8tNQKFMyFHzwUVY6duwIT09P7Nu3D4GBgarlQgh8+umnGoHAknw3RR0Pd3d3AFBrGwA2b96MAwcO6LUvAQEBEELo/KmIfOdNmzZF//79cfv2bWzevBkA8OeffyI1NRVDhgzBb7/9pvXz1VdfAXg2wh3ID9w/P7cDkJ/v/syZM6hfv77qoU1Zy8zMRF5entqy7OxsTJw4EU+ePMHcuXO1zhsAABs3bkROTg5Gjx4NY2PjQtsoeB0oxcTE4M0334SBgYFOqYiUhg4dCmtra/zwww9qD6piY2OxcuVK2NjYYMiQITrXp6833ngDBgYGWLRokVrKmZs3b2LDhg2oWbOmKsVXWSvq+uvXrx+sra2xbt06tfubEAKzZ89Gbm6uzteJMnhdpUoVnDhxotg3D0pyTObOnYv58+ejU6dOxQb0s7Ozce7cOa3r1q1bhwsXLqBWrVrl+oaEvsekKBcuXEBWVpbG8vDwcCxevBgAOEqfiIjoFcBH9ERERPTSGjFiBGbMmIEzZ84AeBbkV5JKpXj33XfxzTffoEmTJujbty9SUlJw8OBBuLu7a+Qc19eSJUtw7NgxfP755wgMDESzZs3wzz//4MCBA+jRowcOHz6sVn7q1Kk4fPgwOnbsiKFDh8LExAQBAQGIjo6Gj4+PxgSt7dq1g6mpKVauXImUlBTViPZZs2YV2qfOnTtj6tSp+OGHH9CwYUMMGjQIQgjs3LkTkZGReP/999XmHCgrUqkUa9asQe/evdGtWzcMGzYM1apVw/HjxxEbG6ua9LRgeX2/my5dumD58uWYPHkyhgwZAnNzc7i5uWHkyJEYM2YMvv76a0ydOhUnTpyAu7s7rl27hqNHj2LgwIHYuXNnme9zSf322284dOiQ1nU+Pj5aJxvVZt68edi1axcWLFiAESNGqAL12iaMVerduzecnJywZ88ePH78GA4ODvj4449x+/ZteHt7w9XVFZmZmTh79iyuXLmCKlWqYOPGjYWm8nleYGAgfvvtNwBQPagKDAxUBXTr1q2rdv5eunQJAwcORPfu3eHq6oqUlBTs378fERERmDRpUpEP33RNvfP9999j06ZN6NixIxwdHREZGYndu3cjIyMDv//+u9ZJogtTpUoVrFq1CmPGjEHz5s0xfPhwSKVSbNu2DY8ePcLGjRs1JhTW95gUpXbt2pg3bx4+//xzNG7cGIMHD0Z6ejq2bNmC3Nxc/PrrrxqjrHft2qWafDc0NFS1TJliqmPHjsUeQ6Do68/Kygq//vorRowYgTZt2mDYsGFwcHDAsWPHEBwcjNatW2u8waPN7du30b9/f2RnZ8PHxwdbtmzRKPP8xMH6HhM/Pz8sWLAABgYGaN26NZYtW6bRRsHrMDMzE+3atUPDhg3RtGlTVK9eHcnJybhw4QIuX74MCwsLrFu3rth9K+i3335TPYC8fv26apnyZ0D//v1VabVKckyK8tVXX+H06dPw9vaGm5sbDAwM8ODBAxw4cAA5OTmYPn06OnbsqLZNWZ7DRERE9IIIIiIiopfY2LFjBQDh5OQkcnNzNdbn5OSIRYsWCS8vL2FsbCzc3NzEjBkzRGpqqnB3dxfu7u5q5efOnSsAiBMnTqgtByC8vb016g8PDxfDhg0TNjY2wszMTHTq1EmcPHmy0Hq2b98umjdvLszMzIS9vb0YOnSoePDggRg3bpwAIEJDQ9XK79+/X7Rq1UqYmpoKAKLgr2eFbSOEEGvXrhWtWrUSZmZmwszMTLRq1UqsXbtWo9yJEycEADF37lyNdaGhoQKAGDdunMa6wpw6dUp07txZmJqaCltbWzFkyBARHh4uvL29xfO/Wur73QghxNKlS4WXl5cwNDTU+E5CQkJEjx49RJUqVYSlpaXw9vYWR48eFevWrRMAxLp163Tej/Kg/L6K+hT8HpT9Xrx4caF1Dho0SAAQP//8swAgatasWWw/PvzwQwFAfPPNN0IIIX799VfRs2dP4eLiIkxMTISJiYmoU6eO+OCDD0RkZKRe+6jsc2Gf56+h8PBwMWTIEOHq6iqMjIyEjY2N6NKli9i+fXuR7Zw/f14AEK1bty62T8eOHRPdunUTjo6OwtDQUDg7O4thw4aJy5cv67VvBR08eFB07txZWFhYCAsLC9G5c2dx6NAhrWX1PSa62LRpk2jZsqUwNTUV1tbWomfPnuLChQtayyrvRYV99Lm+i7r+hMi//nv16iVsbGyEkZGRqF27tpgzZ45IS0vTqX7l/agkx0vXY1Lc8Xj+OszJyRHz588XPj4+omrVqsLQ0FCYmZmJ+vXri2nTponw8HBdD59KcfeCgu2X5phos3fvXjF8+HBRs2ZNYW5uLgwNDUX16tXFgAEDxIEDB7RuUx7nMBEREZUviRDlNMsPERERERERERERERGVKebUJyIiIiIiIiIiIiKqJBjUJyIiIiIiIiIiIiKqJBjUJyIiIiIiIiIiIiKqJBjUJyIiIiIiIiIiIiKqJBjUJyIiIiIiIiIiIiKqJBjUJyIiIiIiIiIiIiKqJBjUJyIiIiIiIiIiIiKqJBjUJyIiIiIiIiIiIiKqJBjUJyIiIiIiIiIiIiKqJBjUJyIiIiIiIiIiIiKqJBjUJyIiIiIiIiIiIiKqJBjUJyIiIiIiIiIiIiKqJBjUJyIiIiIiIiIiIiKqJBjUJyIiIiIiIiIiIiKqJBjUJyIiIiIiIiIiIiKqJBjUJyIiIiIiIiIiIiKqJBjUJyIiIiLSwsPDAxKJBBKJBLt27Sq0XLdu3SCRSODn56e23M/PT7W9kZEREhMTC60jLy8Pjo6OqvLz5s3TWs7f3x8DBw5E9erVYWRkBBsbG9SpUwd9+/bFN998gwcPHqiVDwsLU9VZ3CcsLEzHI1O8W7duYfLkyahduzZMTU1hbm4OT09P+Pj4YM6cOQgKCtLYRnm8nz+OhRk/frzGPhgaGqJq1ap4/fXXcfDgwTLbn+ddunRJ1eaoUaOKLV+wjz/88EORZadPn64q6+HhUUY9JiIiIqJXiUFFd4CIiIiI6GU3b9489OvXDxKJpETb5+bmYtu2bXj33Xe1rvf398fjx4+LrOO9997Djz/+CAAwNzeHl5cXzMzMEB4ejn379mHfvn2IjY3F8uXLtW7fsmVLGBsbF1q/iYmJjntTtD/++AMTJkxATk4ODA0N4ebmBltbW8THx+PkyZM4efIkDh48iODg4DJpz9HREV5eXgCArKws3L17F3v37sXevXsxe/ZsfPXVV2XSTkEbN25U/f+uXbuQmpoKS0tLnbedOnWq1nVyuRxbt24tkz4SERER0auLI/WJiIiIiIogk8lw9epV7Nixo0Tbe3l5QSKRqAWCn6dcV6dOHa3rt2zZgh9//BFSqRTfffcdEhMTcfPmTVy8eBHx8fG4efMmPvvsMzg6Ohbaxl9//YXAwMBCP87OziXav4LCwsIwceJE5OTkYMKECYiKisL9+/dx4cIFhIWFITY2FqtWrUL9+vVL3ZZSr169VPsQHByMhIQEzJw5EwCwePFinD17tszaAvLfqtiyZQsAwMbGBhkZGdi5c6dO29apUwcXL17EnTt3tK4/cuQI4uLiCj0PiIiIiIgABvWJiIiIiIo0YsQIAMD8+fMhhNB7ezc3N3Tu3Bnnzp3D/fv3NdanpqZiz5498PT0RIcOHbTWsX79egDAhAkT8P7772uMuK9fvz6+/PJLfPzxx3r3ryxt3boV2dnZqFOnDn799VeNhwzOzs6YMmUKNmzYUG59MDIywtKlS9G0aVNVn8rS4cOHER8fD1dXV8yePRsAinxgU9Do0aMBAJs2bdK6Xrl8zJgxZdBTIiIiInpVMahPRERERFSECRMmwMPDAzdu3MCff/5ZojqKCuZu374dmZmZGDVqVKHpfR4+fAgAqkD1y0rZz0aNGkEqrbg/NSQSCTp27AgAuHfvXpnWrQzgDx8+HCNHjoRUKsWJEycQFRVV7LaDBg2CqakpNm3apPGAKD09Hbt27VI9BCIiIiIiKgyD+kRERERERTA0NMRnn30GIH+0vkKh0LuOIUOGwMTEBH/88YfGOmWgXxn418bKygoAcOHCBb3bfpGU/QwJCUFubm6F9qUkb1UUJyUlBbt37wYAjBw5Ei4uLujcuTMUCgU2b95c7PaWlpbo168fwsLCcObMGbV1O3fuRHp6epEPd4iIiIiIAAb1iYiIiIiKNX78eNSoUQP//PNPidK5WFtbo2/fvrh//75ajveoqCgEBASgdevWReZR79mzJ4D8UeLvvPMOLl68CLlcrv+OlDNlP+/fv49evXrh4MGDyMjIeOH9EEKogua1atUqs3qVb1XUr19f9dbEqFGjAOiegkeZWuf58sp/F/Vwh4iIiIgIYFCfiIiIiKhYBgYGmDNnDgBgwYIFJQqoK4O1BYO5f/zxBxQKRbGB3E8++QQtWrSAEAI///wzWrduDSsrK3Ts2BGzZs1CcHBwse17enpCIpFo/ZRVWp9u3brhrbfeAgAcO3YMvXv3hrW1NZo0aYK3334b+/btK/eHETk5Ofj4448REhICABg6dGiZ1a387kaOHKlaNnjwYBgZGeHGjRuqNovSo0cPODo64s8//0R2djYAIDY2FsePH0fz5s3LdBJhIiIiIno1MahPRERERKSDMWPGwMvLC3fu3NGaRqc4vXr1gr29Pf78809VappNmzbBwMAAw4cPL3JbS0tLBAYG4ptvvkG9evUAABkZGThz5gy+/vprtGrVCv3790dSUlKhdbRs2RIdOnTQ+mnWrJne+1OYX375BTt27IC3tzdkMhny8vJw7do1/PLLL+jbty+aNGmC69evl1l7Bw8eRMeOHdGxY0e0bNkS9vb2WL58OQBg+vTpqtz6pRUZGYmTJ08CeDZ5MgDY2Nigd+/eAHQbra/8vpOSkrB//34AwObNmyGXyzlBLhERERHphEF9IiIiIiIdyGQy1Wj9hQsXIi8vT6/tDQ0NMXToUCQmJuLAgQMICQnBjRs34OvrCwcHh2K3NzExwYwZM3Dr1i1ER0dj586dmD59Ojw9PQEAu3fvxsCBAwvd/q+//kJgYKDWz7p16/Tal+IMHDgQAQEBePLkCY4cOYKFCxeidevWAICbN2+iW7duePz4cZm0FR8fjzNnzuDMmTMICQmBiYkJevXqhb///hsrVqwokzYAqCa3bdu2LWrUqKG2TpmCRxmcL87zb21s3LgRMplM7WEBEREREVFhGNQnIiIiItLRyJEjUadOHdy/f1/nHOoFKUdib9q0STVBbklGZ1erVg0DBgzAihUrcPfuXXz44YcAgBMnTmhMwFqRrKys0K1bN3z++ec4f/48/vrrL0ilUsTHx2PNmjVl0sa4ceMghIAQAnl5eYiPj8eBAwfQv3//MqlfSVvqHaX//e9/sLKyQlxcHI4ePVpsXa1atULdunVx4MABnDp1ClevXkX37t3h5ORUpn0mIiIiolcTg/pERERERDqSyWT44osvAJRstH7btm3h5eWFvXv3YtOmTbCyssLrr79eqj4ZGBhg6dKlcHZ2BgBcuHChVPWVp8GDB2PQoEEAXu5+Pi84OBj//PMPAOD999/XmJPA1NQUKSkpAHSfMHf06NHIyclRPdRh6h0iIiIi0hWD+kREREREehg+fDjq16+P0NBQ+Pn56b39qFGjkJ2djUePHmHQoEEwNTUtdZ+kUinc3d0B5E8U+zJTpq552ftZkDJQb2ZmBicnJ60fZQqlv//+G2lpacXWOXr0aEgkEkRERMDCwqLM3ywgIiIiolcXg/pERERERHqQSqWYO3cuAODLL79UTXqrqzFjxqBr167o2rUrJk2apNM28fHxRa5PSkrCrVu3AABeXl569acsFddPAAgKCgJQsf3UR15eHrZu3QoA+PHHHxEXF1fox8XFBRkZGdi5c2ex9bq7u2Py5Mno2rUrZs6cCTMzs/LeFSIiIiJ6RTCoT0RERESkpyFDhqBRo0YIDw/XO4d9jRo1cPToURw9ehTt2rXTaZvevXtj1KhROH78uMZDhJCQEPTr1w+pqamoWrUqfH199epPYcaPHw+JRILx48frvM1XX32FTp06YcuWLUhNTVVbFxsbi7fffhunT5+GRCLBuHHjyqSf+vLw8IBEItH5LQt/f3/Ex8fD1NRUlTpIG6lUqproVtcUPD/99BOOHj2qekhERERERKQLg4ruABERERFRZSORSDB37lwMHjwYcrm83NuTy+XYvHkzNm/eDBMTE9SqVQsmJiaIiYlBTEwMAMDGxgZ//vknzM3NtdYxZMgQGBsbF9rG4sWL0alTp1L1UyKRIDAwEIGBgZBKpahZsyaqVKmCx48fIzIyEnl5eZDJZFixYgVatGihtY6pU6di5syZhbYREBCAhg0blqqf+lAG6Pv37w9LS8siy44ePRrLli3D8ePHER0djerVq7+ILhIRERHRfwyD+kREREREJTBw4EA0bdoUISEh5d7W4cOH4e/vj4MHD+LGjRuIiYlBUlISLCws0KZNG/j6+mLKlClwdHQstI7g4OAi20hMTFT7d1xcHACgadOmOvfzq6++Qvfu3XHw4EGcP38e0dHRCAsLg7GxMWrXro3OnTvjnXfeQePGjQutIy0trcic9PpOTlyQXC5HQkICAKBJkybFlk9JScGePXsA5Afsi9O4cWM0atQI169fx+bNm/HRRx+VuK9ERERERIWRCCFERXeCiIiIiIheHgqFAra2thBCICoqqtgR6pXF5cuX0aJFC7z22ms4fvx4RXeHiIiIiKhEmFOfiIiIiIjU3Lx5E8nJyXjrrbdemYA+ANX8Bx9++GEF94SIiIiIqOQY1CciIiIiIjVBQUEwMDDA+++/X9FdKVNBQUGoW7cuevfuXdFdISIiIiIqMabfISIiIiIiIiIiIiKqJDhSn4iIiIiIiIiIiIiokmBQn4iIiIiIiIiIiIiokmBQn4iIiIiIiIiIiIiokjCo6A4QERG9yhQKBWJiYmBpaQmJRFLR3SEiIiKiciaEQGpqKqpVqwaplGMpiYio7DGoT0REVI5iYmLg6upa0d0gIiIiohcsMjISLi4uFd0NIiJ6BTGoT0REVI4sLS0B5P9RZ2VlVcG9ISIiIqLylpKSAldXV9XvgURERGWNQX0iInplrF69GsuWLUNsbCwaNGiAlStXolOnTsVud+bMGXh7e6Nhw4YICQlRW7djxw7MmTMHDx48QM2aNbFo0SIMGDBA5z4pU+5YWVkxqE9ERET0H8LUi0REVF6Y3I2IiF4J27Ztw7Rp0/DZZ5/hypUr6NSpE3r16oWIiIgit0tOTsbYsWPRtWtXjXVnz57FsGHDMGbMGFy9ehVjxozB0KFDcf78+fLaDSIiIiIiIiKiIkmEEKKiO0FERFRabdq0QfPmzfHTTz+pltWrVw/9+/fH4sWLC91u+PDh8PLygkwmw65du9RG6g8bNgwpKSk4ePCgalnPnj1RpUoVbNmyRad+paSkwNraGsnJyRypT0RERPQfwN//iIiovDH9DhERVXo5OTm4dOkSZs2apba8R48eCAoKKnS7devW4cGDB9i0aRO+/PJLjfVnz57F9OnT1Zb5+vpi5cqVhdaZnZ2N7Oxs1b9TUlJ03AsiIiL6r5DL5cjNza3oblApGBkZQSpl8gMiIqoYDOoTEVGll5CQALlcDicnJ7XlTk5OiIuL07rNvXv3MGvWLJw+fRoGBtp/HMbFxelVJwAsXrwY8+fP13MPiIiI6L9ACIG4uDgkJSVVdFeolKRSKTw9PWFkZFTRXSEiov8gBvWJiOiV8fxkZEIIrROUyeVyjBw5EvPnz0ft2rXLpE6l2bNnY8aMGap/p6SkwNXVVZfuExER0StOGdB3dHSEmZkZJ1KtpBQKBWJiYhAbGws3Nzd+j0RE9MIxqE9ERJWevb09ZDKZxgj6+Ph4jZH2AJCamorg4GBcuXIF7733HoD8P86EEDAwMMDhw4fRpUsXODs761ynkrGxMYyNjctgr4iIiOhVIpfLVQF9Ozu7iu4OlZKDgwNiYmKQl5cHQ0PDiu4OERH9xzABHBERVXpGRkZo0aIFjhw5orb8yJEjaN++vUZ5KysrXL9+HSEhIarP22+/jTp16iAkJARt2rQBALRr106jzsOHD2utk4iIiKgoyhz6ZmZmFdwTKgvKtDtyubyCe0JERP9FHKlPRESvhBkzZmDMmDFo2bIl2rVrhzVr1iAiIgJvv/02gPy0ONHR0diwYQOkUikaNmyotr2joyNMTEzUln/wwQfo3Lkzvv76a/Tr1w+7d+/G0aNHERgY+EL3jYiIiF4dTNXyauD3SEREFYlBfSIieiUMGzYMiYmJWLBgAWJjY9GwYUMcOHAA7u7uAIDY2FhEREToVWf79u2xdetWfP7555gzZw5q1qyJbdu2qUby6yMkJAQWFhZ6b1eQvb093NzcSlUHEREREREREVVuEiGEqOhOEBERvapSUlJgbW1dJnWZmpri9u3bDOwTERFVQllZWQgNDYWnpydMTEwqujtUSkV9n8rf/5KTk2FlZVVBPSQiolcZR+oTERG9AH379kXVqlVLvH1CQgJ27tyJhIQEBvWJiIj+w+Ry4PRpIDYWqFoV6NQJkMkquldERET0InGiXCIiohfAzs4O1apVK/HH3t6+oneBiIiIKtjOnYCHB/Daa8DIkfn/9fDIX14eJBJJkZ/x48eryu3atUtj+/Hjx6N///6F/js+Ph6TJ0+Gm5sbjI2N4ezsDF9fX5w9e7bQPs2bN0/VvlQqRbVq1TBq1ChERkaqlfPw8MDKlSs1tl+5ciU8PDw06lPOw6QUEhICiUSCsLCwQvtCRERUURjUJyIiIiIiInrJ7dwJDB4MREWpL4+Ozl9eHoH92NhY1WflypWwsrJSW/bdd9+Vqv5Bgwbh6tWrWL9+Pe7evYs9e/bAx8cHT548KXK7Bg0aIDY2FlFRUdi2bRuuX7+OoUOHlrgfJiYm+P3333H37t0S10FERPQiMf0OERERERER0UtMLgc++ADQNiOeEIBEAkybBvTrV7apeJydnVX/b21tDYlEorasNJKSkhAYGIiAgAB4e3sDANzd3dG6detitzUwMFD1o1q1apg0aRLef/99pKSklCiHfZ06deDo6IjPP/8cf/75p97bExERvWgcqU9ERERERET0Ejt9WnOEfkFCAJGR+eUqCwsLC1hYWGDXrl3Izs4ucT1xcXHYuXMnZDIZZKV4orFkyRLs2LEDFy9eLHEdRERELwqD+kREREREREQvsdjYsi1XHkaMGKEK1Cs/f/zxR6HlDQwM4Ofnh/Xr18PGxgYdOnTAp59+imvXrhXb1vXr12FhYQEzMzNUrVoVAQEBmDJlCszNzUvc/+bNm2Po0KGYNWtWiesgIiJ6URjUJyIiIiIiInqJVa1atuXKw7fffouQkBC1z+uvv17kNoMGDUJMTAz27NkDX19fBAQEoHnz5vDz8ytyuzp16iAkJAQXL17EokWL0LRpUyxatKjU+/Dll1/i9OnTOHz4cKnrIiIiKk8M6hMRERERERG9xDp1Alxc8nPnayORAK6u+eUqirOzM2rVqqX2sbS0LHY7ExMTdO/eHV988QWCgoIwfvx4zJ07t8htjIyMUKtWLTRo0ACffvopmjZtinfeeUetjJWVFZKTkzW2TUpKgrW1tdZ6a9asiUmTJmHWrFkQ2iYwICIiekkwqE9ERERERET0EpPJgO++y///5wP7yn+vXFm2k+RWlPr16yM9PV2vbebMmYMtW7bg8uXLqmV169bVmh//4sWLqFOnTqF1ffHFF7h79y62bt2qVx+IiIheJAb1iYiIiIiIiF5yAwcC27cD1aurL3dxyV8+cGDF9KukEhMT0aVLF2zatAnXrl1DaGgo/vrrLyxduhT9+vXTq64aNWqgX79++OKLL1TLZsyYgYMHD2LBggW4desWbt26hYULF+LQoUP48MMPC63LyckJM2bMwPfff1/ifSMiIipvBhXdASIiIiIiIiIq3sCBQL9+wOnT+ZPiVq2an3KnMo7Qt7CwQJs2bfDtt9/iwYMHyM3NhaurKyZNmoRPP/1U7/o+/PBDdOjQAefPn0ebNm3Qtm1b+Pv7Y8GCBVi5ciUAoEGDBvD390ebNm2KrOujjz7CTz/9hKysrJLsGhERUbmTCCaKIyIiKjcpKSmwtrbG+PHj4eHhUeJ6YmJisGbNGly6dAnNmzcvuw4SERHRC5GVlYXQ0FB4enrCxMSkortDpVTU96n8/S85ORlWVlYV1EMiInqVMf0OEREREREREREREVElwaA+EREREREREREREVElwaA+EREREREREREREVElwaA+EREREREREREREVElwaA+EREREREREREREVElwaA+EREREREREREREVElwaA+EREREREREREREVElwaA+EREREREREREREVElwaA+ERG9MlavXg1PT0+YmJigRYsWOH36dKFlAwMD0aFDB9jZ2cHU1BR169bFt99+q1bGz88PEolE45OVlVXeu0JERET/ESIrEyI15cV9sjIrepeJiIiolAwqugNERERlYdu2bZg2bRpWr16NDh064JdffkGvXr1w69YtuLm5aZQ3NzfHe++9h8aNG8Pc3ByBgYGYPHkyzM3N8dZbb6nKWVlZ4c6dO2rbmpiYlPv+EBER0atPZGVCceoIREb6C2tTYmYOaefukJiY6rzN+PHjkZSUhF27dmms8/DwQHh4uMbyxYsXY9asWQgLC4OnpyccHBzw4MEDWFpaqso0bdoU/fv3x7x58wAADx8+xGeffYaTJ0/iyZMnsLe3R4sWLbBs2TLUrl0bYWFhWLhwIY4fP464uDhUq1YNo0ePxmeffQYjIyO9jwUREVFlxaA+ERG9ElasWIGJEyfizTffBACsXLkS/v7++Omnn7B48WKN8s2aNUOzZs1U//bw8MDOnTtx+vRptaC+RCKBs7Nz+e8AERER/ffk5uYH9A0MAcMXEJTOzclvLzcX0COoX5wFCxZg0qRJassKBu8BIDU1FcuXL8f8+fO11pGTk4Pu3bujbt262LlzJ6pWrYqoqCgcOHAAycnJAIDbt29DoVDgl19+Qa1atXDjxg1MmjQJ6enpWL58eZntDxER0cuOQX0iIqr0cnJycOnSJcyaNUtteY8ePRAUFKRTHVeuXEFQUBC+/PJLteVpaWlwd3eHXC5H06ZNsXDhQrWHAc/Lzs5Gdna26t8pKSl67AkRERH9JxkaQWJsXO7NCADIyy3zei0tLYsdBDF16lSsWLECU6ZMgaOjo8b6W7du4eHDhzh+/Djc3d0BAO7u7ujQoYOqTM+ePdGzZ0/Vv2vUqIE7d+7gp59+YlCfiIj+U5hTn4iIKr2EhATI5XI4OTmpLXdyckJcXFyR27q4uMDY2BgtW7bElClTVCP9AaBu3brw8/PDnj17sGXLFpiYmKBDhw64d+9eofUtXrwY1tbWqo+rq2vpdo6IiIjoFTBixAjUqlULCxYs0LrewcEBUqkU27dvh1wu17ne5ORk2NrallU3iYiIKgUG9YmI6JUhkUjU/i2E0Fj2vNOnTyM4OBg///wzVq5ciS1btqjWtW3bFqNHj0aTJk3QqVMn/Pnnn6hduzZ++OGHQuubPXs2kpOTVZ/IyMjS7RQRERHRS+6TTz6BhYWF2icgIECtjEQiwZIlS7BmzRo8ePBAo47q1avj+++/xxdffIEqVaqgS5cuWLhwIR4+fFhouw8ePMAPP/yAt99+u6x3iYiI6KXGoD4REVV69vb2kMlkGqPy4+PjNUbvP8/T0xONGjXCpEmTMH36dNVEbdpIpVK0atWqyJH6xsbGsLKyUvsQERERvco++ugjhISEqH3atGmjUc7X1xcdO3bEnDlztNYzZcoUxMXFYdOmTWjXrh3++usvNGjQAEeOHNEoGxMTg549e2LIkCFqb1oSERH9FzCoT0RElZ6RkRFatGih8QffkSNH0L59e53rEUKo5cPXtj4kJARVq1YtcV+JiIiIXjX29vaoVauW2sfUVPtEvEuWLMG2bdtw5coVrestLS3x+uuvY9GiRbh69So6deqkMedRTEwMXnvtNbRr1w5r1qwp8/0hIiJ62XGiXCIieiXMmDEDY8aMQcuWLVV/4EVERKhex549ezaio6OxYcMGAMCPP/4INzc31K1bFwAQGBiI5cuXY+rUqao658+fj7Zt28LLywspKSn4/vvvERISgh9//PHF7yARERHRK6B169YYOHAgZs2aVWxZiUSCunXrIigoSLUsOjoar732Glq0aIF169ZBKuVYRSIi+u9hUJ+IiF4Jw4YNQ2JiIhYsWIDY2Fg0bNgQBw4cgLu7OwAgNjYWERERqvIKhQKzZ89GaGgoDAwMULNmTSxZsgSTJ09WlUlKSsJbb72FuLg4WFtbo1mzZjh16hRat279wvePiIiIqCIlJycjJCREbZlygtrU1FSNNIhmZmaFpiFctGgRGjRoAAODZyGJkJAQzJ07F2PGjEH9+vVhZGSEkydPYu3atfjkk08A5I/Q9/HxgZubG5YvX47Hjx+rtnd2di6L3SQiIqoUGNQnIqJXxrvvvot3331X6zo/Pz+1f0+dOlVtVL423377Lb799tuy6h4RERGRdrk5EC+onZIKCAhAs2bN1JaNGzcOAPDFF1/giy++UFs3efJk/Pzzz1rrql27NiZMmKCWOsfFxQUeHh6YP38+wsLCIJFIVP+ePn06AODw4cO4f/8+7t+/DxcXF7U6hXghR5CIiOilIBH8yUdERFRuUlJSYG1tjfHjx8PDw6PE9cTExGDNmjW4dOkSmjdvXnYdJCIiohciKysLoaGh8PT0hImJCQBAZGVCceoIREb6C+uHxMwc0s7dITHRnvOedKPt+1RS/v6XnJxc6NsKREREpcGR+kREREREREQVQGJiCmnn7kBu7otr1NCQAX0iIqJKjkF9IiIiIiIiogoiMTEFGGQnIiIiPXCaeCIiIiIiIiIiIiKiSoJBfSIiIiIiIiIiIiKiSoJBfSIiIiIiIiIiIiKiSoJBfSIiIiIiIiIiIiKiSoJBfSIiIiIiIiIiIiKiSoJBfSIiIiIiIiIiIiKiSoJBfSIiIiIiIiIiIiKiSsKgojtARERERERE9F8VERGBhISEF9aevb093NzcXlh7REREVPYY1CciIiIiIiKqABEREahbty4yMzNfWJumpqa4ffu23oH9uLg4LFq0CPv370d0dDQcHR3RtGlTTJs2DV27doWHhwfCw8OxZcsWDB8+XG3bBg0a4NatW1i3bh3Gjx8PAPDw8MC0adMwbdo01b/Dw8NVfaxRowamTp2KyZMnq+rJzs7GggULsGnTJsTFxcHFxQWfffYZJkyYUPIDQkREVAkxqE9ERERERERUARISEpCZmYmBAwfC3t7+hbS3c+dOJCQk6BXUDwsLQ4cOHWBjY4OlS5eicePGyM3Nhb+/P6ZMmYLbt28DAFxdXbFu3Tq1oP65c+cQFxcHc3PzYttZsGABJk2ahLS0NPj5+eHtt9+GjY0Nhg0bBgAYOnQoHj16hN9//x21atVCfHw88vLy9DwKRERElR+D+kREREREREQVyN7eHtWqVavobhTq3XffhUQiwYULF9SC8w0aNFAbJT9q1Ch8++23iIyMhKurKwBg7dq1GDVqFDZs2FBsO5aWlnB2dgYAfPnll/jzzz+xa9cuDBs2DIcOHcLJkyfx8OFD2NraAsgf3U9ERPRfxIlyiYiIiIiIiEirJ0+e4NChQ5gyZYrW0fY2Njaq/3dycoKvry/Wr18PAMjIyMC2bdtKnB7HxMQEubm5AIA9e/agZcuWWLp0KapXr47atWtj5syZLzR1ERER0cuCQX0iIiIiIiIi0ur+/fsQQqBu3bo6lZ8wYQL8/PwghMD27dtRs2ZNNG3aVK828/Ly4Ofnh+vXr6Nr164AgIcPHyIwMBA3btzA33//jZUrV2L79u2YMmWKvrtERERU6TGoT0RERERERERaCSEAABKJRKfyffr0QVpaGk6dOoW1a9fqNUr/k08+gYWFBUxNTTFlyhR89NFHqolyFQoFJBIJ/vjjD7Ru3Rq9e/fGihUr4Ofnx9H6RET0n8OgPhERERERERFp5eXlBYlEgn/++Uen8gYGBhgzZgzmzp2L8+fPY9SoUTq39dFHHyEkJATh4eFIS0vD0qVLIZXmhy2qVq2K6tWrw9raWlW+Xr16EEIgKipKv50iIiKq5BjUJyIiIiIiIiKtbG1t4evrix9//BHp6eka65OSkjSWTZgwASdPnkS/fv1QpUoVnduyt7dHrVq1UK1aNY03Azp06ICYmBikpaWplt29exdSqRQuLi667xAREdErgEF9IiIiIiIiIirU6tWrIZfL0bp1a+zYsQP37t3DP//8g++//x7t2rXTKF+vXj0kJCRg3bp1ZdaHkSNHws7ODm+88QZu3bqFU6dO4aOPPsKECRNgampaZu0QERFVBgYV3QEiIiIiIiKi/7KEhISXuh1PT09cvnwZixYtwocffojY2Fg4ODigRYsW+Omnn7RuY2dnV5quarCwsMCRI0cwdepUtGzZEnZ2dhg6dCi+/PLLMm2HiIioMmBQn4iIXhmrV6/GsmXLEBsbiwYNGmDlypXo1KmT1rKBgYH45JNPcPv2bWRkZMDd3R2TJ0/G9OnT1crt2LEDc+bMwYMHD1CzZk0sWrQIAwYMeBG7Q0RERK84e3t7mJqaYufOnS+sTVNTU9jb2+u9XdWqVbFq1SqsWrVK6/qwsLAit38+Tc/z5YvbHgDq1q2LI0eOFFuOiIjoVcegPhERvRK2bduGadOmYfXq1ejQoQN++eUX9OrVC7du3YKbm5tGeXNzc7z33nto3LgxzM3NERgYiMmTJ8Pc3BxvvfUWAODs2bMYNmwYFi5ciAEDBuDvv//G0KFDERgYiDZt2rzoXSQiIqJXjJubG27fvv3CRuoD+Q8StP1uRERERJWHRAghKroTREREpdWmTRs0b95c7RXwevXqoX///li8eLFOdQwcOBDm5ubYuHEjAGDYsGFISUnBwYMHVWV69uyJKlWqYMuWLTrVmZKSAmtra4wfPx4eHh6679BzYmJisGbNGly6dAnNmzcvcT1ERERUMbKyshAaGgpPT0+YmJhUdHeolIr6PpW//yUnJ8PKyqqCekhERK8yTpRLRESVXk5ODi5duoQePXqoLe/RoweCgoJ0quPKlSsICgqCt7e3atnZs2c16vT19S2yzuzsbKSkpKh9iIiIiIiIiIjKCoP6RERU6SUkJEAul8PJyUltuZOTE+Li4orc1sXFBcbGxmjZsiWmTJmCN998U7UuLi5O7zoXL14Ma2tr1cfV1bUEe0REREREREREpB2D+kRE9MqQSCRq/xZCaCx73unTpxEcHIyff/4ZK1eu1Eiro2+ds2fPRnJysuoTGRmp514QERERERERERWOE+USEVGlZ29vD5lMpjGCPj4+XmOk/fM8PT0BAI0aNcKjR48wb948jBgxAgDg7Oysd53GxsYwNjYuyW4QERHRf4BCoajoLlAZ4PSERERUkRjUJyKiSs/IyAgtWrTAkSNHMGDAANXyI0eOoF+/fjrXI4RAdna26t/t2rXDkSNHMH36dNWyw4cPo3379mXTcSIiIvrPMDIyglQqRUxMDBwcHGBkZFTsG4X0chJC4PHjx5BIJDA0NKzo7hAR0X8Qg/pERPRKmDFjBsaMGYOWLVuiXbt2WLNmDSIiIvD2228DyE+LEx0djQ0bNgAAfvzxR7i5uaFu3boAgMDAQCxfvhxTp05V1fnBBx+gc+fO+Prrr9GvXz/s3r0bR48eRWBg4IvfQSIiIqrUpFIpPD09ERsbi5iYmIruDpWSRCKBi4sLZDJZRXeFiIj+gxjUJyKiV8KwYcOQmJiIBQsWIDY2Fg0bNsSBAwfg7u4OAIiNjUVERISqvEKhwOzZsxEaGgoDAwPUrFkTS5YsweTJk1Vl2rdvj61bt+Lzzz/HnDlzULNmTWzbtg1t2rR54ftHRERElZ+RkRHc3NyQl5cHuVxe0d2hUjA0NGRAn4iIKoxE/J+9e4+Lssz/P/4eQAY8QOkoigJSap4qDVPx0GFNzLbSzNUOUq6HYrEDUu1KdlC3pKOSrXjYrcivSWhiZlmGu5qY1m4sdFLLSsN0CMcSRAUU5/eHP2YbOQgzA8wMr+fjcT/Wuea6Pvfn1h6Pva/Pfc11sxEcAAANpri4WMHBwZo8ebK6du3qcJxDhw5p+fLlysnJ0RVXXOG6BAEAAOBSlfd/RUVFCgoKaup0AABeyKepEwAAAAAAAAAAAHVDUR8AAAAAAAAAAA9BUR8AAAAAAAAAAA9BUR8AAAAAAAAAAA9BUR8AAAAAAAAAAA9BUR8AAAAAAAAAAA9BUR8AAAAAAAAAAA9BUR8AAAAAAAAAAA9BUR8AAAAAAAAAAA9BUR8AAAAAAAAAAA9BUR8AAAAAAAAAAA9BUR8AAAAAAAAAAA9BUR8AAAAAAAAAAA9BUR8AAAAAAAAAAA9BUR8AAAAAAAAAAA9BUR8AAAAAAAAAAA9BUR8AAAAAAAAAAA9BUR8AAAAAAAAAAA9BUR8AAAAAAAAAAA9BUR8AAAAAAAAAAA9BUR8A4DVSU1MVGRmpgIAARUVFKTs7u8a+mZmZGjlypNq3b6+goCBFR0dr06ZNdn3S0tJkMBiqHKWlpQ19KQAAAAAAANWiqA8A8AoZGRlKSEjQ7NmzlZubq+HDh2v06NHKz8+vtv+2bds0cuRIbdy4UTk5Obr22mt10003KTc3165fUFCQzGaz3REQENAYlwQAAAAAAFCFX1MnAACAKyxYsEBTp07VtGnTJEkpKSnatGmTlixZouTk5Cr9U1JS7D7Pnz9f69ev14YNG9S/f39bu8FgUMeOHRs0dwAAAAAAgLpipT4AwOOVl5crJydHMTExdu0xMTHasWNHnWKcOXNGx44dU9u2be3aS0pKFBERoS5duujGG2+sspL/XGVlZSouLrY7AAAAAAAAXIWiPgDA41ksFlVUVCgkJMSuPSQkRAUFBXWK8eKLL+r48eOaMGGCra1nz55KS0vTO++8o/T0dAUEBGjo0KHau3dvjXGSk5MVHBxsO8LCwhy7KAAAAAAAgGpQ1AcAeA2DwWD32Wq1VmmrTnp6uubMmaOMjAx16NDB1j548GBNmjRJl19+uYYPH67Vq1erR48eevnll2uMlZSUpKKiIttx4MABxy8IAAAAAADgHOypDwDweCaTSb6+vlVW5RcWFlZZvX+ujIwMTZ06VWvWrNF1111Xa18fHx9deeWVta7UNxqNMhqNdU8eAAAAAACgHlipDwDweP7+/oqKilJWVpZde1ZWloYMGVLjuPT0dE2ePFmrVq3S73//+/Oex2q1Ki8vT506dXI6ZwAAAAAAAEdQ1AcANIpFixbp3//+t11bYWGhvvjii2r7r1+/XlOmTKlz/MTERP3jH//Qq6++qt27d2vmzJnKz89XXFycpLPb4tx11122/unp6brrrrv04osvavDgwSooKFBBQYGKiopsfebOnatNmzbphx9+UF5enqZOnaq8vDxbTAAAAAAAgMZGUR8A0CgSEhL0wQcf2LUtWbJE/fv3r7Z/Xl6eXn/99TrHnzhxolJSUjRv3jz169dP27Zt08aNGxURESFJMpvNys/Pt/VftmyZTp8+rRkzZqhTp06248EHH7T1OXr0qO655x716tVLMTExOnjwoLZt26aBAwfW59IBAAAAAABchj31AQBeIz4+XvHx8dV+l5aWZvd569at5423cOFCLVy40AWZAQAAAAAAuAYr9QEAAAAAAAAA8BAU9QEAAAAAAAAA8BAU9QEAAAAAAAAA8BAU9QEAAAAAAAAA8BC8KBcA0Gi++uorrV692u6zJK1Zs0ZWq7VKXwAAAAAAANijqA8AaDRr167V2rVrbZ8rC/m33XZblb5Wq1UGg6HRcgMAAAAAAPAEFPUBAI3iySefbOoUAAAAAAAAPB5FfQBAo6CoDwAAAAAA4DxelAsAAAAAAAAAgIdgpT4AwC3k5eVpy5YtkqRhw4bpyiuvbOKMAAAAAAAA3A8r9QEAjWLbtm2666679Mknn1T57rHHHlNUVJQefvhhPfzwwxo8eLDuv//+JsgSAAAAAADAvVHUBwA0ioyMDK1Zs0a9e/e2a9+yZYvmz58vX19fxcbGKi4uTiaTSampqXr77bebJlkAAAAAAAA3RVEfANAodu7cqUGDBikoKMiufdmyZTIYDFq6dKnS0tK0ePFiZWdnq0WLFkpLS2uaZAEAAAAAANwURX0AQKM4dOiQevToUaV9y5YtCgoK0uTJk21tPXr00A033KDPPvusETMEAAAAAABwfxT1AQCN4tdff5XJZLJr++mnn3T48GENGzZMPj72/5fUrVs3WSyWxkwRAAAAAADA7VHUBwA0ijZt2ujQoUN2bTk5OZKkqKioKv0NBoMCAgIaJTcAAAAAAABPQVEfANAoLrvsMr377rs6fvy4rW3dunUyGAy66qqrqvT//vvvFRoa2pgpAgAAAAAAuD2K+gCARjFlyhT98ssvuvrqq7Vo0SI98MADWrlypcLCwnTNNdfY9a2oqNC2bdt06aWXNk2yAAAAAAAAbsqvqRMAADQPkyZN0j//+U+9/vrrys3NldVqVZs2bfT3v/+9yn767733niwWi0aNGtVE2QIAAAAAALgnivoAgEbz2muvaerUqdq5c6fatm2rUaNGqUuXLlX6GY1GLVy4UGPGjGmCLAEAAAAAANwX2+8AABrVsGHD9Mgjj2jq1KnVFvQladSoUXrwwQfVrl27esVOTU1VZGSkAgICFBUVpezs7Br7ZmZmauTIkWrfvr2CgoIUHR2tTZs2Vem3du1a9e7dW0ajUb1799a6devqlRMAAAAAAIArUdQHAHiFjIwMJSQkaPbs2crNzdXw4cM1evRo5efnV9t/27ZtGjlypDZu3KicnBxde+21uummm5Sbm2vrs3PnTk2cOFGxsbH6/PPPFRsbqwkTJujTTz9trMsCAAAAAACwY7BardamTgIA4P1Wr17t0LgJEybUqd+gQYN0xRVXaMmSJba2Xr16aezYsUpOTq5TjD59+mjixIl64oknJEkTJ05UcXGx3n//fVuf66+/XhdeeKHS09PrFLO4uFjBwcGaPHmyunbtWqcx1Tl06JCWL1+unJwcXXHFFQ7HAQAAQMOqvP8rKipSUFBQU6cDAPBC7KkPAGgUt912mwwGQ537W61WGQyGOhX1y8vLlZOTo1mzZtm1x8TEaMeOHXU635kzZ3Ts2DG1bdvW1rZz507NnDnTrt+oUaOUkpJSY5yysjKVlZXZPhcXF9fp/AAAAAAAAHVBUR8A0Gj8/Px0ww03qF+/fi6Na7FYVFFRoZCQELv2kJAQFRQU1CnGiy++qOPHj9s9RCgoKKh3zOTkZM2dO7ce2QMAAAAAANQdRX0AQKMYO3as3nvvPb3zzjv68ccfNWXKFN1555268MILXXaOc38JULna/3zS09M1Z84crV+/Xh06dHAqZlJSkhITE22fi4uLFRYWVpf0AQAAAAAAzosX5QIAGkVmZqYOHjyo559/XqdPn9YDDzyg0NBQ3X777crKynIqtslkkq+vb5UV9IWFhVVW2p8rIyNDU6dO1erVq3XdddfZfdexY8d6xzQajQoKCrI7AAAAAAAAXIWiPgCg0ZhMJiUmJuqLL77QJ598orvuuksffPCBrr/+eoWHh+uJJ57QDz/8UO+4/v7+ioqKqvJwICsrS0OGDKlxXHp6uiZPnqxVq1bp97//fZXvo6Ojq8T88MMPa40JAAAAAADQkCjqAwCaxMCBA7Vs2TKZzWalpaWpW7duevrpp9WjRw9t3ry53vESExP1j3/8Q6+++qp2796tmTNnKj8/X3FxcZLObotz11132fqnp6frrrvu0osvvqjBgweroKBABQUFKioqsvV58MEH9eGHH+rZZ5/Vnj179Oyzz2rz5s1KSEhw+voBAAAAAAAcQVEfANCkAgICFBMTo+uvv16dOnXSmTNndOLEiXrHmThxolJSUjRv3jz169dP27Zt08aNGxURESFJMpvNys/Pt/VftmyZTp8+rRkzZqhTp06248EHH7T1GTJkiN5880299tpruuyyy5SWlqaMjAwNGjTI+QsHAAAAAABwgMFqtVqbOgkAQPNTUVGhd999V6+++qref/99VVRUqF+/fpoyZYomT56sVq1aNXWKLlFcXKzg4GBNnjxZXbt2dTjOoUOHtHz5cuXk5OiKK65wXYIAAABwqcr7v6KiIt6vBABoEH5NnQAAoHnZtWuXXn31Va1cuVKFhYVq166d4uPjNWXKFF122WVNnZ7b2717t9MxTCaTwsPDXZANAAAAAABobBT1AQCNYvny5Xr11Vf1n//8RwaDQTExMZoyZYrGjBmjFi1aNHV6bq+kpEQGg0GTJk1yOlZgYKD27NlDYR8AAAAAAA9EUR8A0Cji4uLUokUL3XTTTbr77rvVuXNnSVJubm6t4wYOHNgY6bm90tJSWa1WjRs3TiaTyeE4FotFmZmZslgsFPUBAAAAAPBAFPUBAI3m1KlT2rBhgzZs2FDnMRUVFQ2YkecxmUwKDQ1t6jQAAAAAAEAToagPAGgUd999d1OnAAAAAAAA4PEo6gMAGsVrr73W1CkAAAAAAAB4PJ+mTgAAAAAAAAAAANQNK/UBAI0iPj7eoXGpqakuzgQAAAAAAMBzUdQHADSKpUuX1rmvwWCw/ZmiPgAAAAAAwP9Q1AcANIotW7bUqV9+fr7mzZun77//3q64DwAAAAAAAIr6AIBGcvXVV9f6/a+//qr58+dr8eLFKi0tVXR0tJ599tlGyg4AAAAAAMAzUNQHADSp0tJSpaSk6LnnntPRo0fVs2dPzZ8/X2PHjm3q1AAAAAAAANyOT1MnAABonqxWq/7xj3+oe/fuevTRR9WyZUstX75cX331FQV9AAAAAACAGrBSHwDQ6N5++209+uij+uabbxQUFKT58+crISFBAQEBTZ0aAAAAAACAW6OoDwBoNNu3b9df/vIXffLJJ/L399fMmTM1e/ZsXXjhhU2dGgAAAAAAgEegqA8AaBQ333yz3nvvPfn4+Ojuu+/WvHnz1KVLl6ZOCwAAAAAAwKNQ1AcANIp3331XBoNB4eHhKigo0D333HPeMQaDQe+9914jZAcAAAAAAOAZKOoDABqN1WrVvn37tG/fvjr1NxgMDZwRAAAAAACAZ6GoDwBoFHUt5AMAAAAAAKBmFPUBAI0iIiKiqVMAAAAAAADweD5NnQAAAK6SmpqqyMhIBQQEKCoqStnZ2TX2NZvNuuOOO3TJJZfIx8dHCQkJVfqkpaXJYDBUOUpLSxvwKgAAAAAAAGpGUR8A4BUyMjKUkJCg2bNnKzc3V8OHD9fo0aOVn59fbf+ysjK1b99es2fP1uWXX15j3KCgIJnNZrsjICCgoS4DAAAAAACgVhT1AQBeYcGCBZo6daqmTZumXr16KSUlRWFhYVqyZEm1/bt27aqXXnpJd911l4KDg2uMazAY1LFjR7sDAAAAAACgqVDUBwB4vPLycuXk5CgmJsauPSYmRjt27HAqdklJiSIiItSlSxfdeOONys3NrbV/WVmZiouL7Q4AAAAAAABXoagPAPB4FotFFRUVCgkJsWsPCQlRQUGBw3F79uyptLQ0vfPOO0pPT1dAQICGDh2qvXv31jgmOTlZwcHBtiMsLMzh8wMAAAAAAJyLoj4AwGsYDAa7z1artUpbfQwePFiTJk3S5ZdfruHDh2v16tXq0aOHXn755RrHJCUlqaioyHYcOHDA4fMDAAAAAACcy6+pEwAAwFkmk0m+vr5VVuUXFhZWWb3vDB8fH1155ZW1rtQ3Go0yGo0uOycAAAAAAMBvsVIfAODx/P39FRUVpaysLLv2rKwsDRkyxGXnsVqtysvLU6dOnVwWEwAAAAAAoD5YqQ8A8AqJiYmKjY3VgAEDFB0dreXLlys/P19xcXGSzm6Lc/DgQa1YscI2Ji8vT9LZl+EePnxYeXl58vf3V+/evSVJc+fO1eDBg9W9e3cVFxdr0aJFysvL0+LFixv9+gAAAAAAACSK+gAALzFx4kQdOXJE8+bNk9lsVt++fbVx40ZFRERIksxms/Lz8+3G9O/f3/bnnJwcrVq1ShEREdq/f78k6ejRo7rnnntUUFCg4OBg9e/fX9u2bdPAgQMb7boAAAAAAAB+i6I+AMBrxMfHKz4+vtrv0tLSqrRZrdZa4y1cuFALFy50RWoAAAAAAAAuwZ76AAAAAAAAAAB4CIr6AAAAAAAAAAB4CIr6AAAAAAAAAAB4CIr6AAAAAAAAAAB4CIr6AAAAAAAAAAB4CIr6AAAAAAAAAAB4CIr6AAAAAAAAAAB4CIr6AAAAAAAAAAB4CL+mTgAAADS+3bt3Ox2jrKxMRqPRqRgmk0nh4eFO5wIAAAAAQHNBUR8AgGakpKREBoNBkyZNcjqWwWCQ1Wp1KkZgYKD27NlDYR8AAAAAgDqiqA8AQDNSWloqq9WqcePGyWQyORxn79692rJli1NxLBaLMjMzZbFYKOoDAAAAAFBHFPUBAGiGTCaTQkNDHR5vsVhcEgcAAAAAANQPL8oFAAAAAAAAAMBDsFIfAAA0KVe8tJcX7gIAAAAAmguK+gAAoEm48qW9vHAXAAAAANBcUNQHAABNwlUv7eWFuwAAAACA5oSiPgAAaFK8bBcAAAAAgLrjRbkAAAAAAAAAAHgIivoAAAAAAAAAAHgIivoAAAAAAAAAAHgIivoAAK+RmpqqyMhIBQQEKCoqStnZ2TX2NZvNuuOOO3TJJZfIx8dHCQkJ1fZbu3atevfuLaPRqN69e2vdunUNlD0AAAAAAMD5UdQHAHiFjIwMJSQkaPbs2crNzdXw4cM1evRo5efnV9u/rKxM7du31+zZs3X55ZdX22fnzp2aOHGiYmNj9fnnnys2NlYTJkzQp59+2pCXAgAAAAAAUCOK+gAAr7BgwQJNnTpV06ZNU69evZSSkqKwsDAtWbKk2v5du3bVSy+9pLvuukvBwcHV9klJSdHIkSOVlJSknj17KikpSSNGjFBKSkoDXgkAAAAAAEDN/Jo6AQAAnFVeXq6cnBzNmjXLrj0mJkY7duxwOO7OnTs1c+ZMu7ZRo0bVWtQvKytTWVmZ7XNxcbHD50f97N692+kYJpNJ4eHhLsgGAAAAAICGQVEfAODxLBaLKioqFBISYtceEhKigoICh+MWFBTUO2ZycrLmzp3r8DlRfyUlJTIYDJo0aZLTsYxGo9auXatOnTo5FYeHAwAAAACAhkJRHwDgNQwGg91nq9Vapa2hYyYlJSkxMdH2ubi4WGFhYU7lgNqVlpbKarVq3LhxMplMDsfJz8/Xpk2bdOONNzqdU2BgoPbs2UNhHwAAAADgchT1AQAez2QyydfXt8oK+sLCwior7eujY8eO9Y5pNBplNBodPiccZzKZFBoa6vB4i8XikocDFotFmZmZslgsFPUBAAAAAC5HUR8A4PH8/f0VFRWlrKws3XLLLbb2rKwsjRkzxuG40dHRysrKsttX/8MPP9SQIUOcyhfuzdmHAwAAAAAANCSK+gAAr5CYmKjY2FgNGDBA0dHRWr58ufLz8xUXFyfp7LY4Bw8e1IoVK2xj8vLyJJ3dk/3w4cPKy8uTv7+/evfuLUl68MEHddVVV+nZZ5/VmDFjtH79em3evFnbt29v9OsDAAAAAACQKOoDALzExIkTdeTIEc2bN09ms1l9+/bVxo0bFRERIUkym83Kz8+3G9O/f3/bn3NycrRq1SpFRERo//79kqQhQ4bozTff1GOPPabHH39cF198sTIyMjRo0KBGuy54rt27dzsdgxfuAgAAAADORVEfAOA14uPjFR8fX+13aWlpVdqsVut5Y44fP17jx493NjU0IyUlJTIYDJo0aZLTsXjhLgAAAADgXBT1AQAAXKi0tJQX7gIAAAAAGgxFfQAAgAbAC3cBAAAAAA2Boj4AAIAbc3ZvfvblBwAAAADvQlEfAADADblqb3725QcAAAAA70JRHwAAwA25Ym9+9uUHAAAAAO9DUR8AAMCNsTc/AAAAAOC3fJo6AQAAAAAAAAAAUDes1AcAoBG08TGolc44PP4CP191bN1KQV4Ux51y8dY4QT4GdWzdSvu+/EJ+pScdzkWS2rZtq86dOzsVAwCA5sB6rLipUwAAeDmD1Wq1NnUSAAB4q+LiYgUHB+v9B+9V+wuDHY7z6y9H9WP+j+rRo4datgz0ijjulIu3xikuOqYf9v3gcA6/5evrq1vG3qJWrVu5JB4AAN6q+MQJtbtzmoqKihQUFNTU6QAAvBAr9QEAaASnrNIJGRwef6yiQkdOnNTxM1bJS+K4Uy7eGudoebmOnDip7t27KzDQ8QcMJ0+e1N69e3XAYlFbJ9eDBAYGqk0bChwAAC9WfqqpMwAAeDmK+gAANIJyq1WnnCjwlp6xqqT8lMqskr+XxHGnXLw1TmUMn4BA+bdu7XAux8rKVVJ+SqvXv+NwjEq+vr6aOGGCWrdp41ScitOn5evn3K1sy5YtFRzs+C9oAAColp9/U2cAAPByFPUBAABQq9OnT0uSevXqpZYtWzocp6ioSN99951Wpae7KjWnuOoBAw8HAAAAADQmivoAAACok5YtW6pNG8dX/J84cUKS8w8Hjhw5ov379zsVx5UPGNzp1wcSDxkAAAAAb0dRHwAAAI3KVQ8HnInjqgcM7vbrA4lfIAAAAADejqI+AAAAmi1v+vWB5NqHDH5+frrvvvso7AMAAABuhqI+AAAA4CR3+PXBb+M4+3DgxIkT2r17t/J//FGm9u0djsNqfwAAAMD1KOoDANAI/A0GtZDV4fEBPga19m8ho0FeE8edcvHWOO6Ui7vFcadcGiLOha1aqlXrVg7HMZw6pdb+LfThe+86HEOSfH39NGXKH9WmTZBTcQDAo5wub+oMAABejqI+AACNoIVBaulEoa6Nr6/atQxUKx+D18Rxp1y8NY475eJucdwpF3eMUyar2rUMVER4hIwBRsdilJbpx/wfdaroqOTn63AuAOBxTp9q6gwAAF6Ooj4AAI1g47FyhV8Y4PD43QW/auPm7ZrUsatCWl7oFXHcKRdvjeNOubhbHHfKxa3jTOqqkLaOxfm5+Get3LxdF4y9Td07hDuciyS1bdtWnTt3dioGADQW3+Lipk4BAODlKOoDANAIjp2x6rh8HB5/9HSFCkqOq/iMVa29JI475eKtcdwpF3eL4065eGucQ8XH9PPxExo/+Y8O51HJaDRq7dq16tSpk1NxysrKZDQ69suD3zKZTAoPd+5BBQDvZXD8h1IAANQJRX0AgNdITU3V888/L7PZrD59+iglJUXDhw+vsf9HH32kxMREff311woNDdWf//xnxcXF2b5PS0vTH/9YtRh18uRJBQQ4vuoeAJqD0tJSWa1WjRs3TiaTyeE4+fn52rRpk2688UanczIYDLJana+2BQYGas+ePRT2AQAA0CQo6gMAvEJGRoYSEhKUmpqqoUOHatmyZRo9erR27dpVbdFl3759uuGGGzR9+nStXLlSH3/8seLj49W+fXvdeuuttn5BQUH65ptv7MZS0AeAujOZTAoNDXV4vMViccnDgb1792rLli1Ox7FYLMrMzFR2drZ69erlcBxW+wMAAMBRFPUBAF5hwYIFmjp1qqZNmyZJSklJ0aZNm7RkyRIlJydX6b906VKFh4crJSVFktSrVy999tlneuGFF+yK+gaDQR07dmyUawAA1MwVDwdcEaekpEQGg0GTJk1yOIbElkIAAABwHEV9AIDHKy8vV05OjmbNmmXXHhMTox07dlQ7ZufOnYqJibFrGzVqlF555RWdOnVKLVq0kHS2eBMREaGKigr169dPf/3rX9W/f/8acykrK1NZWZntczEvSgMAr+KKbYXccUshVz1k4OEAAABAw6OoDwDweBaLRRUVFQoJCbFrDwkJUUFBQbVjCgoKqu1/+vRpWSwWderUST179lRaWpouvfRSFRcX66WXXtLQoUP1+eefq3v37tXGTU5O1ty5c11zYQAAt+XMin9321LIlQ8ZeDgAAADQ8CjqAwC8hsFgsPtstVqrtJ2v/2/bBw8erMGDB9u+Hzp0qK644gq9/PLLWrRoUbUxk5KSlJiYaPtcXFyssLCw+l0IAKBZcJcthVz1kMGVDwd4GTEAAEDNKOoDADyeyWSSr69vlVX5hYWFVVbjV+rYsWO1/f38/NSuXbtqx/j4+OjKK6/U3r17a8zFaDS6ZG9jAAAam7s8HKh8GbHFYqGoDwAAUA2K+gAAj+fv76+oqChlZWXplltusbVnZWVpzJgx1Y6Jjo7Whg0b7No+/PBDDRgwwLaf/rmsVqvy8vJ06aWXui55AAC8jLMPBwAAAFA7ivoAAK+QmJio2NhYDRgwQNHR0Vq+fLny8/MVFxcn6ey2OAcPHtSKFSskSXFxcfrb3/6mxMRETZ8+XTt37tQrr7yi9PR0W8y5c+dq8ODB6t69u4qLi7Vo0SLl5eVp8eLFTXKNAAA0J7t373ZqPPvyAwAAb0VRHwDgFSZOnKgjR45o3rx5MpvN6tu3rzZu3KiIiAhJktlsVn5+vq1/ZGSkNm7cqJkzZ2rx4sUKDQ3VokWLdOutt9r6HD16VPfcc48KCgoUHBys/v37a9u2bRo4cGCjXx8AAM1FSUmJDAaDJk2a5FQc9uWHq1VUSNnZktksdeokDR8u+fo2dVYAgOaIoj4AwGvEx8crPj6+2u/S0tKqtF199dX673//W2O8hQsXauHCha5KDwAA1EFpaanTe/NX7sufnZ2tXr16OZUPK/4hSZmZ0oMPSj/99L+2Ll2kl16Sxo1rurwAAM0TRX0AAAAAgNtxZm9+V632l1jxj7MF/fHjJavVvv3gwbPtb71FYR8A0Lgo6gMAAAAAvIorVvtLrPjH2S13HnywakFfOttmMEgJCdKYMWzFAwBoPBT1AQAAAABeyZnV/hIr/nF2D/3fbrlzLqtVOnDgbL9rrmm0tAAAzRxFfQAAAAAAqsGKf5jNru0HAIArUNQHAAAAAKAWrPhvvjp1cm0/AABcgaI+AAAAAAANyN1W/JeVlcloNDo8vlJz+NXA8OFSly5nX4pb3b76BsPZ74cPb/zcAADNF0V9AAAAAAAagbus+DcYDLJWV6Gup+bwqwFfX+mll6Tx488W8H/712YwnP3flBRekgsAaFwU9QEAAAAA8ACuWPG/d+9ebdmyxWW/GrBYLF5d1JekceOkt96SHnzQ/qW5XbqcLeiPG9dkqQEAmimK+gAAAAAAeBBnVvxbLBanYzRH48ZJY8ZI2dlnX4rbqdPZLXdYoQ8AaAoU9QEAAAAAAM7D11e65pqmzgIAAMmnqRMAAAAAAAAAAAB1Q1EfAAAAAAAAAAAPQVEfAAAAAAAAAAAPwZ76AAAAAADAIbt373Y6hslkUnh4uAuyAQCgeaCoDwAAAAAA6qWkpEQGg0GTJk1yOpbRaNTatWvVqVMnp+LwcAAA0FxQ1AcAAAAAAPVSWloqq9WqcePGyWQyORwnPz9fmzZt0o033uh0ToGBgdqzZw+FfQCA16OoDwAAAAAAHGIymRQaGurweIvF4pKHAxaLRZmZmbJYLBT1AQBej6I+AAAAAABoUs4+HAAAoDnxaeoEAAAAAAAAAABA3VDUBwAAAAAAAADAQ1DUBwAAAAAAAADAQ1DUBwB4jdTUVEVGRiogIEBRUVHKzs6utf9HH32kqKgoBQQE6KKLLtLSpUur9Fm7dq169+4to9Go3r17a926dQ2VPgAAAAAAwHlR1AcAeIWMjAwlJCRo9uzZys3N1fDhwzV69Gjl5+dX23/fvn264YYbNHz4cOXm5urRRx/VAw88oLVr19r67Ny5UxMnTlRsbKw+//xzxcbGasKECfr0008b67IAAAAAAADsUNQHAHiFBQsWaOrUqZo2bZp69eqllJQUhYWFacmSJdX2X7p0qcLDw5WSkqJevXpp2rRpmjJlil544QVbn5SUFI0cOVJJSUnq2bOnkpKSNGLECKWkpDTSVQEAAAAAANjza+oEAABwVnl5uXJycjRr1iy79piYGO3YsaPaMTt37lRMTIxd26hRo/TKK6/o1KlTatGihXbu3KmZM2dW6VNbUb+srExlZWW2z0VFRZKkgoKC+lxSFYcPH5Ykmc1mlZeXe0Ucd8rFW+O4Uy7uFsedcvHWOO6Ui7vFcadcvDWOO+XibnHcKRdXxjly5IgkqaSkRMXFxQ7HcYXK81ut1ibNAwDgvQxW/l8GAODhDh06pM6dO+vjjz/WkCFDbO3z58/X66+/rm+++abKmB49emjy5Ml69NFHbW07duzQ0KFDdejQIXXq1En+/v5KS0vTHXfcYeuzatUq/fGPf7Qr3P/WnDlzNHfuXBdeHQAAADzRgQMH1KVLl6ZOAwDghVipDwDwGgaDwe6z1Wqt0na+/ue21zdmUlKSEhMTbZ/PnDmjX375Re3atat1HAAAALyD1WrVsWPHFBoa2tSpAAC8FEV9AIDHM5lM8vX1rbLFTWFhoUJCQqod07Fjx2r7+/n5qV27drX2qSmmJBmNRhmNRru2Cy64oK6XAgAAAC8QHBzc1CkAALwYL8oFAHg8f39/RUVFKSsry649KyvLbjue34qOjq7S/8MPP9SAAQPUokWLWvvUFBMAAAAAAKChsVIfAOAVEhMTFRsbqwEDBig6OlrLly9Xfn6+4uLiJJ3dFufgwYNasWKFJCkuLk5/+9vflJiYqOnTp2vnzp165ZVXlJ6ebov54IMP6qqrrtKzzz6rMWPGaP369dq8ebO2b9/eJNcIAAAAAABAUR8A4BUmTpyoI0eOaN68eTKbzerbt682btyoiIgISZLZbFZ+fr6tf2RkpDZu3KiZM2dq8eLFCg0N1aJFi3Trrbfa+gwZMkRvvvmmHnvsMT3++OO6+OKLlZGRoUGDBjX69QEAAAAAAEiSwVr5VkAAAAAAAAAAAODW2FMfAAAAAAAAAAAPQVEfAAAAAAAAAAAPQVEfAAAAAAAAAAAPQVEfAAAAAAAAAAAPQVEfAAAAAAAAAAAPQVEfAAAAAAAAAAAPQVEfAAAAAAAAAAAPQVEfAAAAAAAAAAAPQVEfAAAAAAAAAAAPQVEfAAAAAAAAAAAPQVEfAAAAAAAAAAAPQVEfAAAAAAAAAAAPQVEfAAAAAAAAAAAPQVEfAAAAAAAAAAAPQVEfAAAAAAAAAAAPQVEfAAAAAAAAAAAPQVEfAAAAAAAAAAAPQVEfAAAAAAAAAAAPQVEfAAAAAAAAAAAPQVEfAAAAAAAAAAAPQVEfAAAAAAAAAAAPQVEfAAAAAAAAAAAPQVEfAAAAAAAAAAAPQVEfAAAAAAAAAAAPQVEfAAAAAAAAAAAPQVEfAAAAAAAAAAAPQVEfAAAAAAAAAAAPQVEfAAAAAAAAAAAPQVEfAAAAAAAAAAAPQVEfAAAAAAAAAAAPQVEfAAAAAAAAAAAPQVEfAAAAAAAAAAAPQVEfAAAAAAAAAAAPQVEfAAAAAAAAAAAPQVEfAAAAAAAAAAAPQVEfAAAAAAAAAAAPQVEfAAAAAAAAAAAPQVEfAAAAAAAAAAAPQVEfAAAAAAAAAAAPQVEfAAAAAAAAAAAPQVEfAAAAAAAAAAAPQVEfAAAAAAAAAAAPQVEfAAAAAAAAAAAPQVEfAAAAAAAAAAAPQVEfAAAAAAAAAAAPQVEfAAAAAAAAAAAPQVEfAAAAAAAAAAAPQVEfAAAAAAAAAAAPQVEfgFfr2rWrDAaDDAaD3n777Rr7XXfddTIYDEpLS7NrT0tLs4339/fXkSNHaoxx+vRpdejQwdZ/zpw51fbbtGmTxo0bp86dO8vf318XXHCBLrnkEt1000168cUX9f3339v1379/vy3m+Y79+/fX8W/m/Hbt2qV7771XPXr0UGBgoFq1aqXIyEhdc801evzxx7Vjx44qYyr/vs/9e6zJ5MmTq1xDixYt1KlTJ9188816//33XXY9W7durfZcJpNJPXv21O23365ly5apuLi4xhi//bc49++6ums59xg7dqzLrgcAAACNj/mF47x9fvHFF1/U2r9///62vpMnT661788//6wWLVrIYDBo6NCh583lt/9dPvTQQ7X2femll+zyBuCZ/Jo6AQBoLHPmzNGYMWMcvnE5deqUMjIyFB8fX+33mzZt0uHDh2uNcd9992nx4sWSpFatWql79+5q2bKlfvzxR7377rt69913ZTab9cILL1Q7fsCAATIajTXGDwgIqOPV1O6NN97QlClTVF5erhYtWig8PFxt27ZVYWGhPvroI3300Ud6//339dlnn7nkfB06dFD37t0lSaWlpfr222+1YcMGbdiwQUlJSZo/f75LzlOp8sbYarXq2LFj+umnn/Tmm2/qzTff1MMPP6xnn322xn/n8/nttZyrd+/eDucMAAAA98L8ou68fX4hSStXrtRzzz1X7Xdff/218vLy6hwrPT1dp0+fliTt2LFD33//vS6++OI6jV21apWee+45+fr61pgnAM9HUR9As+Dr66vPP/9ca9eu1fjx4+s9vnv37vruu+/0f//3fzXedP/f//2fJOmSSy7RN998U+X79PR0LV68WD4+Plq4cKHuvfdeuxvoXbt2adWqVQoKCqoxjzVr1qhr1671zr8+9u/fr6lTp6q8vFxTpkxRcnKyOnToYPu+oKBAa9eu1aeffuqyc44ePdpu9U15eblmz56tF154QcnJybrpppsUHR3tsvNt377d7rPVatWXX36phQsXKi0tTTNmzNCBAweUnJxc79jnXgsAAAC8D/OLuvP2+UVoaKiOHTumVatW6ZlnnpGPT9VNMc73b1lT/wsuuEBHjx7VypUr9eSTT553XGX8zZs3a9SoUVW+/+abb/TZZ5/VOQ8A7ovtdwA0C7fffrskae7cubJarfUeHx4erquuukqffPKJvvvuuyrfHzt2TO+8844iIyNr/Hnk66+/LkmaMmWKHnjggSorYnr37q2nnnpKf/7zn+udnyu9+eabKisr0yWXXKK///3vdjfcktSxY0fNmDFDK1asaLAc/P399dxzz6lfv362nBqSwWDQZZddptdee03Lly+XJD3zzDPaunVrg54XAAAAnon5Rd15+/wiMDBQ48aN08GDB7Vly5Yq31utVq1atUqtWrXSLbfcct54u3bt0n//+18FBgbqxRdflPS/Iv/5TJo0SVLNq/Er48TGxtYpHgD3RVEfQLMwZcoUde3aVV999ZVWr17tUIzabpDeeustnTx5UnfeeWeNP7/94YcfJMl2I+muKvO89NJLq11l0lgMBoOGDRsmSdq7d2+jnXf69OkaM2aMpLOFfQAAAOBczC/qrjnMLyr/Lasrvm/dulUHDhzQLbfcolatWp03VmWMG2+8UXfccYeCgoL0/fffa+fOnecde/XVVyssLEzr1q3T8ePH7b6zWq164403bA8hAHg2ivoAmoUWLVpo9uzZks6upjlz5ky9Y/zhD39QQECA3njjjSrfVd6IV97MVafyZ6///ve/633uxlSZZ15enk6dOtWkuTiy6skV4uLiJElbtmzRyZMnmyQHAAAAuC/mF3XXHOYXv/vd79S5c2dlZmbqxIkTdt9V/lvWZXX8mTNnbP893HHHHQoICLAV4OuyWt9gMOjOO+/U8ePHtW7dOrvvtm/frv3792vs2LFq06ZNna4LgPuiqA+g2Zg8ebIuuugi7d6926GfWwYHB+umm27Sd999Z7dK4qefftLWrVs1cOBAXXLJJTWOv/766yWdvRn705/+pP/85z+qqKio/4U0sMo8v/vuO40ePVrvv/9+lRvTxmC1WvXxxx9Lkrp169ao5x4yZIgMBoPKy8v1+eefN+q5AQAA4BmYX9RNc5hf+Pj46I477tCxY8e0fv16W3tpaaneeustderUSSNGjDhvnMpV/RdeeKFuuOEGSdKdd94pScrIyFB5efl5Y1Q+PDj3IQBb7wDehaI+gGbDz89Pjz/+uCRp3rx5Dt3wVvezyjfeeENnzpypdRWNJP3lL39RVFSUrFarli5dqoEDByooKEjDhg3TrFmz9Nlnn533/JGRkTIYDNUervrZ7XXXXad77rlHkvTPf/5TN9xwg4KDg3X55ZcrLi5O7777boNPFsrLy/XnP/9ZeXl5kqQJEyY06PnOFRQUpODgYElSYWFhvca+/vrrNf4bAQAAwHswv6ib5jK/qK6Yvn79ehUXF+v222+Xr6/veWNUjr311lvl7+8v6eyvADp27KhffvlFGzduPG+M3r17q3///vrnP/8ps9ksSSorK9OaNWvUoUMHjRw5st7XBsD9UNQH0KzExsaqe/fu+uabb6r9mev5jB49WiaTSatXr7b9dHTlypXy8/PTbbfdVuvYNm3aaPv27XrxxRfVq1cvSdKJEyf08ccf69lnn9WVV16psWPH6ujRozXGGDBggIYOHVrt0b9//3pfT02WLVumtWvX6uqrr5avr69Onz6tL774QsuWLdNNN92kyy+/XF9++aXLzvf+++9r2LBhGjZsmAYMGCCTyaQXXnhBkjRz5kzb3peNqXK/y2PHjtVrXIcOHWr8NwIAAIB3YX5RN81hfnHppZfqsssuU1ZWlm1hUH223jl58qTWrl0r6ezWO5V8fHxs/y3U9YW5sbGxqqioUHp6uiTp3Xff1dGjR3X77bfLz8+v7hcFwG1R1AfQrPj6+tpW0/z1r3/V6dOn6zW+RYsWmjBhgo4cOaKNGzcqLy9PX331lUaNGqX27dufd3xAQIASExO1a9cuHTx4UJmZmZo5c6YiIyMlnV3JUdtLi9asWaPt27dXe7z22mv1upbzGTdunLZu3apffvlFWVlZ+utf/6qBAwdKkr7++mtdd911Onz4sEvOVVhYqI8//lgff/yx8vLyFBAQoNGjR2vdunVasGCBS85RXyUlJZL+twdoXY0ePbrGfyMAAAB4F+YXddcc5heTJk3S6dOnlZ6eLovFog8++EB9+vSp068e3n77bR07dkyhoaG6+uqr7b6r3ILn3Xff1a+//nreWJW/DKh8CFD5v+f79QcAz0FRH0Czc8cdd+iSSy7Rd999V+eVDr9Vucpi5cqV9Vp5ca7Q0FDdcsstWrBggb799ls99NBDks6+nLVyr0d3EBQUpOuuu06PPfaYPv30U61Zs0Y+Pj4qLCzU8uXLXXKOu+++W1arVVarVadPn1ZhYaE2btyosWPHuiR+fRUVFam4uFjS2ZX3AAAAQE2YX9SPN88v7rzzTvn4+GjlypV68803dfr06Tr/W1b+t3PbbbfJx8e+XDdgwAD16NFD5eXlWr169XljdezYUdddd53y8vK0bds2vf/+++rZs6cGDBhQ/4sC4JYo6gNodnx9ffXEE09Icmw1zeDBg9W9e3dt2LBBK1euVFBQkG6++WancvLz89Nzzz2njh07SpL+/e9/OxWvIY0fP1633nqrJPfO0xkff/yxrFar/P39dfnllzd1OgAAAHBjzC+c403zi9DQUP3ud7/TZ599pueff14+Pj62Vfa1+fnnn/Xhhx9KkhYsWFDtOw6+/fZbSfXbgqfyf8vLy3lBLuBlKOoDaJZuu+029e7dW/v27VNaWlq9x995550qKyvTzz//rFtvvVWBgYFO5+Tj46OIiAhJZ1/k5M4uuugiSe6fp6OWLl0qSRoxYoQCAgKaOBsAAAC4O+YXzvGm+UXlFjf5+fm6+uqr1aVLl/OOWbVqlSoqKmQ0GhUSElLjIZ1dgPTDDz+cN+Ytt9yi1q1bKz8/XwaDoU4PFwB4Dor6AJolHx8fPfnkk5Kkp556yvZSqrqKjY3ViBEjNGLECE2fPr1OYypfllSTo0ePateuXZKk7t271ysfVzpfnpK0Y8cOSU2bZ0P5+9//rg0bNkiSkpKSmjgbAAAAeALmFzVrbvOLW2+9VTExMRoxYoQeeOCBOo2pXH0/a9YsFRQU1HhER0dL+t8LeGvTsmVLPfTQQxoxYoTuvfde2wMeAN6Boj6AZusPf/iDLr30Uv3444/13mPyoosu0ubNm7V582bbjdX53HDDDbrzzjv1r3/9q8pNfl5ensaMGaNjx46pU6dOGjVqVL3yqcnkyZNlMBg0efLkOo+ZP3++hg8frvT0dB07dszuO7PZrLi4OGVnZ8tgMOjuu+92SZ711bVrVxkMBodWQVXHarXqiy++0JQpU3TPPfdIkh577DENHz7cJfEBAADg/ZhfVK+5zS9at26tTZs2afPmzXXaw//rr79Wbm6upPO/yLby+7oU9SVpzpw52rx5s5YsWVKn/gA8h19TJwAATcVgMOjJJ5/U+PHjVVFR0eDnq6io0KpVq7Rq1SoFBASoW7duCggI0KFDh3To0CFJ0gUXXKDVq1erVatW1cb4wx/+IKPRWOM5kpOTnS5EGwwGbd++Xdu3b5ePj48uvvhiXXjhhTp8+LAOHDig06dPy9fXVwsWLFBUVFS1Me6//349/PDDNZ5j69at6tu3r1N5OmPYsGG2Px87dkwHDhzQr7/+Kklq06aNnn32Wf3pT39qqvQAAADggZhfVK85zC+cUblKPzo6Wt26dau178SJE5WQkKC9e/fqk08+0eDBgxsjRQBuiKI+gGZt3Lhx6tevn/Ly8hr8XB9++KE2bdqk999/X1999ZUOHTqko0ePqnXr1ho0aJBGjRqlGTNmqEOHDjXG+Oyzz2o9x5EjR+w+FxQUSJL69etX5zznz5+vkSNH6v3339enn36qgwcPav/+/TIajerRo4euuuoq/elPf9Jll11WY4ySkhKVlJTU+H19Xx72WxUVFbJYLJLk8EtsK1dO+fn5KSgoSB06dFBMTIyuvfZa3XHHHWrTpk2N567k7+/v0LkBAADgvZhfVNUc5heOOnPmjN544w1J51+lL0nt2rXT9ddfrw0bNuj//u//KOoDzZjBarVamzoJAIDrnTlzRm3btpXVatVPP/1UY6Ha0/z3v/9VVFSUrr32Wv3rX/9qknNL0vHjx9WyZctGPT8AAADQVJhfAID7YE99APBSX3/9tYqKinTPPfd4zQ239L9V9g899FCjn/uLL76QJIWHh1PQBwAAQLPC/AIA3AdFfQDwUjt27JCfn58eeOCBpk7FpXbs2KGePXvqhhtuaNTzHjp0SM8//7wk6aabbmrUcwMAAABNjfkFALgPtt8BAKAWa9as0VNPPaVvvvlGZWVlat++vXJzc9W5c+emTg0AAAAAADRDrNQHAKAWBw8e1Ndff622bdsqNjZWn3zyCQV9AGiGUlNTFRkZqYCAAEVFRSk7O7tO4z7++GP5+fnV66WSAAAAQG1YqQ8AAAAAtcjIyFBsbKxSU1M1dOhQLVu2TP/4xz+0a9cuhYeH1ziuqKhIV1xxhbp166aff/5ZeXl5jZc0AAAAvBZFfQAAAACoxaBBg3TFFVdoyZIltrZevXpp7NixSk5OrnHcbbfdpu7du8vX11dvv/02RX0AAAC4hF9TJ+Apzpw5o0OHDqlNmzYyGAxNnQ4AAAAamNVq1bFjxxQaGiofH3atbK7Ky8uVk5OjWbNm2bXHxMRox44dNY577bXX9P3332vlypV66qmnznuesrIylZWV2T6fOXNGv/zyi9q1a8f8AwAAoBmoz/yDon4dHTp0SGFhYU2dBgAAABrZgQMH1KVLl6ZOA03EYrGooqJCISEhdu0hISEqKCiodszevXs1a9YsZWdny8+vblOu5ORkzZ071+l8AQAA4NnqMv+gqF9Hbdq0kXT2LzUoKKiJswEAAEBDKy4uVlhYmO0+EM3buavlrVZrtSvoKyoqdMcdd2ju3Lnq0aNHneMnJSUpMTHR9rmoqEjh4eHMPwAAAJqJ+sw/KOrXUeUNe1BQEDfVAAAAzQhbnzRvJpNJvr6+VVblFxYWVlm9L0nHjh3TZ599ptzcXN13332Szm6lY7Va5efnpw8//FC/+93vqowzGo0yGo1V2pl/AAAANC91mX+wOSgAAAAA1MDf319RUVHKysqya8/KytKQIUOq9A8KCtKXX36pvLw82xEXF6dLLrlEeXl5GjRoUGOlDgAAAC/FSn0AAAAAqEViYqJiY2M1YMAARUdHa/ny5crPz1dcXJyks1vnHDx4UCtWrJCPj4/69u1rN75Dhw4KCAio0g4AAAA4gqI+AACAgyoqKnTq1KmmTgNO8Pf3l48PP15F7SZOnKgjR45o3rx5MpvN6tu3rzZu3KiIiAhJktlsVn5+fhNnCQAAvB3zD8/nqvmHwWq1Wl2Qj9crLi5WcHCwioqK2NMSAIBmzmq1qqCgQEePHm3qVOAkHx8fRUZGyt/fv8p33P+hKfHfHwAAqMT8w3u4av7BSn0AAIB6qryh7tChg1q2bMmLVD3UmTNndOjQIZnNZoWHh/PvCAAAALfE/MM7uHL+QVEfAACgHioqKmw31O3atWvqdOCk9u3b69ChQzp9+rRatGjR1OkAAAAAdph/eBdXzT/YQBQAAKAeKvewbNmyZRNnAleo/NlrRUVFE2cCAAAAVMX8w7u4av7BSv16ysvLU+vWrZ2KYTKZFB4e7qKMAABAU+Anr96Bf0e4O+YfAABA4r7VW7jq35Gifj1dffXVTscIDAzUnj17uLEGAAAAUCvmHwAAADgXRf16uummm9SpUyeHx1ssFmVmZspisXBTDQAAAKBWzD8AAABwLor69dSuXTuFhoY2dRoAAMDDVVRI2dmS2Sx16iQNHy75+jZ1VgDcDfMPAADgCsw/vAsvygUAAGhkmZlS167StddKd9xx9n+7dj3b3hAMBkOtx+TJk2393n777SrjJ0+erLFjx9b4ubCwUPfee6/Cw8NlNBrVsWNHjRo1Sjt37qwxpzlz5tjO7+Pjo9DQUN155506cOCAXb+uXbsqJSWlyviUlBR17dq1Sry4uDi7fnl5eTIYDNq/f3+NuQAAAADejPmH980/3LKon5qaqsjISAUEBCgqKkrZ2dk19t2+fbuGDh2qdu3aKTAwUD179tTChQvt+qSlpVX7H1BpaWlDXwoAAICdzExp/Hjpp5/s2w8ePNveEDfWZrPZdqSkpCgoKMiu7aWXXnIq/q233qrPP/9cr7/+ur799lu98847uuaaa/TLL7/UOq5Pnz4ym8366aeflJGRoS+//FITJkxwOI+AgAC98sor+vbbbx2OAQAAAHgT5h//403zD7fbficjI0MJCQlKTU3V0KFDtWzZMo0ePVq7du2qdg/IVq1a6b777tNll12mVq1aafv27br33nvVqlUr3XPPPbZ+QUFB+uabb+zGBgQENPj1AAAAVKqokB58ULJaq35ntUoGg5SQII0Z49qfwnbs2NH25+DgYBkMBrs2Zxw9elTbt2/X1q1bbS/0jIiI0MCBA8871s/Pz5ZHaGiopk+frgceeEDFxcUKCgqqdy6XXHKJOnTooMcee0yrV6+u93gAAADAmzD/sOdN8w+3W6m/YMECTZ06VdOmTVOvXr2UkpKisLAwLVmypNr+/fv31+23364+ffqoa9eumjRpkkaNGlVldX/lfzy/PQAAABpTdnbVFTK/ZbVKBw6c7ecpWrdurdatW+vtt99WWVmZw3EKCgqUmZkpX19f+Toxo3jmmWe0du1a/ec//3E4BgAAAOANmH/UzNPnH25V1C8vL1dOTo5iYmLs2mNiYrRjx446xcjNzdWOHTtsT2oqlZSUKCIiQl26dNGNN96o3NzcWuOUlZWpuLjY7gAAAHCG2ezafg3h9ttvt90oVx5vvPFGjf39/PyUlpam119/XRdccIGGDh2qRx99VF988cV5z/Xll1+qdevWatmypTp16qStW7dqxowZatWqlcP5X3HFFZowYYJmzZrlcAwAAADAGzD/sOdN8w+3KupbLBZVVFQoJCTErj0kJEQFBQW1ju3SpYuMRqMGDBigGTNmaNq0abbvevbsqbS0NL3zzjtKT09XQECAhg4dqr1799YYLzk5WcHBwbYjLCzMuYsDAADNXqdOru3XEBYuXKi8vDy74+abb651zK233qpDhw7pnXfe0ahRo7R161ZdccUVSktLq3XcJZdcory8PP3nP//R008/rX79+unpp592+hqeeuopZWdn68MPP3Q6FgAAAOCpmH/Y86b5h1sV9SsZDAa7z1artUrbubKzs/XZZ59p6dKlSklJUXp6uu27wYMHa9KkSbr88ss1fPhwrV69Wj169NDLL79cY7ykpCQVFRXZjnPfhAwAAFBfw4dLXbqc3buyOgaDFBZ2tl9T6dixo7p162Z3tGnT5rzjAgICNHLkSD3xxBPasWOHJk+erCeffLLWMf7+/urWrZv69OmjRx99VP369dOf/vQnuz5BQUEqKiqqMvbo0aMKDg6uNu7FF1+s6dOna9asWbJWt4EoAAAA0Aww/7DnTfMPtyrqm0wm+fr6VlmVX1hYWGX1/rkiIyN16aWXavr06Zo5c6bmzJlTY18fHx9deeWVta7UNxqNCgoKsjsAAACc4esrvfTS2T+fe2Nd+TklxbUvqWoqvXv31vHjx+s15vHHH1d6err++9//2tp69uxZ7f6U//nPf3TJJZfUGOuJJ57Qt99+qzfffLNeOQAAAADegvlH7Tx5/uFWRX1/f39FRUUpKyvLrj0rK0tDhgypcxyr1VrrixKsVqvy8vLUqSl/WwIAAJqlceOkt96SOne2b+/S5Wz7uHFNk5ejjhw5ot/97ndauXKlvvjiC+3bt09r1qzRc889pzFjxtQr1kUXXaQxY8boiSeesLUlJibq/fff17x587Rr1y7t2rVLf/3rX/XBBx/ooYceqjFWSEiIEhMTtWjRIoevDQAAAPB0zD9q5snzD79GOUs9JCYmKjY2VgMGDFB0dLSWL1+u/Px8xcXFSTq7Lc7Bgwe1YsUKSdLixYsVHh6unj17SpK2b9+uF154Qffff78t5ty5czV48GB1795dxcXFWrRokfLy8rR48eLGv0AAANDsjRsnjRkjZWeffSlVp05nf/LqiStkWrdurUGDBmnhwoX6/vvvderUKYWFhWn69Ol69NFH6x3voYce0tChQ/Xpp59q0KBBGjx4sDZt2qR58+YpJSVFktSnTx9t2rRJgwYNqjXWI488oiVLlqi0tNSRSwMAAAC8AvOPmnnq/MNgdcONRlNTU/Xcc8/JbDarb9++Wrhwoa666ipJ0uTJk7V//35t3bpVkvTyyy9r2bJl2rdvn/z8/Gx7GN17773y8Tn7Q4SZM2cqMzNTBQUFCg4OVv/+/TVnzhxFR0fXOafi4mIFBwdr8uTJ6tq1q8PXdujQIS1fvlw5OTm64oorHI4DAACaRmlpqfbt26fIyEgFBAQ0dTpwUm3/npX3f0VFRWzFiEbH/AMAAEjMP7yNq+YfbrdSX5Li4+MVHx9f7XfnvsX4/vvvt1uVX52FCxdq4cKFrkoPAAAAAAAAAIAm4VZ76gMAAAAAAAAAgJpR1AcAAAAAAAAAwENQ1AcAAAAAAAAAwENQ1AcAAAAAAAAAwENQ1AcAAAAAAAAAwENQ1AcAAAAAAAAAwENQ1AcAAAAAAAAAwEP4NXUCAAAA3sBaelI6darxTtiihQwBgY13PgAAAABug/lH80ZRHwAAwEnW0pM6sy1L1hPHG+2chpat5HPVyHrdWE+ePFlHjx7V22+/XeW7rl276scff6zSnpycrFmzZmn//v2KjIxU+/bt9f3336tNmza2Pv369dPYsWM1Z84cSdIPP/yg2bNn66OPPtIvv/wik8mkqKgoPf/88+rRo4f279+vv/71r/rXv/6lgoIChYaGatKkSZo9e7b8/f3r/XcBAAAANCfMP5h/UNQHAABw1qlTZ2+o/VpILRrhpvBU+dnznToluXC1zLx58zR9+nS7tt/ePEvSsWPH9MILL2ju3LnVxigvL9fIkSPVs2dPZWZmqlOnTvrpp5+0ceNGFRUVSZL27NmjM2fOaNmyZerWrZu++uorTZ8+XcePH9cLL7zgsusBAAAAvBLzD5vmOv+gqA8AAOAqLfxlMBob/DRWSTrt+p/atmnTRh07dqy1z/33368FCxZoxowZ6tChQ5Xvd+3apR9++EH/+te/FBERIUmKiIjQ0KFDbX2uv/56XX/99bbPF110kb755hstWbLEY2+qAQAAgEbH/KPZzj94US4AAADq7Pbbb1e3bt00b968ar9v3769fHx89NZbb6mioqLOcYuKitS2bVtXpQkAAADACzD/qB5FfQAAAEiS/vKXv6h169Z2x9atW+36GAwGPfPMM1q+fLm+//77KjE6d+6sRYsW6YknntCFF16o3/3ud/rrX/+qH374ocbzfv/993r55ZcVFxfn6ksCAAAA4KaYfziOoj4AAAAkSY888ojy8vLsjkGDBlXpN2rUKA0bNkyPP/54tXFmzJihgoICrVy5UtHR0VqzZo369OmjrKysKn0PHTqk66+/Xn/4wx80bdo0l18TAAAAAPfE/MNxFPUBAAAgSTKZTOrWrZvdERhY/YuwnnnmGWVkZCg3N7fa79u0aaObb75ZTz/9tD7//HMNHz5cTz31lF2fQ4cO6dprr1V0dLSWL1/u8usBAAAA4L6YfziOoj4AAADqbeDAgRo3bpxmzZp13r4Gg0E9e/bU8ePHbW0HDx7UNddcoyuuuEKvvfaafHy4LQUAAABQPeYf9vyaOgEAAAA0nqKiIuXl5dm1Vb4g6tixYyooKLD7rmXLlgoKCqo21tNPP60+ffrIz+9/t5R5eXl68sknFRsbq969e8vf318fffSRXn31Vf3lL3+RdHaFzDXXXKPw8HC98MILOnz4sG18x44dXXGZAAAAANwA84+GQVEfAADAVU6Vy9pI53HU1q1b1b9/f7u2u+++W5L0xBNP6IknnrD77t5779XSpUurjdWjRw9NmTLF7qerXbp0UdeuXTV37lzt379fBoPB9nnmzJmSpA8//FDfffedvvvuO3Xp0sUuptXaKH+DAAAAgOdj/tFs5x8Gq6dm3siKi4sVHBysyZMnq2vXrg7HOXTokJYvX66cnBxdccUVrksQAAA0itLSUu3bt0+RkZEKCAiQJFlLT+rMtixZTxw/z2jXMbRsJZ+rRsoQUP2ek6ib6v49K1Xe/xUVFdW4WghoKMw/AACAxPzD27hq/sFKfQAAACcZAgLlc9VI6dSpxjtpixbcUAMAAADNEPMPuOUbAVJTU21PK6KiopSdnV1j3+3bt2vo0KFq166dAgMD1bNnTy1cuLBKv7Vr16p3794yGo3q3bu31q1b15CXAAAAmhlDQKAMbYIa7+CGGgAAAGi2mH80b25X1M/IyFBCQoJmz56t3NxcDR8+XKNHj1Z+fn61/Vu1aqX77rtP27Zt0+7du/XYY4/pscces9tbaefOnZo4caJiY2P1+eefKzY2VhMmTNCnn37aWJcFAAAAAAAAAIDT3K6ov2DBAk2dOlXTpk1Tr169lJKSorCwMC1ZsqTa/v3799ftt9+uPn36qGvXrpo0aZJGjRplt7o/JSVFI0eOVFJSknr27KmkpCSNGDFCKSkpjXRVAAAAAAAAAAA4z62K+uXl5crJyVFMTIxde0xMjHbs2FGnGLm5udqxY4euvvpqW9vOnTurxBw1alStMcvKylRcXGx3AAAAAAAAAADQlNyqqG+xWFRRUaGQkBC79pCQEBUUFNQ6tkuXLjIajRowYIBmzJihadOm2b4rKCiod8zk5GQFBwfbjrCwMAeuCAAAAAAAAAAA13Gron4lg8Fg99lqtVZpO1d2drY+++wzLV26VCkpKUpPT3cqZlJSkoqKimzHgQMH6nkVAAAAAAAAAAC4ll9TJ/BbJpNJvr6+VVbQFxYWVllpf67IyEhJ0qWXXqqff/5Zc+bM0e233y5J6tixY71jGo1GGY1GRy4DAAAAAAAAAIAG4VYr9f39/RUVFaWsrCy79qysLA0ZMqTOcaxWq8rKymyfo6Ojq8T88MMP6xUTAAAAAAAAAICm5lYr9SUpMTFRsbGxGjBggKKjo7V8+XLl5+crLi5O0tltcQ4ePKgVK1ZIkhYvXqzw8HD17NlTkrR9+3a98MILuv/++20xH3zwQV111VV69tlnNWbMGK1fv16bN2/W9u3bG/8CAQCAV8rPz5fFYmm085lMJoWHhzfa+QAAAAC4D+YfzZvbFfUnTpyoI0eOaN68eTKbzerbt682btyoiIgISZLZbFZ+fr6t/5kzZ5SUlKR9+/bJz89PF198sZ555hnde++9tj5DhgzRm2++qccee0yPP/64Lr74YmVkZGjQoEGNfn0AAMD75Ofnq2fPnjp58mSjnTMwMFB79uyp9411QUGBnn76ab333ns6ePCgOnTooH79+ikhIUEjRoxQ165d9eOPPyo9PV233Xab3dg+ffpo165deu211zR58mRJUteuXZWQkKCEhATb5x9//NGW40UXXaT777/f7t6srKxM8+bN08qVK1VQUKAuXbpo9uzZmjJliuN/IQAAAEAzwfyD+YfbFfUlKT4+XvHx8dV+l5aWZvf5/vvvt1uVX5Px48dr/PjxrkgPAADAjsVi0cmTJzVu3DiZTKZGOV9mZqYsFku9bqr379+voUOH6oILLtBzzz2nyy67TKdOndKmTZs0Y8YM7dmzR5IUFham1157ze6m+pNPPlFBQYFatWp13vPMmzdP06dPV0lJidLS0hQXF6cLLrhAEydOlCRNmDBBP//8s1555RV169ZNhYWFOn36dD3/FoDGlZqaqueff15ms1l9+vRRSkqKhg8fXm3f7du36y9/+Yv27NmjEydOKCIiQvfee69mzpzZyFkDAABvxPzDXnOcf7hlUR8AAMATmUwmhYaGNnUaNYqPj5fBYNC///1vu5vjPn362K1SufPOO7Vw4UIdOHBAYWFhkqRXX31Vd955p20LxNq0adNGHTt2lCQ99dRTWr16td5++21NnDhRH3zwgT766CP98MMPatu2raSzq2sAd5aRkaGEhASlpqZq6NChWrZsmUaPHq1du3ZVO7Ft1aqV7rvvPl122WVq1aqVtm/frnvvvVetWrXSPffc0wRXAAAAvBHzj7Oa4/zDrV6UCwAAgIbxyy+/6IMPPtCMGTOqXe1ywQUX2P4cEhKiUaNG6fXXX5cknThxQhkZGQ7/PDUgIECnTp2SJL3zzjsaMGCAnnvuOXXu3Fk9evTQww8/3Kg/HQbqa8GCBZo6daqmTZumXr16KSUlRWFhYVqyZEm1/fv376/bb79dffr0UdeuXTVp0iSNGjVK2dnZjZw5AABA02D+0bAo6gMAADQD3333naxWq3r27Fmn/lOmTFFaWpqsVqveeustXXzxxerXr1+9znn69GmlpaXpyy+/1IgRIyRJP/zwg7Zv366vvvpK69atU0pKit566y3NmDGjvpcENIry8nLl5OQoJibGrj0mJkY7duyoU4zc3Fzt2LFDV199dY19ysrKVFxcbHcAAAB4KuYfDYuiPgAAQDNgtVolSQaDoU79f//736ukpETbtm3Tq6++Wq9VMn/5y1/UunVrBQYGasaMGXrkkUdsL6o6c+aMDAaD3njjDQ0cOFA33HCDFixYoLS0NI9fLQPvZLFYVFFRoZCQELv2kJAQFRQU1Dq2S5cuMhqNGjBggGbMmKFp06bV2Dc5OVnBwcG2o/Kn5wAAAJ6I+UfDoqgPAADQDHTv3l0Gg0G7d++uU38/Pz/FxsbqySef1Keffqo777yzzud65JFHlJeXpx9//FElJSV67rnn5ONz9razU6dO6ty5s4KDg239e/XqJavVqp9++ql+FwU0onMnpFar9byT1OzsbH322WdaunSpUlJSlJ6eXmPfpKQkFRUV2Y4DBw64JG8AAICmwPyjYVHUBwAAaAbatm2rUaNGafHixTp+/HiV748ePVqlbcqUKfroo480ZswYXXjhhXU+l8lkUrdu3RQaGlql6Dl06FAdOnRIJSUltrZvv/1WPj4+6tKlS90vCGgkJpNJvr6+VVblFxYWVlm9f67IyEhdeumlmj59umbOnKk5c+bU2NdoNCooKMjuAAAA8FTMPxoWRX0AAIBmIjU1VRUVFRo4cKDWrl2rvXv3avfu3Vq0aJGio6Or9O/Vq5csFotee+01l+Vwxx13qF27dvrjH/+oXbt2adu2bXrkkUc0ZcoUBQYGuuw8gKv4+/srKipKWVlZdu1ZWVkaMmRIneNYrVaVlZW5Oj0AAAC3xfyj4fg1dQIAAADewmKxuPV5IiMj9d///ldPP/20HnroIZnNZrVv315RUVFasmRJtWPatWvnTKpVtG7dWllZWbr//vs1YMAAtWvXThMmTNBTTz3l0vMArpSYmKjY2FgNGDBA0dHRWr58ufLz8xUXFyfp7NY5Bw8e1IoVKyRJixcvVnh4uO3FcNu3b9cLL7yg+++/v8muAQAAeB/mH+fnrfMPivoAAABOMplMCgwMVGZmZqOdMzAwUCaTqd7jOnXqpL/97W/629/+Vu33+/fvr3X8uT+TPbf/+cZLUs+ePausegbc2cSJE3XkyBHNmzdPZrNZffv21caNGxURESFJMpvNys/Pt/U/c+aMkpKStG/fPvn5+eniiy/WM888Y3thGwAAgDOYf9R9vOSd8w+K+gAAAE4KDw/Xnj17Gm2ljHT2Rj48PLzRzgc0d/Hx8YqPj6/2u7S0NLvP999/P6vyAQBAg2H+AYr6AAAALhAeHs5NLgAAAIBGwfyjeeNFuQAAAAAAAAAAeAiK+gAAAAAAAAAAeAiK+gAAAAAAAAAAeAiK+gAAAA44c+ZMU6cAF7BarU2dAgAAAHBezD+8g6vmH7woFwAAoB78/f3l4+OjQ4cOqX379vL395fBYGjqtOAAq9Wqw4cPy2AwqEWLFk2dDgAAAFAF8w/v4cr5B0V9AACAevDx8VFkZKTMZrMOHTrU1OnASQaDQV26dJGvr29TpwIAAABUwfzDu7hq/kFRHwAAoJ78/f0VHh6u06dPq6KioqnTgRNatGhBQR8AAABujfmH93DV/IOiPgAAgAMqfzLJti0AAAAAGhrzD/wWL8oFAAAAAAAAAMBDUNQHAAAAAAAAAMBDuGVRPzU1VZGRkQoICFBUVJSys7Nr7JuZmamRI0eqffv2CgoKUnR0tDZt2mTXJy0tTQaDocpRWlra0JcCAAAAAAAAAIDLuF1RPyMjQwkJCZo9e7Zyc3M1fPhwjR49Wvn5+dX237Ztm0aOHKmNGzcqJydH1157rW666Sbl5uba9QsKCpLZbLY7AgICGuOSAAAAAAAAAABwCbd7Ue6CBQs0depUTZs2TZKUkpKiTZs2acmSJUpOTq7SPyUlxe7z/PnztX79em3YsEH9+/e3tRsMBnXs2LFBcwcAAAAAAAAAoCG51Ur98vJy5eTkKCYmxq49JiZGO3bsqFOMM2fO6NixY2rbtq1de0lJiSIiItSlSxfdeOONVVbyn6usrEzFxcV2BwAAAAAAAAAATcmtivoWi0UVFRUKCQmxaw8JCVFBQUGdYrz44os6fvy4JkyYYGvr2bOn0tLS9M477yg9PV0BAQEaOnSo9u7dW2Oc5ORkBQcH246wsDDHLgoAAAAAAAAAABdxq6J+JYPBYPfZarVWaatOenq65syZo4yMDHXo0MHWPnjwYE2aNEmXX365hg8frtWrV6tHjx56+eWXa4yVlJSkoqIi23HgwAHHLwgAAAAAAAAAABdwqz31TSaTfH19q6zKLywsrLJ6/1wZGRmaOnWq1qxZo+uuu67Wvj4+PrryyitrXalvNBplNBrrnjwAAAAAAAAAAA3MrVbq+/v7KyoqSllZWXbtWVlZGjJkSI3j0tPTNXnyZK1atUq///3vz3seq9WqvLw8derUyemcAQAAAAAAAABoLG61Ul+SEhMTFRsbqwEDBig6OlrLly9Xfn6+4uLiJJ3dFufgwYNasWKFpLMF/bvuuksvvfSSBg8ebFvlHxgYqODgYEnS3LlzNXjwYHXv3l3FxcVatGiR8vLytHjx4qa5SAAAAAAAAAAAHOB2Rf2JEyfqyJEjmjdvnsxms/r27auNGzcqIiJCkmQ2m5Wfn2/rv2zZMp0+fVozZszQjBkzbO1333230tLSJElHjx7VPffco4KCAgUHB6t///7atm2bBg4c2KjXBgAAAAAAAACAM9yuqC9J8fHxio+Pr/a7ykJ9pa1bt5433sKFC7Vw4UIXZAYAAAAAAAAAQNNxqz31AQAAAAAAAABAzSjqAwAAAAAAAADgISjqAwAAAAAAAADgISjqAwAAAAAAAADgISjqAwAAAAAAAADgISjqAwAAAAAAAADgISjqAwAAAAAAAADgIepd1F+0aJH+/e9/27UVFhbqiy++qLb/+vXrNWXKFMeyAwAAAIDzYI4CAACA5qTeRf2EhAR98MEHdm1LlixR//79q+2fl5en119/3bHsAAAAAOA8mKMAAACgOWH7HQAAAAAAAAAAPARFfQAAAAAAAAAAPARFfQAAAAAAAAAAPARFfQAAAAAAAAAAPARFfQAAAAAAAAAAPISfI4O++uorrV692u6zJK1Zs0ZWq7VKXwAAAABoSMxRAAAA0Fw4VNRfu3at1q5da/tceZN82223VelrtVplMBgcTA8AAAAAzo85CgAAAJqLehf1n3zyyYbIAwAAAAAcwhwFAAAAzQlFfQAAAAAejTkKAAAAmhNelAsAAAAAAAAAgIdwaE/92uTl5WnLli2SpGHDhunKK6909SkAAAAAoM6YowAAAMCb1Hul/rZt23TXXXfpk08+qfLdY489pqioKD388MN6+OGHNXjwYN1///31Tio1NVWRkZEKCAhQVFSUsrOza+ybmZmpkSNHqn379goKClJ0dLQ2bdpUpd/atWvVu3dvGY1G9e7dW+vWrat3XgAAAADcT2PMUQAAAAB3Ue+ifkZGhtasWaPevXvbtW/ZskXz58+Xr6+vYmNjFRcXJ5PJpNTUVL399tv1ip+QkKDZs2crNzdXw4cP1+jRo5Wfn19t/23btmnkyJHauHGjcnJydO211+qmm25Sbm6urc/OnTs1ceJExcbG6vPPP1dsbKwmTJigTz/9tL6XDwAAAMDNNPQcBQAAAHAn9S7q79y5U4MGDVJQUJBd+7Jly2QwGLR06VKlpaVp8eLFys7OVosWLZSWllbn+AsWLNDUqVM1bdo09erVSykpKQoLC9OSJUuq7Z+SkqI///nPuvLKK9W9e3fNnz9f3bt314YNG+z6jBw5UklJSerZs6eSkpI0YsQIpaSk1PfyAQAAALiZhp6jAAAAAO6k3kX9Q4cOqUePHlXat2zZoqCgIE2ePNnW1qNHD91www367LPP6hS7vLxcOTk5iomJsWuPiYnRjh076hTjzJkzOnbsmNq2bWtr27lzZ5WYo0aNqjVmWVmZiouL7Q4AAAAA7qch5ygAAACAu6l3Uf/XX3+VyWSya/vpp590+PBhDRs2TD4+9iG7desmi8VSp9gWi0UVFRUKCQmxaw8JCVFBQUGdYrz44os6fvy4JkyYYGsrKCiod8zk5GQFBwfbjrCwsDqdHwAAAEDjasg5CgAAAOBu6l3Ub9OmjQ4dOmTXlpOTI0mKioqq0t9gMCggIKBe5zAYDHafrVZrlbbqpKena86cOcrIyFCHDh2cipmUlKSioiLbceDAgXpcAQAAAIDG0hhzFAAAAMBd+NV3wGWXXaZ3331Xx48fV6tWrSRJ69atk8Fg0FVXXVWl//fff6/Q0NA6xTaZTPL19a2ygr6wsLDKSvtzZWRkaOrUqVqzZo2uu+46u+86duxY75hGo1FGo7FOeQMAAABoOg05RwEAAADcTb1X6k+ZMkW//PKLrr76ai1atEgPPPCAVq5cqbCwMF1zzTV2fSsqKrRt2zZdeumldYrt7++vqKgoZWVl2bVnZWVpyJAhNY5LT0/X5MmTtWrVKv3+97+v8n10dHSVmB9++GGtMQEAAAB4hoaco1RKTU1VZGSkAgICFBUVpezs7Br7ZmZmauTIkWrfvr2CgoIUHR2tTZs2OXJpAAAAQBX1Xqk/adIk/fOf/9Trr7+u3NxcWa1WtWnTRn//+9+r7FX53nvvyWKxaNSoUXWOn5iYqNjYWA0YMEDR0dFavny58vPzFRcXJ+nstjgHDx7UihUrJJ0t6N9111166aWXNHjwYNuK/MDAQAUHB0uSHnzwQV111VV69tlnNWbMGK1fv16bN2/W9u3b63v5AAAAANxMQ89RMjIylJCQoNTUVA0dOlTLli3T6NGjtWvXLoWHh1fpv23bNo0cOVLz58/XBRdcoNdee0033XSTPv30U/Xv39/p6wUAAEDzVu+iviS99tprmjp1qnbu3Km2bdtq1KhR6tKlS5V+RqNRCxcu1JgxY+oce+LEiTpy5IjmzZsns9msvn37auPGjYqIiJAkmc1m5efn2/ovW7ZMp0+f1owZMzRjxgxb+9133620tDRJ0pAhQ/Tmm2/qscce0+OPP66LL75YGRkZGjRokCOXDwAAAMDNNOQcZcGCBZo6daqmTZsmSUpJSdGmTZu0ZMkSJScnV+mfkpJi93n+/Plav369NmzYQFEfAAAATnOoqC9Jw4YN07Bhw2rtM2rUqHqtgKkUHx+v+Pj4ar+rLNRX2rp1a51ijh8/XuPHj693LgAAAAA8Q0PMUcrLy5WTk6NZs2bZtcfExGjHjh11inHmzBkdO3ZMbdu2rbFPWVmZysrKbJ+Li4vrnCMAAACal3rvqQ8AAAAAzYXFYlFFRYVCQkLs2kNCQmxbf57Piy++qOPHj2vChAk19klOTlZwcLDtCAsLcypvAAAAeK96r9RfvXq1Qyeq7QYWAAAAABzVGHMUg8Fg99lqtVZpq056errmzJmj9evXq0OHDjX2S0pKUmJiou1zcXGxSwv7u3fvdjqGyWSq9h0CAAAAaFz1Lurfdtttdbp5rVR5s0tRHwAAAEBDaMg5islkkq+vb5VV+YWFhVVW758rIyNDU6dO1Zo1a3TdddfV2tdoNMpoNJ4/+XoqKSmRwWDQpEmTnI4VGBioPXv2UNgHAABoYg7tqe/n56cbbrhB/fr1c3E6AAAAAFB/DTVH8ff3V1RUlLKysnTLLbfY2rOysmp92W56erqmTJmi9PR0/f73v3dpTvVRWloqq9WqcePGyWQyORzHYrEoMzNTFouFoj4AAEATq3dRf+zYsXrvvff0zjvv6Mcff9SUKVN055136sILL2yI/LwWP38FAAAAXKOh5yiJiYmKjY3VgAEDFB0dreXLlys/P19xcXGSzm6dc/DgQa1YsULS2YL+XXfdpZdeekmDBw+2rfIPDAxUcHCwS3KqL5PJpNDQ0CY5NwAAAFyr3kX9ytUZK1asUFpamh544AE98sgjGjt2rKZMmaKRI0c2RJ5eg5+/AgAAAK7V0HOUiRMn6siRI5o3b57MZrP69u2rjRs3KiIiQpJkNpuVn59v679s2TKdPn1aM2bM0IwZM2ztd999t9LS0pzKBQAAAHBo+x2TyaTExEQlJibq3//+t1555RWtXr1aq1evVufOnTV58mRNnjxZF110kavz9Xj8/BUAAABwvYaeo8THxys+Pr7a784t1G/dutWhcwAAAAB14eNsgIEDB2rZsmUym81KS0tTt27d9PTTT6tHjx7avHmzK3L0SpU/f3X0cOaBAAAAAODNmKMAAADAmzm0Ur86AQEBiomJkdls1rfffqtDhw7pxIkTrgqPGrA3PwAAAFA95igAAADwRk4X9SsqKvTuu+/q1Vdf1fvvv6+Kigr169dPSUlJGjFihCtyRDXYmx8AAACoHnMUAAAAeDOHi/q7du3Sq6++qpUrV6qwsFDt2rVTfHy8pkyZossuu8yVOaIa7M0PAAAA2GOOAgAAgOag3kX95cuX69VXX9V//vMfGQwGxcTEaMqUKRozZoxatGjREDmiFpV78wMAAADNFXMUAAAANCf1LurHxcWpRYsWuummm3T33Xerc+fOkqTc3Nxaxw0cONCxDAEAAACgFsxRGg/v9AIAAGh6Dm2/c+rUKW3YsEEbNmyo85iKigpHTgUAAAAA58UcpWHxTi8AAAD3Ue+i/t13390QeQAAAACAQ5ijNDze6QUAAOA+6l3Uf+211xoiDwAAAABwCHOUxsM7vQAAAJqeT1MnAAAAAAAAAAAA6qbeK/Xj4+MdOlFqaqpD4wAAAACgNsxRAAAA0JzUu6i/dOnSOvc1GAy2P3PDDAAAAKAhMEcBAABAc1Lvov6WLVvq1C8/P1/z5s3T999/b3fjDAAAAACuxBwFAAAAzUm9i/pXX311rd//+uuvmj9/vhYvXqzS0lJFR0fr2WefdThBAAAAAKgNcxQAAAA0Jy57UW5paameeeYZXXzxxXrxxRfVtWtXZWZm6uOPP9awYcPqFSs1NVWRkZEKCAhQVFSUsrOza+xrNpt1xx136JJLLpGPj48SEhKq9ElLS5PBYKhylJaW1vcyAQAAAHgIV85RAAAAAHfhdFHfarXqH//4h7p3765HH31ULVu21PLly/XVV19p7Nix9Y6XkZGhhIQEzZ49W7m5uRo+fLhGjx6t/Pz8avuXlZWpffv2mj17ti6//PIa4wYFBclsNtsdAQEB9c4PAAAAgHtz9RwFAAAAcCdOFfXffvtt9enTR/fee69KSko0f/58fffdd5o2bZp8fBwLvWDBAk2dOlXTpk1Tr169lJKSorCwMC1ZsqTa/l27dtVLL72ku+66S8HBwTXGNRgM6tixo90BAAAAwLs0xBwFAAAAcCcO3dVu375dQ4cO1a233qp9+/Zp5syZ+uGHHzRr1iynVr+Xl5crJydHMTExdu0xMTHasWOHw3ElqaSkRBEREerSpYtuvPFG5ebm1tq/rKxMxcXFdgcAAAAA99RQcxQAAADA3dT7Rbk333yz3nvvPfn4+Ojuu+/WvHnz1KVLF5ckY7FYVFFRoZCQELv2kJAQFRQUOBy3Z8+eSktL06WXXqri4mK99NJLGjp0qD7//HN179692jHJycmaO3euw+cEAAAA0Dgaco4CAAAAuJt6F/XfffddGQwGhYeHq6CgQPfcc895xxgMBr333nt1PofBYLD7bLVaq7TVx+DBgzV48GDb56FDh+qKK67Qyy+/rEWLFlU7JikpSYmJibbPxcXFCgsLczgHd7d7926nxptMJoWHh7soGwAAAKDuGmOOAgAAALiLehf1pbNF9n379mnfvn116l/XgrzJZJKvr2+VVfmFhYVVVu87w8fHR1deeaX27t1bYx+j0Sij0eiyc7qrkpISGQwGTZo0yak4gYGB2rNnD4V9AAAANImGmqMAAAAA7qbeRf263iQ7wt/fX1FRUcrKytItt9xia8/KytKYMWNcdh6r1aq8vDxdeumlLovpqUpLS2W1WjVu3DiZTCaHYlgsFmVmZspisVDUBwAAQKNryDkKAAAA4G7qXdSPiIhoiDxsEhMTFRsbqwEDBig6OlrLly9Xfn6+4uLiJJ3dFufgwYNasWKFbUxeXp6ks6vODx8+rLy8PPn7+6t3796SpLlz52rw4MHq3r27iouLtWjRIuXl5Wnx4sUNei2exGQyKTQ0tKnTAAAAAOqtoecoAAAAgDtxaPudhjRx4kQdOXJE8+bNk9lsVt++fbVx40bbjbrZbFZ+fr7dmP79+9v+nJOTo1WrVikiIkL79++XJB09elT33HOPCgoKFBwcrP79+2vbtm0aOHBgo10XAAAAAOAs3ukFAADgOLcr6ktSfHy84uPjq/0uLS2tSpvVaq013sKFC7Vw4UJXpAYAAAAAcBDv9AIAAHCeWxb1AQAAAADex5Xv9MrOzlavXr2cyocV/wAAwBNR1AcAAAAANCpn3unlqtX+Eiv+AQCAZ6KoDwAAAADwGK5Y7S/9b8W/xWKhqA8AADwKRX0AAAAAgMdxZrU/AACAJ/Np6gQAAAAAAAAAAEDdUNQHAAAAAAAAAMBDUNQHAAAAAAAAAMBDUNQHAAAAAAAAAMBDUNQHAAAAAAAAAMBDUNQHAAAAAAAAAMBDUNQHAAAAAAAAAMBD+DV1AgAAAAAANJXdu3c7HcNkMik8PNwF2QAAAJwfRX0AAAAAQLNTUlIig8GgSZMmOR0rMDBQe/bsobAPAAAaBUV9uAwrXAAAAAB4itLSUlmtVo0bN04mk8nhOBaLRZmZmcrOzlavXr2cyqmsrExGo9GpGBLzKgAAvB1FfTiNFS4AAAAAPJXJZFJoaKjD4105HzIYDLJarU7HYV4FAIB3o6gPp7l6hYvFYuHmEwAAAIBHcNV8aO/evdqyZQvzKgAAcF4U9eEyzq5wAQAAAABP5ex8yGKxuCQOAADwfhT14XbYmx8AAAAAAAAAqkdRH26DvfkBAAAAAAAAoHYU9eE22JsfAAAAAAAAAGrn09QJVCc1NVWRkZEKCAhQVFSUsrOza+xrNpt1xx136JJLLpGPj48SEhKq7bd27Vr17t1bRqNRvXv31rp16xooezircg9JRw9nHggAAAAAAAAAgDtzu6J+RkaGEhISNHv2bOXm5mr48OEaPXq08vPzq+1fVlam9u3ba/bs2br88sur7bNz505NnDhRsbGx+vzzzxUbG6sJEybo008/bchLAQAAAAAAAADApdxu+50FCxZo6tSpmjZtmiQpJSVFmzZt0pIlS5ScnFylf9euXfXSSy9Jkl599dVqY6akpGjkyJFKSkqSJCUlJemjjz5SSkqK0tPTG+hKAAAAAABoGrt373ZqvMlkYjtTAADclFsV9cvLy5WTk6NZs2bZtcfExGjHjh0Ox925c6dmzpxp1zZq1CilpKTUOKasrExlZWW2z8XFxQ6fH03D2ZtYiRtZAAAAAJ6lpKREBoNBkyZNcipOYGCg9uzZw3wIAAA35FZFfYvFooqKCoWEhNi1h4SEqKCgwOG4BQUF9Y6ZnJysuXPnOnxONB1X3cRK3MgCAADgrNTUVD3//PMym83q06ePUlJSNHz48Gr7ms1mPfTQQ8rJydHevXv1wAMP1LqgCHCl0tJSWa1WjRs3zuH3jVksFmVmZio7O1u9evVyKh8WSgEA4HpuVdSvZDAY7D5brdYqbQ0dMykpSYmJibbPxcXFCgsLcyoHNA5X3MRK3MgCAADgrMr3fqWmpmro0KFatmyZRo8erV27dlV7j/fb934tXLiwCTIGzs5BQkNDHRrLQikAANybWxX1TSaTfH19q6ygLywsrLLSvj46duxY75hGo1FGo9Hhc6LpOXMTK3EjCwAAgLMa4r1fgDtz9UIpi8XCXAgAABdyq6K+v7+/oqKilJWVpVtuucXWnpWVpTFjxjgcNzo6WllZWXb76n/44YcaMmSIU/nCu3EjCwAAgIZ679e5eKcX3JGzC6UAAEDDcKuiviQlJiYqNjZWAwYMUHR0tJYvX678/HzFxcVJOrstzsGDB7VixQrbmLy8PElnV1YfPnxYeXl58vf3V+/evSVJDz74oK666io9++yzGjNmjNavX6/Nmzdr+/btjX598DzcyAIAADRfDfXer3PxTi8AAADUldsV9SdOnKgjR45o3rx5MpvN6tu3rzZu3KiIiAhJZ186lZ+fbzemf//+tj/n5ORo1apVioiI0P79+yVJQ4YM0ZtvvqnHHntMjz/+uC6++GJlZGRo0KBBjXZdAAAAADxXQ7z367d4pxcAAADqyu2K+pIUHx+v+Pj4ar9LS0ur0ma1Ws8bc/z48Ro/fryzqQEAAABoRhrqvV/n4p1e8Ga7d+92OobJZGI7UwAA/j+3LOoDAAAAgDtoqPd+Ac1BSUmJDAaDJk2a5HSswMBA7dmzh8I+AACiqA80GmdXp7AyBQAAoGk0xHu/gOagtLRUVqtV48aNk8lkcjiOxWJRZmamsrOz1atXL6dyKisrc/pXMczNAABNjaI+0MBctTqFlSkAAABNoyHe+1VXbXwMaqUzDud+gZ+vOrZupSAviuNOuXhrHFfnclGH9grp6Ph2Vb4nT6hTm9Z6OO5eh2NUMhgMddrCtzb+/v76xz/+4fQWXOXlZfL3d37brbZt26pz585OxwEANC3rseI696WoDzQwV6xOceXKFFaVAAAA1F9DvPerLm5o46/2KnV4fL+OF2rIdcPUI8hfLb0kjjvl4q1x3CkXSep3YUtFjRiqiPAIGQMcL4IXFxeroKDAqTjHjx/XwYMHlb9iufLP371R+Pj46NprrlXLloFOxTEaA9SqdSsXZQUAqK+KEyfq3JeiPtBITCaTQkNDHRrLXpQAAADN0ymrdEIGh8cfq6jQkRMndfyMVfKSOO6Ui7fGcadcfhuns7+/jC1bOhyn/PgJp+Oc/P8xunfvrsBAx4vov/76qw4cOOB0nOLiY9q/f59Wv/uuwzEq+fr6acqUP6pNmyCnYwEAHFB+qs5dKeoDHsAd96JkxT8AAEDDK7dadcqJYmjpGatKyk+pzCr5e0kcd8rFW+O4Uy7uFqcyhk9AoPxbt3Y4Fx0/4ZI4Ff8/Tq9evdTSiQceJ06c0O7du3X81GkFOfnOAQCAg/z86961AdMA4GLOrPaXXLvi32g0au3aterUqZNTcXhRFQAAAAA4p2XLlmrTxomHDP+f5fBhl+QSHBzsdBwAQM0o6gPNiKtW/Ofn52vTpk268cYbnc7JFS+qctUDBh4OAAAAAGiOysvLJUmZ69Y5HcvPz0/33XcfhX0AaEAU9YFmyNkV/xaLxSUPB/bu3astW7Y4FceVDxh43wAAAACA5uj06dOS5LJtfE6cOEFRHwAaEEV9AA5zxcMBZ+O46gED7xsAAAAA0Ny5ahsfAEDDoqgPwCu40/sGWPEPAAAAAACAhkJRHwDkuvcNVK74t1gsFPUBAAAAAADgchT1AeA3nF3xDwAAAADNneXwYafGt2zZkj35AaAWFPUBAAAAAADgtPLycklS5rp1TsXx9fXVxAkT1LpNG6fiVJw+LV8/50tfPGQA4G4o6tdTGx+DWumMw+Mv8PNVx9atFORFcdwpF2+N4065uFscd8pFkoJ8DOrYupX2ffmF/EpPOhxHksrLy+Tvb3QqhqviuCqXtm3bqnPnzk7HAYDGYD1W3NQpAADgUU6fPi1J6tWrl1q2bOlQjKKiIn333XdalZ7uytSc4qqHDDwcAOAqFPXr6YY2/mqvUofH9+t4oYZcN0w9gvzV0kviuFMu3hrHnXJxtzjulIskFQf6qOd1w3T07Tf1H4ejeC9fX1/dMvYWtWrdqqlTAYDzqjhxoqlTAADAI7Vs2VJt2rR2aOyJ////v848GJCkI0eOaP/+/U7HceVDBlc8HODXBwAkivr1dsoqnZDB4fHHKip05MRJHT9jlbwkjjvl4q1x3CkXd4vjTrlI0tHych05cVLdu3dXYGCgw3F+/fVXHThwwC3iuCqXkydPau/evTputapVIEV9AB6g/FRTZwAAQLPlzIMB6X8PB1wVx50eDrgCvz4APBtF/Xoqt1p1yomCX+kZq0rKT6nMKvl7SRx3ysVb47hTLu4Wx51y+W0cn4BA+bd2/MZRx0+4TxwX5VJmlUrKT6nw16M649fC4TgSq1MANBI//6bOAAAAuAl3eDjgrb8+kJibAfVFUR8A0Chc9dIsV/Lz89N9993HzSPQzFRUSNlfXqiCI0Z1bFem4Zf+Kl/fps4KAAA0B67YmsgdHjBIrn04wNwMqB+K+gCARuGKl2ZJrludcuLECe3evVsnTpzgxhFoRtZt66CZf+ulnw4H2Nq6tC/Vwvt265arCpswM6B6/gaDWsjq8PgAH4Na+7eQ0SCvieNOuXhrHHfKxd3iuFMu3hrHnXJxtziuzuXCVi2det/ZmdKTau3fwmVbtZYWFykoIOD8AwBvdbq8zl0p6gMAGpW77I1ZyXL4sFPj+Zko4DnWbeugCU/2qzIFPnjYqAlP9tPquXkU9uF2Whiklk4Ubtr4+qpdy0C18jF4TRx3ysVb47hTLu4Wx51y8dY47pSLu8Vxp1x+G8fUqqVatnS8qH/Cx6BfWgaqpLBQfuVlDseRJKMxwKkHFUCTOl33d3q5ZVE/NTVVzz//vMxms/r06aOUlBQNHz68xv4fffSREhMT9fXXXys0NFR//vOfFRcXZ/s+LS1Nf/zjH6uMO3nypAJ4AggAzZKrtgNy1R6SvCcAaFgVFdLMv/X6/9NW+3enWGWQQVbN/FtP3Ty0kK144FY2HitX+IWOz1l2F/yqjZu3a1LHrgppeaFXxHGnXLw1jjvl4m5x3CkXb43jTrm4Wxx3ysWVcX4wH9Lb//xY1s3bHY5RKSAgQNnZ2ercubPTsYDG5ltcXOe+blfUz8jIUEJCglJTUzV06FAtW7ZMo0eP1q5duxQeHl6l/759+3TDDTdo+vTpWrlypT7++GPFx8erffv2uvXWW239goKC9M0339iNpaAPAM2XK7YDcuUekq7CQwagetlfXmi35c65rDLop8OByv7yQl3T79dGzAyo3bEzVh2Xj8Pjj56uUEHJcRWfsaq1l8Rxp1y8NY475eJucdwpF2+N4065uFscd8rFlXF+Pn5C5mMlGjdunEwmk8NxLBaLMjMzVXjipLq0CXI4DtBUDPX44YzbFfUXLFigqVOnatq0aZKklJQUbdq0SUuWLFFycnKV/kuXLlV4eLhSUlIknS3OfPbZZ3rhhRfsivoGg0EdO3ZslGsAAHgOV7yoyl3eE+CODxl44RXcRcERo0v7AQAAwLVMJpNCQ0OdjrN7926n86huYTHgTtyqqF9eXq6cnBzNmjXLrj0mJkY7duyodszOnTsVExNj1zZq1Ci98sorOnXqlFr8v/buPS7KMv//+Hs44wFMR0FSwEzz2GqYikSHNXV1a01rtYOU6yFd3Uqp3SQ7qGV2Wh3dFdNfGZllVNLBopR2PZHWFkknscxUDIfFsRRRAcH5/cGX2UbAYA4wM7yej8f9+DbXXPfn/tzU47v39Znrvq7AQElSSUmJYmJiVFlZqX79+unRRx9V//7968ylrKxMZWX/W8eruAGvPwAAmhdP2SfA035kYDNieJLIdvVbn7W+/QAAAOBZSkpKZDAYNGHCBKfiBAcHa/369erYsaNTcfhxAO7kUUV9i8WiyspKRURE2LVHRESosLCw1nMKCwtr7V9RUSGLxaKOHTuqR48eSktLU9++fVVcXKylS5cqISFBX3zxhbp161Zr3EWLFmn+/PmuuTEAABqRp/zIAHiSxL4/q1P7UhUcCZb1nDX1Jckgqy5sX6rEviy9AwAA4I1KS0tltVqdWsYnPz9fGzdu1HXXXed0PqGhodqzZw+FfbiFRxX1qxkM52xeZrXWaPu1/r9sHzx4sAYPHmz7PiEhQZdddpn+8Y9/aNmyZbXGTElJUXJysu1zcXGxOnfu3LAbAQAAshw54tT5rO8PV/D3l5b8JU/jHukng6x2hX3D/22fu+Qve9gkFwAAwMs5s4yPxWJx+oeB6jgZGRnavn27evbs6XAciRn/qJ1HFfWNRqP8/f1rzMovKiqqMRu/WmRkZK39AwIC1K5du1rP8fPz0+WXX669e/fWmUtwcLCCg1lTFQAAR5WXl0uSMt58s4kzqcL6/hhzZZFem5+r2f/sabdp7oXtS7XkL3s05sqiJswOAAAAnsLZ9f1dtRSQxHJAqJ1HFfWDgoIUFxenrKwsjRkzxtaelZWl0aNH13pOfHy8NmzYYNe2adMmDRgwwLae/rmsVqtyc3PVt2/fhudoMChQDdiK+Bwhfga1CgpUsEE+E8eTcvHVOJ6Ui6fF8aRcfDWOJ+XiaXE8KRdPjBNwtlKtggLVrVs3hYaGOhTj559/1qFDh5yKIUmnT5/W3r17VVp8XGEhIcLEn+MAAGc9SURBVL9+AnzWDYMO6foBh5T9dTuZfwpRx7aluqLPUfn7S9Zzl9OvKG+SHAEAAODdXLEUkMRyQKibRxX1JSk5OVlJSUkaMGCA4uPjtWrVKuXn52v69OmSqpbFKSgo0Jo1ayRJ06dP1z//+U8lJydr6tSp2rlzp55//nmtW7fOFnP+/PkaPHiwunXrpuLiYi1btky5ublavnx5g/MLNEgtnChwtPb3V7sWoWrpZ/CZOJ6Ui6/G8aRcPC2OJ+Xiq3E8KRdPi+NJuXhyHGPLFmrRwrGCfEB5uU45GUOSTvkZ9FOLUAWUl0mnTzocB77BX9JV3X/x30FdtfuKM42RDgAAAHyUszP+Xb0ckMVioajvIzyuqD9+/HgdPXpUCxYskNlsVp8+fZSZmamYmBhJktlsVn5+vq1/ly5dlJmZqdmzZ2v58uWKiorSsmXLdOONN9r6HDt2THfeeacKCwsVHh6u/v37a9u2bRo4cGCD88s8Ua7oCxyf4ZdX+LMyP8zWhMhYRbS4wCfieFIuvhrHk3LxtDielIuvxvGkXDwtjifl4qtxXJXLf4uPa+2H2Wpzw83q1sG5h9i2bdvqwgsvdCoGvIN/cXFTpwAAAAA4/eNAtby8PKfz4EcBz+BxRX1JmjFjhmbMmFHrd2lpaTXarrrqKn3++ed1xluyZImWLFniktxOnLXqpPwcPv9YRaUKS06q+KxVrXwkjifl4qtxPCkXT4vjSbn4ahxPysXT4nhSLr4ax1W5HC4+of+ePKWbJv7J4RjVXLWmZVlZmdP79/BQ7V4Gx19UAQAAADyGq9b4Zwkfz+GRRX0AAABX8sQ1LQ0Gg6xW56rGPFQDAAAA+DWuGA+xhI9noagPAACaDU9Z03Lv3r3avHkzD9UAAAAAGo2rlvFB06OoDwAA0ECu+HHAFXEk59fFrM6DHwYAAAAAwPUqK6Xt2yWzWerYUUpMlPz9nYtJUR8AAMALuWpdTMl1+wTw4wAAAAAA/E9GhnTPPdKPP/6vrVMnaelSaexYx+NS1AcAAPBCnrhPAD8OAAAAAECVjAzpppukc7dSKyioan/jDccL+xT1AQAAvJin7BPgyh8H2AAYAAAAgDerrKyaoX9uQV+qajMYpFmzpNGjHVuKh6I+AAAAPObHATYABgAAADwXe3rVz/bt9kvunMtqlQ4dqup39dUNj09RHwAAAC7jis1/AQAAAHgWV+7p1RzezDWbXdvvXBT1AQAAAAAAAAB1ctWeXs3lzdz6bjPm6HZkFPUBAAAAAAAAAL+KN3PrJzFR6tSpalPc2tbVNxiqvk9MdCy+n3PpAQAAAAAAAACAav7+0tKlVf9sMNh/V/3ZZHJsk1yJmfoAAAAAAAAAgEbkig13y8rKFBwc7HQcd23cO3as9MYb0j332G+a26lTVUF/7FjHY1PUBwAAAAAAAAC4nSs33DUYDLLWtrZNA7lz496xY6XRo6Xt26s2xe3YsWrJHUdn6FejqA8AAAAAAAAAcDtXbbi7d+9ebd682Ss27vX3l66+2rUxKeoDAAAAAAAAABqNsxvuWiwWl8TxVmyUCwAAAAAAAACAl6CoDwAAAAAAAACAl6CoDwAAAAAAAACAl6CoDwAAAAAAAACAl6CoDwAAAAAAAACAl6CoDwAAAAAAAACAl/DIon5qaqq6dOmikJAQxcXFafv27eftv3XrVsXFxSkkJEQXXXSRnn322Rp91q9fr169eik4OFi9evXSm2++6a70AQAAAPgYd4xRAAAAAEd4XFE/PT1ds2bN0ty5c7Vr1y4lJiZq5MiRys/Pr7X//v37NWrUKCUmJmrXrl164IEHdPfdd2v9+vW2Pjt37tT48eOVlJSkL774QklJSRo3bpw++eSTxrotAAAAAF7KHWMUAAAAwFEeV9RfvHixJk+erClTpqhnz54ymUzq3LmzVqxYUWv/Z599VtHR0TKZTOrZs6emTJmiSZMm6ZlnnrH1MZlMGjZsmFJSUtSjRw+lpKRo6NChMplMjXRXAAAAALyVO8YoAAAAgKMCmjqBXyovL1dOTo7mzJlj1z58+HDt2LGj1nN27typ4cOH27WNGDFCzz//vM6cOaPAwEDt3LlTs2fPrtHnfEX9srIylZWV2T4fP35cklRYWNiQW6rhyJEjkiSz2azy8nKfiONJufhqHE/KxdPieFIuvhrHk3LxtDielIuvxvGkXDwtjifl4so4R48elSSVlJSouLjY4TiuUH19q9XapHmgablrjHIuxh/emYuvxvGkXDwtjifl4qtxPCkXT4vjSbn4ahxPysXT4nhSLq6M47XjD6sHKSgosEqyfvTRR3btCxcutHbv3r3Wc7p162ZduHChXdtHH31klWQ9fPiw1Wq1WgMDA60vv/yyXZ+XX37ZGhQUVGcujzzyiFUSBwcHBwcHBwdHMz8OHTrkyKMtfIS7xijnYvzBwcHBwcHBwcEh1W/84VEz9asZDAa7z1artUbbr/U/t72hMVNSUpScnGz7fPbsWf30009q167dec8DAACAb7BarTpx4oSioqKaOhV4AHeMUX6J8QcAAEDz1pDxh0cV9Y1Go/z9/Wu8YlpUVKSIiIhaz4mMjKy1f0BAgNq1a3fePnXFlKTg4GAFBwfbtbVp06a+twIAAAAfEB4e3tQpoIm5a4xyLsYfAAAAqO/4w6M2yg0KClJcXJyysrLs2rOysjRkyJBaz4mPj6/Rf9OmTRowYIBtrcq6+tQVEwAAAAAk941RAAAAAEd5VFFfkpKTk/Xcc89p9erVysvL0+zZs5Wfn6/p06dLqnot9fbbb7f1nz59ug4ePKjk5GTl5eVp9erVev7553XffffZ+txzzz3atGmTnnzySe3Zs0dPPvmkPvzwQ82aNauxbw8AAACAl3HHGAUAAABwlEctvyNJ48eP19GjR7VgwQKZzWb16dNHmZmZiomJkVS1o3F+fr6tf5cuXZSZmanZs2dr+fLlioqK0rJly3TjjTfa+gwZMkSvvvqqHnzwQT300EPq2rWr0tPTNWjQoEa/PwAAAADexR1jFAAAAMBRBmv1jk0AAAAAAAAAAMCjedzyOwAAAAAAAAAAoHYU9QEAAAAAAAAA8BIU9QEAAAAAAAAA8BIU9QEAAAAAAAAA8BIU9QEAAAAAAAAA8BIU9QEAAAAAAAAA8BIU9QEAAAAAAAAA8BIU9QEAAAAAAAAA8BIU9QEAAAAAAAAA8BIU9QEAAAAAAAAA8BIU9QEAAAAAAAAA8BIU9QEAAAAAAAAA8BIU9QEAAAAAAAAA8BIU9QEAAAAAAAAA8BIU9QEAAAAAAAAA8BIU9QEAAAAAAAAA8BIU9QEAAAAAAAAA8BIU9QEAAAAAAAAA8BIU9QEAAAAAAAAA8BIU9QEAAAAAAAAA8BIU9QEAAAAAAAAA8BIU9QEAAAAAAAAA8BIU9QEAAAAAAAAA8BIU9QEAAAAAAAAA8BIU9QEAAAAAAAAA8BIU9QEAAAAAAAAA8BIU9QEAAAAAAAAA8BIU9QEAAAAAAAAA8BIU9QEAAAAAAAAA8BIU9QEAAAAAAAAA8BIU9QEAAAAAAAAA8BIU9QEAAAAAAAAA8BIU9QEAAAAAAAAA8BIU9QEAAAAAAAAA8BIU9QEAAAAAAAAA8BIU9QEAAAAAAAAA8BIU9QEAAAAAAAAA8BIU9QEAAAAAAAAA8BIU9QEAAAAAAAAA8BIU9QEAAAAAAAAA8BIU9QEAAAAAAAAA8BIU9QEAAAAAAAAA8BIU9QEAAAAAAAAA8BIU9QEAAAAAAAAA8BIU9QEAAAAAAAAA8BIU9QEAAAAAAAAA8BIU9QEAAAAAAAAA8BIU9QEAAAAAAAAA8BIU9QE0O7GxsTIYDDIYDHrrrbfq7HfttdfKYDAoLS3Nrj0tLc12flBQkI4ePVpnjIqKCnXo0MHWf968ebX227hxo8aOHasLL7xQQUFBatOmjS655BJdf/31+vvf/659+/bZ9T9w4IAt5q8dBw4cqOdf5tft3r1b06ZNU/fu3RUaGqqWLVuqS5cuuvrqq/XQQw9px44dNc6p/nuf+3esy8SJE2vcQ2BgoDp27Kg//OEPev/99112P1u2bLFd41xXX331ef+dVbvrrrtsMbKyslyWGwAAADwXYwrH+dqYolpD//6/VF5erhUrVujaa69VZGSkgoKCFBERod/+9rdavny5ysrK6nWvs2bNqrPfY489JoPBoIkTJzpxlwA8RUBTJwAATWnevHkaPXp0rUXd+jhz5ozS09M1Y8aMWr/fuHGjjhw5ct4Yf/nLX7R8+XJJUsuWLdWtWze1aNFCBw8e1Lvvvqt3331XZrNZzzzzTK3nDxgwQMHBwXXGDwkJqefdnN/LL7+sSZMmqby8XIGBgYqOjlbbtm1VVFSkrVu3auvWrXr//ff12WefueR6HTp0ULdu3SRJpaWl+u6777RhwwZt2LBBKSkpevzxx11yHWecOXNGr776qu3zSy+9pGHDhjVhRgAAAGhsjCnqz1fHFM78/b/55huNHj3aVvSPjY1Vv379dPjwYW3evFmbN2/W4sWL9c4776h3797nzWPlypX629/+pqioKJfcFwDPxUx9AM2Wv7+/vvjiC61fv96h87t16yaDwaCXXnqpzj7V311yySW1fr9u3TotX75cfn5+Wrp0qY4ePapvvvlGn376qYqKivTNN99o7ty56tChQ53XeP3115WdnV3nERkZ6dD9/dKBAwc0efJklZeXa9KkSfrxxx/1/fff6z//+Y8OHDggs9msf/7zn+rVq5fT16o2cuRI2z189tlnslgsuu+++yRJixYt0s6dO112LUd98MEHslgsatOmjSQpIyNDJ0+ebNqkAAAA0GgYU9Sfr44pnPn779u3T4mJidq3b5+uueYaff3119q/f7/+85//6Mcff9Qnn3yiyy67TD/88IOtX138/f1VWlrqEZOfALgfRX0AzdYtt9wiSZo/f76sVmuDz4+OjtaVV16pjz/+WN9//32N70+cOKF33nlHXbp0UUJCQq0xXnzxRUnSpEmTdPfdd9eYHdOrVy899thj+tvf/tbg/Fzp1VdfVVlZmS655BL9v//3/2o8kEZGRmrmzJlas2aN23IICgrSU089pX79+tlyamrVA6yZM2eqd+/eOnnypN58880mzgoAAACNhTFF/fnqmMKZv/+ECRP0888/a+jQofrggw9qzMQfOHCgtmzZoksvvVQ///yzkpKS6sxj/Pjx8vPz03PPPacff/zR6fsC4Nko6gNotiZNmqTY2Fh9/fXXeu211xyKMWHCBEnS2rVra3z3xhtv6PTp07rtttvqfBX3hx9+kCTbQ6Wnqs6zb9++8vNruv/pMBgMuuKKKyRJe/fubbI8JOn48ePasGGDJOnWW2/VrbfeKknnnWUFAAAA38KYov58dUzh6N//ww8/1Mcff6zAwEA9//zzCgoKqrVf69at9eyzz0qSdu7cqX/961+19uvZs6duvvlmlZWVaeHChQ3KBYD3oagPoNkKDAzU3LlzJVXNrDl79myDY/zxj39USEiIXn755RrfVT+UVz+k1yYsLEyS9J///KfB125M1Xnm5ubqzJkzTZqLIzOg3OG1115TaWmpfvOb36hXr1669dZbZTAY9K9//Utms7mp0wMAAEAjYExRf746pnD071/9I9CoUaMUExNz3r7x8fH6zW9+Y3debR5++GH5+/tr9erVOnjwYIPyAeBdKOoDaNYmTpyoiy66SHl5eQ69ehkeHq7rr79e33//vd16jD/++KO2bNmigQMH1rn2pST97ne/k1Q1u/vPf/6zPv30U1VWVjb8RtysOs/vv/9eI0eO1Pvvv69Tp041eh5Wq1UfffSRJOniiy9u9Ov/UvWM/Ntuu01S1YZWQ4YMUWVlpV555ZWmTA0AAACNiDFF/fjqmMLRv/+OHTskSVdddVW9rnPllVdK0nn3Abjkkkt06623qry8nNn6gI+jqA+gWQsICNBDDz0kSVqwYIFDD7/Vs2Z+uezKyy+/rLNnz553Ro0k3X///YqLi5PVatWzzz6rgQMHKiwsTFdccYXmzJmjzz777Fev36VLFxkMhloPV72Ce+211+rOO++UJP3rX//SqFGjFB4ert/85jeaPn263n33XbcPHMrLy/W3v/1Nubm5kqRx48a59Xrnc+DAAWVnZ8tgMOjmm2+2tbMEDwAAQPPDmKJ+fHVM4ejfv6CgQJLUtWvXel2nut+vrZdfPVs/LS1N+/fvb8CdAPAmFPUBNHtJSUnq1q2bvv3221pfef01I0eOlNFo1GuvvWZ7jXTt2rUKCAiwK/jWpnXr1srOztbf//539ezZU5J06tQpffTRR3ryySd1+eWX64YbbtCxY8fqjDFgwAAlJCTUevTv37/B91OXlStXav369brqqqvk7++viooKffnll1q5cqWuv/56/eY3v9FXX33lsuu9//77uuKKK3TFFVdowIABMhqNeuaZZyRJs2fPtq2D2RTWrl0rq9WqxMREde7c2dY+btw4BQYG6osvvnDp3wIAAACejTFF/fjimMLRv/+JEyckSS1btqzXdar7VZ9Xl4svvlhJSUk6c+aMHn300QbeDQBvQVEfQLPn7+9vm1nz6KOPqqKiokHnBwYGaty4cTp69KgyMzOVm5urr7/+WiNGjFD79u1/9fyQkBAlJydr9+7dKigoUEZGhmbPnq0uXbpIkt5++22NHTu2zvNff/11ZWdn13q88MILDbqXXzN27Fht2bJFP/30k7KysvToo49q4MCBkqRvvvlG1157rY4cOeKSaxUVFemjjz7SRx99pNzcXIWEhGjkyJF68803tXjxYpdcw1HVa5tWz8yvZjQaNXz4cEnM1gcAAGhOGFPUny+OKRz5+7du3VqSdPLkyXpdo7pf9Xnn8/DDDysgIEAvvfSS9u3b15BbAeAlKOoDgKqKs5dccom+//57h4qxSUlJkqqKvdUF3+q2hoiKitKYMWO0ePFifffdd7r33nslSZs3b7at++gJwsLCdO211+rBBx/UJ598otdff11+fn4qKirSqlWrXHKNO+64Q1arVVarVRUVFSoqKlJmZqZuuOEGl8R31H/+8x99++23CgwM1B//+Mca31evsf/KK684tFEaAAAAvBNjiobx1TFFff/+F154oSTVu+he3a/6vPPp0qWLJk6cqIqKCi1YsKChtwDAC1DUBwBVzax5+OGHJTk2s2bw4MHq1q2bNmzYoLVr1yosLEx/+MMfnMopICBATz31lCIjIyVVFZM91U033aQbb7xRkmfn6Qpr1qyRJJ05c0bt2rWrseZo9ez9goIC/fvf/27KVAEAANCIGFM4xxfHFOf7+w8ZMkSStHXr1nrF2rZtmyQpPj6+Xv0ffPBBBQYG6uWXX9Z3333XkLQBeAGK+gDwf26++Wb16tVL+/fvV1paWoPPv+2221RWVqb//ve/uvHGGxUaGup0Tn5+foqJiZFUtamTJ7voooskeX6ezjhz5ozS09MlSe3atVNEREStR6tWrSSxBA8AAEBzw5jCOb44pqjr71/91m9mZqYOHjx43hgff/yxvvjiC0nS+PHj63XdmJgYTZo0SZWVlczWB3wQRX0A+D9+fn565JFHJEmPPfaYbYOq+kpKStLQoUM1dOhQTZ06tV7nFBUVnff7Y8eOaffu3ZKkbt26NSgfV/q1PCVpx44dkpo2T3d7//33ZbFY1LJlSx04cECFhYW1HuvXr5ckZWRk6NSpU02cNQAAABoLY4q6+eqYwtG//7BhwzRo0CCdOXNGkydPrvO/lRMnTmjatGmSpEGDBmno0KH1zm3u3LkKCgrSunXrlJeXV+/zAHg+ivoA8At//OMf1bdvXx08eLDB601edNFF+vDDD/Xhhx/W+5XIUaNG6bbbbtO///3vGg9xubm5Gj16tE6cOKGOHTtqxIgRDcqnLhMnTpTBYNDEiRPrfc7jjz+uxMRErVu3TidOnLD7zmw2a/r06dq+fbsMBoPuuOMOl+TZULGxsTIYDA7NiKqv6pn3Y8aMsc3Gr83QoUPVsWNHlZSU6M0333RbPgAAAPA8jClq56tjCmf+/i+99JLatGmjf/3rXxoxYoS++eYbu+8//fRTXX311fryyy/Vpk2bBr8J3LlzZ02ZMkVnz561vXEMwDcENHUCAOBJDAaDHnnkEd10002qrKx0+/UqKyv1yiuv6JVXXlFISIguvvhihYSE6PDhwzp8+LAkqU2bNnrttdfUsmXLWmP88Y9/VHBwcJ3XWLRokRITE53K02AwKDs7W9nZ2fLz81PXrl11wQUX6MiRIzp06JAqKirk7++vxYsXKy4urtYYd911l+677746r7Flyxb16dPHqTzd6dixY9qwYYOkX9+wzN/fXzfffLOWLFmil156ybZ5LgAAAHwfY4ra+eqYwpm/f7du3bRt2zaNHj1amzdvVp8+fRQbG6v27dvLbDbrxx9/lFT1Y8Pbb7/t0BsMDzzwgFavXq3S0lLnbxaAx6CoDwDnGDt2rPr166fc3Fy3X2vTpk3auHGj3n//fX399dc6fPiwjh07platWmnQoEEaMWKEZs6cqQ4dOtQZ47PPPjvvNY4ePWr3ubCwUJLUr1+/euf5+OOPa9iwYXr//ff1ySefqKCgQAcOHFBwcLC6d++uK6+8Un/+85916aWX1hmjpKREJSUldX7f0I3EfqmyslIWi0WS9Jvf/KZB50lSYGBgnd8FBQVJkl5//XWVlZUpMjKyXq+8TpgwQUuWLNGHH36owsJC2+ZYAAAA8H2MKWry1TGFs3//vn37Ki8vT88995wyMjL01VdfqaCgQG3atNHVV1+tsWPHaurUqQoJCXHovi688ELdeeedWrZsmUPnA/BMBqvVam3qJAAAjePs2bNq27atrFarfvzxR7Vu3bqpU3KJzz//XHFxcbrmmmv073//u97nZWRk6MYbb1T79u1rrIV56aWX6quvvtLy5cs1Y8YMV6cMAAAAeCXGFADQ9FhTHwCakW+++UbHjx/XnXfe6TMP35Jsa5Xee++9DTrvyy+/lCT17NnTrr20tFR79+6t9TsAAACgOWNMAQBNj6I+ADQjO3bsUEBAgO6+++6mTsWlduzYoR49emjUqFH1PicvL0+rVq2SJF1//fW2dqvVqgceeEClpaVq27atEhISXJ4vAAAA4K0YUwBA02P5HQBAs7Js2TKtXLlS3333nSoqKtS9e3d9/vnnslqtGjZsmPbu3WtbM3TVqlWaOnVqE2cMAAAAAADwP8zUBwA0Kz/88IO+++47RUVFacaMGdq+fbtatmypiooKffzxxyovL9cVV1yhN954g4I+AAAAAADwOMzUBwAAAAAAAADASzBTHwAAAAAAAAAALxHQ1Ak4KjU1VU8//bTMZrN69+4tk8mkxMTEWvtu2bJF11xzTY32vLw89ejRo17XO3v2rA4fPqzWrVvLYDA4lTsAAAA8n9Vq1YkTJxQVFSU/P+bCoHEx/gAAAGheGjL+8Mqifnp6umbNmqXU1FQlJCRo5cqVGjlypHbv3q3o6Og6z/v2228VFhZm+9y+fft6X/Pw4cPq3LmzU3kDAADA+xw6dEidOnVq6jTQzDD+AAAAaJ7qM/7wyjX1Bw0apMsuu0wrVqywtfXs2VM33HCDFi1aVKN/9Uz9n3/+WW3atHHomsePH1ebNm106NAhux8GAAAA4JuKi4vVuXNnHTt2TOHh4U2dDpoZxh8AAADNS0PGH143U7+8vFw5OTmaM2eOXfvw4cO1Y8eO857bv39/lZaWqlevXnrwwQdrXZKnWllZmcrKymyfT5w4IUkKCwvjoRoAAKAZYekTNIXq/+4YfwAAADQv9Rl/eN3ioBaLRZWVlYqIiLBrj4iIUGFhYa3ndOzYUatWrdL69euVkZGhSy65REOHDtW2bdvqvM6iRYsUHh5uO3j1FQAAAAAAAADQ1Lxupn61c3+xsFqtdf6Kcckll+iSSy6xfY6Pj9ehQ4f0zDPP6Morr6z1nJSUFCUnJ9s+V7/+AAAAAAAAAABAU/G6or7RaJS/v3+NWflFRUU1Zu+fz+DBg7V27do6vw8ODlZwcLDDeQIAAN9XWVmpM2fONHUacEJQUJD8/Lzu5VUAAAA0Q4w/vJ+rxh9eV9QPCgpSXFycsrKyNGbMGFt7VlaWRo8eXe84u3btUseOHd2RIgAA8HFWq1WFhYU6duxYU6cCJ/n5+alLly4KCgpq6lQAAACAWjH+8B2uGn94XVFfkpKTk5WUlKQBAwYoPj5eq1atUn5+vqZPny6paumcgoICrVmzRpJkMpkUGxur3r17q7y8XGvXrtX69eu1fv36prwNAADgpaofqDt06KAWLVqwkaqXOnv2rA4fPiyz2azo6Gj+PQIAAMAjMf7wDa4cf3hlUX/8+PE6evSoFixYILPZrD59+igzM1MxMTGSJLPZrPz8fFv/8vJy3XfffSooKFBoaKh69+6t9957T6NGjWqqWwAAAF6qsrLS9kDdrl27pk4HTmrfvr0OHz6siooKBQYGNnU6AAAAgB3GH77FVeMPg9VqtbowL59VXFys8PBwHT9+XGFhYU2dDgAAaCKlpaXav3+/YmNjFRoa2tTpwEmnT5/WgQMH1KVLF4WEhNh9x/MfmhL//QEAAInxh69x1fjDK2fqN6Xc3Fy1atXKqRhGo1HR0dEuyggAADQFXnn1Dfx7hKdj/AEAACSeW32Fq/49UtRvoKuuusrpGKGhodqzZw8P1gAAAIAHSE1N1dNPPy2z2azevXvLZDIpMTGx1r7Z2dm6//77tWfPHp06dUoxMTGaNm2aZs+ebeuTlpamP/3pTzXOPX36dI0ZWb+G8QcAAADORVG/ga6//np17NjR4fMtFosyMjJksVh4qAYAAACaWHp6umbNmqXU1FQlJCRo5cqVGjlypHbv3l3r83rLli31l7/8RZdeeqlatmyp7OxsTZs2TS1bttSdd95p6xcWFqZvv/3W7tyGFvQlxh8AAACoiaJ+A7Vr105RUVFNnQYAAPBylZXS9u2S2Sx17CglJkr+/k2dFdD8LF68WJMnT9aUKVMkSSaTSRs3btSKFSu0aNGiGv379++v/v372z7HxsYqIyND27dvtyvqGwwGRUZGOp0f4w8AAOAKjD98i19TJwAAANDcZGRIsbHSNddIt95a9X9jY6va3cFgMJz3mDhxoq3fW2+9VeP8iRMn6oYbbqjzc1FRkaZNm6bo6GgFBwcrMjJSI0aM0M6dO+vMad68ebbr+/n5KSoqSrfddpsOHTpk1y82NlYmk6nG+SaTSbGxsTXiTZ8+3a5fbm6uDAaDDhw4UGcuaL7Ky8uVk5Oj4cOH27UPHz5cO3bsqFeMXbt2aceOHTWWySkpKVFMTIw6deqk6667Trt27TpvnLKyMhUXF9sdAAAArsD4w/fGHxT1AQAAGlFGhnTTTdKPP9q3FxRUtbvjwdpsNtsOk8mksLAwu7alS5c6Ff/GG2/UF198oRdffFHfffed3nnnHV199dX66aefznte7969ZTab9eOPPyo9PV1fffWVxo0b53AeISEhev755/Xdd985HAPNi8ViUWVlpSIiIuzaIyIiVFhYeN5zO3XqpODgYA0YMEAzZ860zfSXpB49eigtLU3vvPOO1q1bp5CQECUkJGjv3r11xlu0aJHCw8NtR+fOnZ27OQAAADH++CVfGn+w/A4AAEAjqayU7rlHslprfme1SgaDNGuWNHq0a1+F/eUSIOHh4S5bFkSSjh07puzsbG3ZssU2UzkmJkYDBw781XMDAgJseURFRWnq1Km6++67VVxcrLCwsAbncskll6hDhw568MEH9dprrzX4fDRfBoPB7rPVaq3Rdq7t27erpKREH3/8sebMmaOLL75Yt9xyiyRp8ODBGjx4sK1vQkKCLrvsMv3jH//QsmXLao2XkpKi5ORk2+fi4mIK+wAAwCmMP+z50viDmfoAAACNZPv2mjNkfslqlQ4dqurnLVq1aqVWrVrprbfeUllZmcNxCgsLlZGRIX9/f/k7MaJ44okntH79en366acOx0DzYTQa5e/vX2NWflFRUY3Z++fq0qWL+vbtq6lTp2r27NmaN29enX39/Px0+eWXn3emfnBwsMLCwuwOAAAAZzD+qJu3jz8o6gMAADQSs9m1/dzhlltusT0oVx8vv/xynf0DAgKUlpamF198UW3atFFCQoIeeOABffnll796ra+++kqtWrVSixYt1LFjR23ZskUzZ85Uy5YtHc7/sssu07hx4zRnzhyHY6D5CAoKUlxcnLKysuzas7KyNGTIkHrHsVqt5x1UWq1W5ebmqmPHjg7nCgAA0FCMP+z50viDoj4AAEAjqW89rynrfkuWLFFubq7d8Yc//OG859x44406fPiw3nnnHY0YMUJbtmzRZZddprS0tPOed8kllyg3N1effvqpFi5cqH79+mnhwoVO38Njjz2m7du3a9OmTU7Hgu9LTk7Wc889p9WrVysvL0+zZ89Wfn6+bdOzlJQU3X777bb+y5cv14YNG7R3717t3btXL7zwgp555hlNmDDB1mf+/PnauHGjfvjhB+Xm5mry5MnKzc2tsZEaAACAOzH+sOdL4w/W1AcAAGgkiYlSp05Vm1LVtq6lwVD1fWJi4+dWLTIyUhdffLFdW+vWrXXs2LHznhcSEqJhw4Zp2LBhevjhhzVlyhQ98sgjmjhxYp3nBAUF2a7Vu3dv7d27V3/+85/10ksv2fqEhYXp+PHjNc49duyYwsPDa43btWtXTZ06VXPmzNHzzz9/3ryB8ePH6+jRo1qwYIHMZrP69OmjzMxMxcTESKra6C0/P9/W/+zZs0pJSdH+/fsVEBCgrl276oknntC0adNsfY4dO6Y777xThYWFCg8PV//+/bVt27Z6rfUKAADgKow/7PnS+IOZ+gAAAI3E319aurTqn8/dg7P6s8nk2k2qmkqvXr108uTJBp3z0EMPad26dfr8889tbT169Kh1fcpPP/1Ul1xySZ2xHn74YX333Xd69dVXG5QDmqcZM2bowIEDKisrU05Ojq688krbd2lpadqyZYvt81133aWvv/5aJ0+e1PHjx/X555/rz3/+s/z8/je0WrJkiQ4ePKiysjIVFRVp48aNio+Pb8xbAgAAYPzxK7x5/EFRHwAAoBGNHSu98YZ04YX27Z06VbWPHds0eTnq6NGj+u1vf6u1a9fqyy+/1P79+/X666/rqaee0ujRoxsU66KLLtLo0aP18MMP29qSk5P1/vvva8GCBdq9e7d2796tRx99VB988IHuvffeOmNFREQoOTlZy5Ytc/jeAAAAAG/H+KNu3jz+YPkdAACARjZ2rDR6tLR9e9WmVB07Vr3y6o0zZFq1aqVBgwZpyZIl2rdvn86cOaPOnTtr6tSpeuCBBxoc795771VCQoI++eQTDRo0SIMHD9bGjRu1YMECmUwmSVWvym7cuFGDBg06b6y//vWvWrFihUpLSx25NQAAAMAnMP6om7eOPwxWa20rKuFcxcXFCg8P18SJExUbG+twnMOHD2vVqlXKycnRZZdd5roEAQBAoygtLdX+/fvVpUsXhYSENHU6cNL5/n1WP/8dP35cYWFhTZQhmivGHwAAQGL84WtcNf5g+R0AAAAAAAAAALwERX0AAAAAAAAAALwERX0AAAAAAAAAALwERX0AAAAAAAAAALwERX0AAAAAAAAAALwERX0AAAAAAAAAALwERX0AAAAAAAAAALwERX0AAAAAAAAAALxEQFMnAAAA4AuspaelM2ca74KBgTKEhDbe9QAAAAB4DMYfzRtFfQAAACdZS0/r7LYsWU+dbLRrGlq0lN+Vwxr0YD1x4kQdO3ZMb731Vo3vYmNjdfDgwRrtixYt0pw5c3TgwAF16dJF7du31759+9S6dWtbn379+umGG27QvHnzJEk//PCD5s6dq61bt+qnn36S0WhUXFycnn76aXXv3l0HDhzQo48+qn//+98qLCxUVFSUJkyYoLlz5yooKKjBfwsAAACgOWH8wfiDoj4AAICzzpypeqAOCJQCG+Gh8Ex51fXOnJFcOFtmwYIFmjp1ql3bLx+eJenEiRN65plnNH/+/FpjlJeXa9iwYerRo4cyMjLUsWNH/fjjj8rMzNTx48clSXv27NHZs2e1cuVKXXzxxfr66681depUnTx5Us8884zL7gcAAADwSYw/bJrr+IOiPgAAgKsEBskQHOz2y1glqcL1r9q2bt1akZGR5+1z1113afHixZo5c6Y6dOhQ4/vdu3frhx9+0L///W/FxMRIkmJiYpSQkGDr87vf/U6/+93vbJ8vuugiffvtt1qxYoXXPlQDAAAAjY7xR7Mdf7BRLgAAAOrtlltu0cUXX6wFCxbU+n379u3l5+enN954Q5WVlfWOe/z4cbVt29ZVaQIAAADwAYw/akdRHwAAAJKk+++/X61atbI7tmzZYtfHYDDoiSee0KpVq7Rv374aMS688EItW7ZMDz/8sC644AL99re/1aOPPqoffvihzuvu27dP//jHPzR9+nRX3xIAAAAAD8X4w3EU9QEAACBJ+utf/6rc3Fy7Y9CgQTX6jRgxQldccYUeeuihWuPMnDlThYWFWrt2reLj4/X666+rd+/eysrKqtH38OHD+t3vfqc//vGPmjJlisvvCQAAAIBnYvzhOIr6AAAAkCQZjUZdfPHFdkdoaO0bYT3xxBNKT0/Xrl27av2+devW+sMf/qCFCxfqiy++UGJioh577DG7PocPH9Y111yj+Ph4rVq1yuX3AwAAAMBzMf5wHEV9AAAANNjAgQM1duxYzZkz51f7GgwG9ejRQydPnrS1FRQU6Oqrr9Zll12mF154QX5+PJYCAAAAqB3jD3sBTZ0AAAAAGs/x48eVm5tr11a9QdSJEydUWFho912LFi0UFhZWa6yFCxeqd+/eCgj43yNlbm6uHnnkESUlJalXr14KCgrS1q1btXr1at1///2SqmbIXH311YqOjtYzzzyjI0eO2M6PjIx0xW0CAAAA8ACMP9yDoj4AAICrnCmXtZGu46gtW7aof//+dm133HGHJOnhhx/Www8/bPfdtGnT9Oyzz9Yaq3v37po0aZLdq6udOnVSbGys5s+frwMHDshgMNg+z549W5K0adMmff/99/r+++/VqVMnu5hWa6P8BQE7qampevrpp2U2m9W7d2+ZTCYlJibW2jc7O1v333+/9uzZo1OnTikmJkbTpk2z/fddbf369XrooYe0b98+de3aVQsXLtSYMWMa43YAAEBzwfij2Y4/DFZvzbyRFRcXKzw8XBMnTlRsbKzDcQ4fPqxVq1YpJydHl112mesSBAAAjaK0tFT79+9Xly5dFBISIkmylp7W2W1Zsp46+Stnu46hRUv5XTlMhpDa15xE/dT277Na9fPf8ePH65wtBO+Xnp6upKQkpaamKiEhQStXrtRzzz2n3bt3Kzo6ukb/Xbt2ac+ePbr00kvVsmVLZWdna9q0aVqyZInuvPNOSdLOnTuVmJioRx99VGPGjNGbb76phx9+WNnZ2bVu/lYbxh8AAEBi/OFrXDX+YKY+AACAkwwhofK7cph05kzjXTQwkAdqwAUWL16syZMna8qUKZIkk8mkjRs3asWKFVq0aFGN/v3797ebbRYbG6uMjAxt377dVtQ3mUwaNmyYUlJSJEkpKSnaunWrTCaT1q1b1wh3BQAAfBnjD3htUb8hr8j+0kcffaSrrrpKffr0qbGeEwAAgKMMIaESD7mAVykvL1dOTk6NDdeGDx+uHTt21CvGrl27tGPHDj322GO2tp07d9ZYjmfEiBEymUx1xikrK1NZWZntc3Fxcb2uDwAAmifGH82bV27zm56erlmzZmnu3LnatWuXEhMTNXLkSOXn55/3vOPHj+v222/X0KFDGylTAAAAAJ7KYrGosrJSERERdu0RERE1Nm07V6dOnRQcHKwBAwZo5syZtpn+klRYWNjgmIsWLVJ4eLjt6Ny5swN3BAAAgObAK4v6v3xFtmfPnjKZTOrcubNWrFhx3vOmTZumW2+9VfHx8Y2UKQAAAABPZzAY7D5brdYabefavn27PvvsMz377LO1LqvT0JgpKSk6fvy47Th06FAD7wIAAADNhdctv+PoK7IvvPCC9u3bp7Vr19q9GlsXXn8FAAAAfJvRaJS/v3+NGfRFRUU1Ztqfq0uXLpKkvn376r///a/mzZunW265RZIUGRnZ4JjBwcEKDg525DYAAADQzHjdTH1HXpHdu3ev5syZo5dfflkBAfX7HYPXXwEAAADfFhQUpLi4OGVlZdm1Z2VlaciQIfWOY7Va7SYExcfH14i5adOmBsUEAAAA6uJ1M/Wr1fd11srKSt16662aP3++unfvXu/4KSkpSk5Otn0uLi6msA8AAAD4mOTkZCUlJWnAgAGKj4/XqlWrlJ+fr+nTp0uqGhcUFBRozZo1kqTly5crOjpaPXr0kCRlZ2frmWee0V133WWLec899+jKK6/Uk08+qdGjR+vtt9/Whx9+qOzs7Ma/QQAAAPgcryvqN/QV2RMnTuizzz7Trl279Je//EWSdPbsWVmtVgUEBGjTpk367W9/W+M8Xn8FAAAAfN/48eN19OhRLViwQGazWX369FFmZqZiYmIkSWazWfn5+bb+Z8+eVUpKivbv36+AgAB17dpVTzzxhKZNm2brM2TIEL366qt68MEH9dBDD6lr165KT0/XoEGDGv3+AAAA4Hu8rqj/y1dkx4wZY2vPysrS6NGja/QPCwvTV199ZdeWmpqqf//733rjjTdsa2ECAAAAaJ5mzJihGTNm1PpdWlqa3ee77rrLblZ+XW666SbddNNNrkgPAAAAsON1RX2pYa/I+vn5qU+fPnbnd+jQQSEhITXaAQAAHJWfny+LxdJo1zMajYqOjm606wEAAADwHIw/mjevLOo39BVZAAAAd8rPz1ePHj10+vTpRrtmaGio9uzZ0+AH68LCQi1cuFDvvfeeCgoK1KFDB/Xr10+zZs3S0KFDFRsbq4MHD2rdunW6+eab7c7t3bu3du/erRdeeEETJ06UJMXGxmrWrFmaNWuW7fPBgwdtOV500UW666677JYmKSsr04IFC7R27VoVFhaqU6dOmjt3riZNmuT4HwQAAABoJhh/MP7wyqK+1LBXZM81b948zZs3z/VJAQCAZslisej06dMaO3asjEZjo1wvIyNDFoulQQ/VBw4cUEJCgtq0aaOnnnpKl156qc6cOaONGzdq5syZ2rNnjySpc+fOeuGFF+weqj/++GMVFhaqZcuWv3qdBQsWaOrUqSopKVFaWpqmT5+uNm3aaPz48ZKkcePG6b///a+ef/55XXzxxSoqKlJFRUUD/woAAABA88T4w15zHH94bVEfAADA0xiNRkVFRTV1GnWaMWOGDAaD/vOf/9g9HPfu3dtulsptt92mJUuW6NChQ+rcubMkafXq1brtttu0Zs2aX71O69atFRkZKUl67LHH9Nprr+mtt97S+PHj9cEHH2jr1q364Ycf1LZtW0lVs2sAAAAANAzjjyrNcfzh19QJAAAAwP1++uknffDBB5o5c2ats13atGlj++eIiAiNGDFCL774oiTp1KlTSk9Pd/j11JCQEJ05c0aS9M4772jAgAF66qmndOGFF6p79+667777GvXVYQAAAADuxfjDvSjqAwAANAPff/+9rFarevToUa/+kyZNUlpamqxWq9544w117dpV/fr1a9A1KyoqlJaWpq+++kpDhw6VJP3www/Kzs7W119/rTfffFMmk0lvvPGGZs6c2dBbAgAAAOChGH+4F0V9AACAZsBqtUqSDAZDvfr//ve/V0lJibZt26bVq1c3aJbM/fffr1atWik0NFQzZ87UX//6V9tGVWfPnpXBYNDLL7+sgQMHatSoUVq8eLHS0tK8frYMAAAAgCqMP9yLoj4AAEAz0K1bNxkMBuXl5dWrf0BAgJKSkvTII4/ok08+0W233Vbva/31r39Vbm6uDh48qJKSEj311FPy86t67OzYsaMuvPBChYeH2/r37NlTVqtVP/74Y8NuCgAAAIBHYvzhXhT1AQAAmoG2bdtqxIgRWr58uU6ePFnj+2PHjtVomzRpkrZu3arRo0frggsuqPe1jEajLr74YkVFRdWYmZOQkKDDhw+rpKTE1vbdd9/Jz89PnTp1qv8NAQAAAPBYjD/ci6I+AABAM5GamqrKykoNHDhQ69ev1969e5WXl6dly5YpPj6+Rv+ePXvKYrHohRdecFkOt956q9q1a6c//elP2r17t7Zt26a//vWvmjRpkkJDQ112HQAAAABNi/GH+wQ0dQIAAAC+wmKxePR1unTpos8//1wLFy7UvffeK7PZrPbt2ysuLk4rVqyo9Zx27do5k2oNrVq1UlZWlu666y4NGDBA7dq107hx4/TYY4+59DoAAACAr2P88et8dfxBUR8AAMBJRqNRoaGhysjIaLRrhoaGymg0Nvi8jh076p///Kf++c9/1vr9gQMHznv+ua/Jntv/186XpB49eigrK+tX+wEAAACoifFH/c+XfHP8QVEfAADASdHR0dqzZ0+jzZSRqh7ko6OjG+16AAAAADwD4w9Q1AcAAHCB6OhoHnIBAAAANArGH80bG+UCAAAAAAAAAOAlKOoDAAAAAAAAAOAlKOoDAAAAAAAAAOAlKOoDAAA44OzZs02dAlzAarU2dQoAAADAr2L84RtcNf5go1wAAIAGCAoKkp+fnw4fPqz27dsrKChIBoOhqdOCA6xWq44cOSKDwaDAwMCmTgcAAACogfGH73Dl+IOiPgAAQAP4+fmpS5cuMpvNOnz4cFOnAycZDAZ16tRJ/v7+TZ0KAAAAUAPjD9/iqvEHRX0AAIAGCgoKUnR0tCoqKlRZWdnU6cAJgYGBFPQBAADg0Rh/+A5XjT8o6gMAADig+pVJlm0BvF9qaqqefvppmc1m9e7dWyaTSYmJibX2zcjI0IoVK5Sbm6uysjL17t1b8+bN04gRI2x90tLS9Kc//anGuadPn1ZISIjb7gMAAPguxh/4JTbKBQAAANBspaena9asWZo7d6527dqlxMREjRw5Uvn5+bX237Ztm4YNG6bMzEzl5OTommuu0fXXX69du3bZ9QsLC5PZbLY7KOgDAADAFZipDwAAAKDZWrx4sSZPnqwpU6ZIkkwmkzZu3KgVK1Zo0aJFNfqbTCa7z48//rjefvttbdiwQf3797e1GwwGRUZGujV3AAAANE/M1AcAAADQLJWXlysnJ0fDhw+3ax8+fLh27NhRrxhnz57ViRMn1LZtW7v2kpISxcTEqFOnTrruuutqzOQ/V1lZmYqLi+0OAAAAoDYU9QEAAAA0SxaLRZWVlYqIiLBrj4iIUGFhYb1i/P3vf9fJkyc1btw4W1uPHj2Ulpamd955R+vWrVNISIgSEhK0d+/eOuMsWrRI4eHhtqNz586O3RQAAAB8HkV9AAAAAM2awWCw+2y1Wmu01WbdunWaN2+e0tPT1aFDB1v74MGDNWHCBP3mN79RYmKiXnvtNXXv3l3/+Mc/6oyVkpKi48eP245Dhw45fkMAAADwaaypDwAAAKBZMhqN8vf3rzErv6ioqMbs/XOlp6dr8uTJev3113Xttdeet6+fn58uv/zy887UDw4OVnBwcP2TBwAAQLPFTH0AAAAAzVJQUJDi4uKUlZVl156VlaUhQ4bUed66des0ceJEvfLKK/r973//q9exWq3Kzc1Vx44dnc4ZAAAAYKY+AAAAgGYrOTlZSUlJGjBggOLj47Vq1Srl5+dr+vTpkqqWxSkoKNCaNWskVRX0b7/9di1dulSDBw+2zfIPDQ1VeHi4JGn+/PkaPHiwunXrpuLiYi1btky5ublavnx509wkAAAAfApFfQAAAADN1vjx43X06FEtWLBAZrNZffr0UWZmpmJiYiRJZrNZ+fn5tv4rV65URUWFZs6cqZkzZ9ra77jjDqWlpUmSjh07pjvvvFOFhYUKDw9X//79tW3bNg0cOLBR7w0AAAC+iaI+AAAAgGZtxowZmjFjRq3fVRfqq23ZsuVX4y1ZskRLlixxQWYAAABATaypDwAAAAAAAACAl6CoDwAAAAAAAACAl6CoDwAAAAAAAACAl6CoDwAAAAAAAACAl6CoDwAAAAAAAACAl6CoDwAAAAAAAACAl6CoDwAAAAAAAACAl6CoDwAAAAAAAACAl/Daon5qaqq6dOmikJAQxcXFafv27XX2zc7OVkJCgtq1a6fQ0FD16NFDS5YsacRsAQAAAAAAAABwXkBTJ+CI9PR0zZo1S6mpqUpISNDKlSs1cuRI7d69W9HR0TX6t2zZUn/5y1906aWXqmXLlsrOzta0adPUsmVL3XnnnU1wBwAAAAAAAAAANJxbZuovW7ZM//nPf+zaioqK9OWXX9ba/+2339akSZPqHX/x4sWaPHmypkyZop49e8pkMqlz585asWJFrf379++vW265Rb1791ZsbKwmTJigESNGnHd2PwAAAICm5+6xBQAAAOBt3FLUnzVrlj744AO7thUrVqh///619s/NzdWLL75Yr9jl5eXKycnR8OHD7dqHDx+uHTt21CvGrl27tGPHDl111VV19ikrK1NxcbHdAQAAAKBxuXNsAQAAAHgjr1tT32KxqLKyUhEREXbtERERKiwsPO+5nTp1UnBwsAYMGKCZM2dqypQpdfZdtGiRwsPDbUfnzp1dkj8AAAAAAAAAAI7yuqJ+NYPBYPfZarXWaDvX9u3b9dlnn+nZZ5+VyWTSunXr6uybkpKi48eP245Dhw65JG8AAAAAAAAAABzldRvlGo1G+fv715iVX1RUVGP2/rm6dOkiSerbt6/++9//at68ebrllltq7RscHKzg4GDXJA0AAAAAAAAAgAt43Uz9oKAgxcXFKSsry649KytLQ4YMqXccq9WqsrIyV6cHAAAAAAAAAIDbeN1MfUlKTk5WUlKSBgwYoPj4eK1atUr5+fmaPn26pKqlcwoKCrRmzRpJ0vLlyxUdHa0ePXpIkrKzs/XMM8/orrvuarJ7AAAAAAAAAACgodxW1P/666/12muv2X2WpNdff11Wq7VG34YYP368jh49qgULFshsNqtPnz7KzMxUTEyMJMlsNis/P9/W/+zZs0pJSdH+/fsVEBCgrl276oknntC0adMcvT0AAAAAjcSdYwsAAADA2xis5z4Fu4Cfn1+tG9lKNTe4rf7OYDCosrLS1am4THFxscLDwzVx4kTFxsY6HOfw4cNatWqVcnJydNlll7kuQQAAALhU9fPf8ePHFRYW1tTpNFu+OLaoD8YfAAAAzUtDxh9uman/yCOPuCMsAAAAgGaGsQUAAABgj6I+AAAAAI/F2AIAAACw59fUCQAAAABAU0pNTVWXLl0UEhKiuLg4bd++vc6+GRkZGjZsmNq3b6+wsDDFx8dr48aNNfqtX79evXr1UnBwsHr16qU333zTnbcAAACAZqRJivq5ublasmSJlixZok8//bQpUgAAAADgA5wdW6Snp2vWrFmaO3eudu3apcTERI0cOVL5+fm19t+2bZuGDRumzMxM5eTk6JprrtH111+vXbt22frs3LlT48ePV1JSkr744gslJSVp3Lhx+uSTTxy+TwAAAKCaW4r627Zt0+23366PP/64xncPPvig4uLidN999+m+++7T4MGDddddd7kjDQAAAABezt1ji8WLF2vy5MmaMmWKevbsKZPJpM6dO2vFihW19jeZTPrb3/6myy+/XN26ddPjjz+ubt26acOGDXZ9hg0bppSUFPXo0UMpKSkaOnSoTCZTg3IDAAAAauOWon56erpef/119erVy6598+bNevzxx+Xv76+kpCRNnz5dRqNRqampeuutt9yRCgAAAAAv5s6xRXl5uXJycjR8+HC79uHDh2vHjh31inH27FmdOHFCbdu2tbXt3LmzRswRI0acN2ZZWZmKi4vtDgAAAKA2binq79y5U4MGDVJYWJhd+8qVK2UwGPTss88qLS1Ny5cv1/bt2xUYGKi0tDR3pAIAAADAi7lzbGGxWFRZWamIiAi79oiICBUWFtYrxt///nedPHlS48aNs7UVFhY2OOaiRYsUHh5uOzp37lyv6wMAAKD5cUtR//Dhw+revXuN9s2bNyssLEwTJ060tXXv3l2jRo3SZ5995o5UAAAAAHixxhhbGAwGu89Wq7VGW23WrVunefPmKT09XR06dHAqZkpKio4fP247Dh061IA7AAAAQHPilqL+zz//LKPRaNf2448/6siRI7riiivk52d/2YsvvlgWi8UdqQAAAADwYu4cWxiNRvn7+9eYQV9UVFRjpv250tPTNXnyZL322mu69tpr7b6LjIxscMzg4GCFhYXZHQAAAEBt3FLUb926tQ4fPmzXlpOTI0mKi4ur0d9gMCgkJMQdqQAAAADwYu4cWwQFBSkuLk5ZWVl27VlZWRoyZEid561bt04TJ07UK6+8ot///vc1vo+Pj68Rc9OmTeeNCQAAANRXgDuCXnrppXr33Xd18uRJtWzZUpL05ptvymAw6Morr6zRf9++fYqKinJHKgAAAAC8mLvHFsnJyUpKStKAAQMUHx+vVatWKT8/X9OnT5dUtSxOQUGB1qxZI6mqoH/77bdr6dKlGjx4sG1GfmhoqMLDwyVJ99xzj6688ko9+eSTGj16tN5++219+OGHys7OdupvAQAAAEhumqk/adIk/fTTT7rqqqu0bNky3X333Vq7dq06d+6sq6++2q5vZWWltm3bpr59+7ojFQAAAABezN1ji/Hjx8tkMmnBggXq16+ftm3bpszMTMXExEiSzGaz8vPzbf1XrlypiooKzZw5Ux07drQd99xzj63PkCFD9Oqrr+qFF17QpZdeqrS0NKWnp2vQoEHO/TEAAAAAuWmm/oQJE/Svf/1LL774onbt2iWr1arWrVvr//2//1djzcv33ntPFotFI0aMcEcqAAAAALxYY4wtZsyYoRkzZtT6XVpamt3nLVu21CvmTTfdpJtuuqlBeQAAAAD14ZaiviS98MILmjx5snbu3Km2bdtqxIgR6tSpU41+wcHBWrJkiUaPHu2uVAAAAAB4McYWAAAAwP+4ragvSVdccYWuuOKK8/YZMWIEs/QBAAAAnBdjCwAAAKCKW9bUBwAAAAAAAAAArueWmfqvvfaaQ+eNGzfOxZkAAAAA8GaMLQAAAAB7binq33zzzTIYDPXub7VaZTAYePAGAAAAYIexBQAAAGDPbWvqBwQEaNSoUerXr5+7LgEAAACgGWBsAQAAAPyPW4r6N9xwg9577z298847OnjwoCZNmqTbbrtNF1xwgTsuBwAAAMBHMbYAAAAA7Lllo9yMjAwVFBTo6aefVkVFhe6++25FRUXplltuUVZWljsuCQAAAMAHMbYAAAAA7LmlqC9JRqNRycnJ+vLLL/Xxxx/r9ttv1wcffKDf/e53io6O1sMPP6wffvjBXZcHAAAA4CMYWwAAAAD/47ai/i8NHDhQK1eulNlsVlpami6++GItXLhQ3bt314cfftgYKQAAAADwAYwtAAAA0Ny5baPc2oSEhGj48OEym8367rvvdPjwYZ06daoxUwAAAADgAxhbAAAAoLlqlKJ+ZWWl3n33Xa1evVrvv/++Kisr1a9fP6WkpGjo0KGNkQIAAAAAH8DYAgAAAM2dW4v6u3fv1urVq7V27VoVFRWpXbt2mjFjhiZNmqRLL73UnZcGAAAA4EMYWwAAAABV3FLUX7VqlVavXq1PP/1UBoNBw4cP16RJkzR69GgFBga645IAAAAAfBBjCwAAAMCeW4r606dPV2BgoK6//nrdcccduvDCCyVJu3btOu95AwcOdEc6AAAAALwUYwvXyMvLczqG0WhUdHS0C7IBAACAM9y2/M6ZM2e0YcMGbdiwod7nVFZWuisdAAAAAF6KsYXjSkpKZDAYNGHCBKdjhYaGas+ePRT2AQAAmphbivp33HGHO8ICAAAAaGYYWzintLRUVqtVY8eOldFodDiOxWJRRkaGLBYLRX0AAIAm5pai/gsvvOCOsAAAAACaGcYWrmE0GhUVFdXUaQAAAMAF/Jo6AQAAAAAAAAAAUD9umak/Y8YMh85LTU11cSaei42qAAAAgF/H2AIAAACw55ai/rPPPlvvvgaDwfbPzeHBm42qAAAAgPpjbAEAAADYc0tRf/PmzfXql5+frwULFmjfvn12D+C+jI2qAAAAgPprjLFFamqqnn76aZnNZvXu3Vsmk0mJiYm19jWbzbr33nuVk5OjvXv36u6775bJZLLrk5aWpj/96U81zj19+rRCQkIalBsAAABwLrcU9a+66qrzfv/zzz/r8ccf1/Lly1VaWqr4+Hg9+eST7kjFY7FRFQAAAPDr3D22SE9P16xZs5SamqqEhAStXLlSI0eO1O7du2udPFNWVqb27dtr7ty5WrJkSZ1xw8LC9O2339q1UdAHAACAKzTqRrmlpaV64okn1LVrV/39739XbGysMjIy9NFHH+mKK65oUKzU1FR16dJFISEhiouL0/bt2+vsm5GRoWHDhql9+/YKCwtTfHy8Nm7c6OztAAAAAGgirhpbLF68WJMnT9aUKVPUs2dPmUwmde7cWStWrKi1f2xsrJYuXarbb79d4eHhdcY1GAyKjIy0OwAAAABXaJSivtVq1XPPPadu3brpgQceUIsWLbRq1Sp9/fXXuuGGGxocr3o2zdy5c7Vr1y4lJiZq5MiRys/Pr7X/tm3bNGzYMGVmZionJ0fXXHONrr/+eu3atcvJOwMAAADQmFw5tigvL1dOTo6GDx9u1z58+HDt2LHDqTxLSkoUExOjTp066brrrvvVsUdZWZmKi4vtDgAAAKA2bll+55feeustPfDAA/r2228VFhamxx9/XLNmzXLq1dNfzqaRJJPJpI0bN2rFihVatGhRjf7nrnH5+OOP6+2339aGDRvUv39/h/PwBHl5eU7HMBqNrMsPAAAAj+fqsYXFYlFlZaUiIiLs2iMiIlRYWOhwnj169FBaWpr69u2r4uJiLV26VAkJCfriiy/UrVu3Ws9ZtGiR5s+f7/A1AQAA0Hy4raifnZ2t+++/Xx9//LGCgoI0e/ZszZ07VxdccIFTcatn08yZM8euvSGzac6ePasTJ06obdu2dfYpKytTWVmZ7bOnzZQpKSmRwWDQhAkTnI4VGhqqPXv2UNgHAACAR3LX2KLauRvrWq3WBm+2+0uDBw/W4MGDbZ8TEhJ02WWX6R//+IeWLVtW6zkpKSlKTk62fS4uLlbnzp0dzgEAAAC+yy1F/T/84Q9677335OfnpzvuuEMLFixQp06dXBLbFbNp/v73v+vkyZMaN25cnX08faZMaWmprFarxo4dK6PR6HAci8WijIwMWSwWivoAAADwOO4cWxiNRvn7+9cYRxQVFdUYbzjDz89Pl19+ufbu3Vtnn+DgYAUHB7vsmgAAAPBdbinqv/vuuzIYDIqOjlZhYaHuvPPOXz3HYDDovffeq/c1HJ1Ns27dOs2bN09vv/22OnToUGc/b5kpYzQaFRUV1dRpAAAAAG7hzrFFUFCQ4uLilJWVpTFjxtjas7KyNHr0aKfy/iWr1arc3Fz17dvXZTEBAADQfLlt+R2r1ar9+/dr//799epf39dbnZlNk56ersmTJ+v111/Xtddee96+zJQBAAAAPIO7xhaSlJycrKSkJA0YMEDx8fFatWqV8vPzNX36dElVk30KCgq0Zs0a2zm5ubmSqpbEPHLkiHJzcxUUFKRevXpJkubPn6/BgwerW7duKi4u1rJly5Sbm6vly5fXOy8AAACgLm4p6tf3YdsRjs6mWbdunSZNmqR169bp97//vdvyAwAAAOA67hxbSNL48eN19OhRLViwQGazWX369FFmZqZiYmIkSWazWfn5+Xbn9O/f3/bPOTk5euWVVxQTE6MDBw5Iko4dO6Y777xThYWFCg8PV//+/bVt2zYNHDjQrfcCAACA5sEtRf3qB2B3aehsmnXr1un222/X0qVLNXjwYNss/9DQUIWHh7s1VwAAAACOc/fYQpJmzJihGTNm1PpdWlpajTar1XreeEuWLNGSJUtckRoAAABQg9uW33Gnhs6mWblypSoqKjRz5kzNnDnT1n7HHXfU+pAOAAAAAKgpLy/P6RhGo1HR0dEuyAYAAKB58sqivtSw2TRbtmxxf0IAAAAA4KNKSkpkMBg0YcIEp2OFhoZqz549FPYBAAAc5LVFfQAAAABA4ygtLZXVatXYsWNlNBodjmOxWJSRkSGLxUJRHwAAwEEU9QEAAAAA9WI0GhUVFdXUaQAAADRrfk2dAAAAAAAAAAAAqB+K+gAAAAAAAAAAeAmK+gAAAAAAAAAAeAnW1IckKS8vz6nzjUYjG10BAAAAAAAAgJtR1G/mSkpKZDAYNGHCBKfihIaGas+ePRT2AQAAAAAAAMCNKOo3c6WlpbJarRo7dqyMRqNDMSwWizIyMmSxWCjqAwAAAAAAAIAbUdSHpKrlc6Kiopo6DQAAAAAAAADAebBRLgAAAAAAAAAAXoKiPgAAAAAAAAAAXoKiPgAAAAAAAAAAXoKiPgAAAAAAAAAAXoKNcuEyeXl5TscwGo2Kjo52QTYAAAAAAAAA4Hso6sNpJSUlMhgMmjBhgtOxQkNDtWfPHgr7AAAAgA9zdkIQk4EAAEBzRlEfTistLZXVatXYsWNlNBodjmOxWJSRkSGLxcIDOgAAAOCDXDUhiMlAAACgOaOoD5cxGo2Kiopq6jQAAAAAeChXTAhiMhAAAGjuKOoDAAAAABoVE4IAAAAcR1EfHocNdwEAAAD8GsYNAACguaKoD4/BhrsAAABoCqmpqXr66adlNpvVu3dvmUwmJSYm1trXbDbr3nvvVU5Ojvbu3au7775bJpOpRr/169froYce0r59+9S1a1ctXLhQY8aMcfOdNA+uHDcEBwdr/fr16tixo1Nx+HEAAAA0Jor68BhsuAsAAIDGlp6erlmzZik1NVUJCQlauXKlRo4cqd27d9f6LFlWVqb27dtr7ty5WrJkSa0xd+7cqfHjx+vRRx/VmDFj9Oabb2rcuHHKzs7WoEGD3H1LPs9V44b8/Hxt3LhR1113ndM5MakIAAA0Jor68DisrwkAAIDGsnjxYk2ePFlTpkyRJJlMJm3cuFErVqzQokWLavSPjY3V0qVLJUmrV6+uNabJZNKwYcOUkpIiSUpJSdHWrVtlMpm0bt06N91J8+PsuMFisTCpCAAAeCWK+gAAAACapfLycuXk5GjOnDl27cOHD9eOHTscjrtz507Nnj3brm3EiBG1LtNTraysTGVlZbbPxcXFDl8fDcOkIgAA4G0o6sNnsXEWAAAAzsdisaiyslIRERF27RERESosLHQ4bmFhYYNjLlq0SPPnz3f4mgAAAGg+KOrD57DhLgAAABrCYDDYfbZarTXa3B0zJSVFycnJts/FxcXq3LmzWvsZ1FJnHc6jTYC/Ilu1VJgPxfGkXCQpzM+gyFYtFVB6WtYTvGEBAAAc05DnCIr68Dmu3nB3+/bt6tmzp1M5lZWVKTg4uMljSLx9AAAAUM1oNMrf37/GDPqioqIaM+0bIjIyssExg4ODa33WG9U6SO1V6nAu/SIv0JBrr1D3sCC18JE4npSLJJ0KC1KPa69QZN4uVRblOxwHAAA0b5WnTtW7L0V9+Cxn18Z05Yx/g8Egq9Xa5DEk3j4AAACoFhQUpLi4OGVlZWnMmDG29qysLI0ePdrhuPHx8crKyrJbV3/Tpk0aMmRIg2OdsUqn5PhbAycqK3X01GmdPGuVfCSOJ+UiSSfPWnX01GlVBAVLoS0djgMAAJq58jP17kpRH6iDq2b87927V5s3b3YqjitiSP97+8BisVDUBwAAkJScnKykpCQNGDBA8fHxWrVqlfLz8zV9+nRJVcviFBQUaM2aNbZzcnNzJVVNAjly5Ihyc3MVFBSkXr16SZLuueceXXnllXryySc1evRovf322/rwww+VnZ3d4PzKrVadcaLgXHrWqpLyMyqzSkE+EseTcpGkMqtUUn5GRT8f09mAQIfjSFJlRYX8A5wfprsiTosWLRQeHu50LgAAoJ4Cgurf1Y1pAD7B2Rn/FovF6TiuiAEAAICaxo8fr6NHj2rBggUym83q06ePMjMzFRMTI0kym83Kz7dfUqV///62f87JydErr7yimJgYHThwQJI0ZMgQvfrqq3rwwQf10EMPqWvXrkpPT9egQYMa7b7QeMrLyyVJGW++2cSZuFZAQID+8pe/UNgHAMADUdQHmqG8vDynY7A2PwAA8BUzZszQjBkzav0uLS2tRlt9lkS86aabdNNNNzmbGrxARUWFJKlnz55q0aKFw3GOHj2qAwcOeEScU6dOKS8vT6dOnaKoDwCAB6KoDzQjrtwngLX5AQAAgP9p0aKFWrdu5fD5p/5vczxPiQMAADwXRX2gGXHVPgGszQ8AAAAAAAA0DYr6DdTaz6CWOuvw+W0C/BXZqqXCfCiOJ+Xiq3FcnctFHdorIjLC4ThhfgZFtmqpgNLTsp4odjgOAACejP+NA9DcWY4ccToGG+4CAOB6FPUbaFTrILVXqcPn94u8QEOuvULdw4LUwkfieFIuvhrHk3KRpFNhQepx7RUK2blFR/J2ORxHkoKDQ9SyVUunYgAA4A6V/7eEBQA0N67c/JcNdwEAcD2K+g10xiqdksHh809UVuroqdM6edYq+UgcT8rFV+N4Ui6S9HNpuY6eOq23Nm1yOEY1Pz9/jf7D9WrZyvH1PkNDQ9W6dZjTuQAAYKf8TFNnAABNwlWb/7LhLgAA7kFRv4HKrVadcaIYWnrWqpLyMyqzSkE+EseTcvHVOJ6UiySdPHNGJeVnnH7IP378uL7//nu99NrrDseQmP0DAHCTgKCmzgAAmpSrNtt1xTI+lRUV8g9wvoTBckAAAF/gtUX91NRUPf300zKbzerdu7dMJpMSExNr7Ws2m3XvvfcqJydHe/fu1d133y2TydS4CQM+yNmH/FP/t6yBMz8OMPsHAAAA8EyuXMbHVZgQBADwBV5Z1E9PT9esWbOUmpqqhIQErVy5UiNHjtTu3bsVHR1do39ZWZnat2+vuXPnasmSJU2QMYDzcdUMIAAAAACew1XL+Bw9elQHDhxgOSAAAP6PVxb1Fy9erMmTJ2vKlCmSJJPJpI0bN2rFihVatGhRjf6xsbFaunSpJGn16tWNmiuAxsErvQAAAIBnctUbvp6yHBDP+wCApuZ1Rf3y8nLl5ORozpw5du3Dhw/Xjh07XHadsrIylZWV2T4XFxe7LDYA1/HEV3r9/f01ftw4tWrd2qk4DBYAAAAA13HV2IElfAAATc3rivoWi0WVlZWKiIiwa4+IiFBhYaHLrrNo0SLNnz/fZfEAuIenvdJbvfnvK+vWORyjGoMFAAAAwHVcMXZgCR8AgCfwuqJ+NYPBYPfZarXWaHNGSkqKkpOTbZ+Li4vVuXNnl8UH4Fqe8kqvKzb/rY7DYAEAAABwPVcs4+OK5T95MxcA4CivK+objUb5+/vXmJVfVFRUY/a+M4KDgxUcHOyyeACaF09Z77M6FwYLAAB4pyCDQYGyOnx+iJ9BrYICFWyQz8TxpFx8NY4n5eJpcQxnzqhVUKA2vfeuw3lU8/cP0KRJf1Lr1mFOxwIA+ICK8np39bqiflBQkOLi4pSVlaUxY8bY2rOysjR69OgmzAwAXMeVewW4Yo1/V20izGbEAAA0TKBBauFEEbO1v7/atQhVSz+Dz8TxpFx8NY4n5eJpccpkVbsWoYqJjlFwiOMTActKy3Qw/6COHDyoM22ce64NDg5Ry1YtnYoBAPAAFWfq3dXrivqSlJycrKSkJA0YMEDx8fFatWqV8vPzNX36dElVS+cUFBRozZo1tnNyc3MlSSUlJTpy5Ihyc3MVFBSkXr16NcUtAMB5uWqvAFeu8e9J2G8AANBcZJ4oV/QFIQ6fn1f4szI/zNaEyFhFtLjAJ+J4Ui6+GseTcvG0OLYYE2IV0dbxXH4w/6C3/vWRrB9mOxyjWlBQkJ577jmnVy9o27atLrzwQqfzAQA4xr+4uN59vbKoP378eB09elQLFiyQ2WxWnz59lJmZqZiYGEmS2WxWfn6+3Tn9+/e3/XNOTo5eeeUVxcTE6MCBA42ZOgA0iCes8e+qTYRdFad6v4H8gwdlbN/e4TgSM/4BAJ7vxFmrTsrP4fOPVVSqsOSkis9a1cpH4nhSLr4ax5Ny8bQ4rsrlvydPyXyiRGPHjpXRaHQ4Tn5+vjZu3KjhY290OEa14OBgrV+/Xh07dnQqjtFoVHR0tNP5AEBzY2jAS2ReWdSXpBkzZmjGjBm1fpeWllajzWp1/BU9APB2zvw44OpNhJ2N42lLE/HDAAAAABxlNBoVFRXl8PkWi0VWq9VlPw5cd911DseoFhoaqj179lDYBwA38tqiPgCgefK0pYlYCggAAABNzVN+HLBYLMrIyND27dvVs2dPh+OUlZUpONjxPQuq8dYAAF9FUR8A4JU8YWmi6qWATp06RVEfAAAAXs/ZHwdKSkpkMBg0YcIEp/IwGAwuWXGBJYUA+CqK+g0UZDAoUI7/D0uIn0GtggIVbJDPxPGkXHw1jifl4mlxPCkXX43jSbm4I84FLVuoZauWDsUINkitggJ17L+F8mvALvW1qayokH+A8/+zHBoaqtatw5yOA0BSRXlTZwAAgFcpLS11esb/3r17tXnzZpYUAoDzoKjfQIEGqYUTRaTW/v5q1yJULf0MPhPHk3Lx1TielIunxfGkXHw1jifl4mlxKior1a5FqD7ZusXhPFzNz89P11x9jVq0CHUqTnBwiMM/dgA+w8kf6wAAaK6cmfFvsVicjlEdx5OWFJKY8Q/AdSjqN1DmiXJFXxDi8Pl5hT8r88NsTYiMVUSLC3wijifl4qtxPCkXT4vjSbn4ahxPysXT4uQV7Ffmh9kaNWqU2rZt63Au+/f/oI8+2uF0nIKCAm351xZZN21zOEa1oKAgPffcc4qIiHAqTnl5mYKCnFsPtW3btrrwwgudigE4wr+4uKlTQCNJTU3V008/LbPZrN69e8tkMikxMbHO/lu3blVycrK++eYbRUVF6W9/+5umT59u+z4tLU1/+tOfapx3+vRphYQ4PpYAADScpywpJLlmOSD2GwAgUdRvsBNnrTopP4fPP1ZRqcKSkyo+a1UrH4njSbn4ahxPysXT4nhSLr4ax5Ny8bQ41TEC2lygVpGOP5hbi464JE5Z0RGZT5S47FXl4WNvdDhGNVesh8paqGgqBueX8oUXSE9P16xZs5SamqqEhAStXLlSI0eO1O7du2v9/xn79+/XqFGjNHXqVK1du1YfffSRZsyYofbt2+vGG//3/zfDwsL07bff2p1LQR8AvI8rlhSSXLccEPsNAJAo6gMA4HM85VVlV6yH6sq1UBm4AKjN4sWLNXnyZE2ZMkWSZDKZtHHjRq1YsUKLFi2q0f/ZZ59VdHS0TCaTpKoN1z/77DM988wzdkV9g8GgyMjIRrkHAID7ecIzNvsNAKhGUR8AANTKFQMXZ+O46gcGBi4AalNeXq6cnBzNmTPHrn348OHasWNHrefs3LlTw4cPt2sbMWKEnn/+eZ05c0aBgYGSqpZriImJUWVlpfr166dHH31U/fv3rzOXsrIylZWV2T4Xs/wTAPgkX9xvwGKx8GwMNDKK+gAAwON52sCFjdIA32CxWFRZWVlj/5CIiAgVFhbWek5hYWGt/SsqKmSxWNSxY0f16NFDaWlp6tu3r4qLi7V06VIlJCToiy++ULdu3WqNu2jRIs2fP981NwYAQD04+4xdLS8vzyW58GwM1B9FfQAA0Gx40kZpzPhvOpWV0vbtktksdewoJSZK/v5NnRWaksFgsPtstVprtP1a/1+2Dx48WIMHD7Z9n5CQoMsuu0z/+Mc/tGzZslpjpqSkKDk52fa5uLhYnTt3btiNAADQiDxtE2GJHwfQfFDUBwAAqCdXbZTGq8pNJyNDuuce6ccf/9fWqZO0dKk0dmzT5YWmYTQa5e/vX2NWflFRUY3Z+NUiIyNr7R8QEKB27drVeo6fn58uv/xy7d27t85cgoODFRwc3MA7AACg6XjaJsKSa34c4IcBeAOK+gAAAA3kqleV0bgyMqSbbpL+b1K1TUFBVfsbb1DYb26CgoIUFxenrKwsjRkzxtaelZWl0aNH13pOfHy8NmzYYNe2adMmDRgwwLae/rmsVqtyc3PVt29f1yUPAICH8JSlMl314wBvDcAbUNQHAACAz6usrJqhf25BX6pqMxikWbOk0aNZiqe5SU5OVlJSkgYMGKD4+HitWrVK+fn5mj59uqSqZXEKCgq0Zs0aSdL06dP1z3/+U8nJyZo6dap27typ559/XuvWrbPFnD9/vgYPHqxu3bqpuLhYy5YtU25urpYvX94k9wgAgDfwhB8HXPnWAMttopo7lv+kqA8AAACft327/ZI757JapUOHqvpdfXWjpQUPMH78eB09elQLFiyQ2WxWnz59lJmZqZiYGEmS2WxWfn6+rX+XLl2UmZmp2bNna/ny5YqKitKyZct044032vocO3ZMd955pwoLCxUeHq7+/ftr27ZtGjhwYKPfHwAAzY0zPw646q2B6uU2t2/frp49ezocR2LGv7dz1/KfFPUBAACaSF5enlPnl5WVuWQN7uYwUDCbXdsPvmXGjBmaMWNGrd+lpaXVaLvqqqv0+eef1xlvyZIlWrJkiavSAwAAjczZtwZcuYkwM/69lzuX/6SoDwAA0Mhc9ZBvMBhkrW09mQZqDgOF+i6J6uTSqQAAAIDLNhF25Yx/V0wIag6TgVzF3ct/UtQHAABoZK54yN+7d682b97ssoGCxWLx6Qf0xMSq11wLCmp/sDYYqr5PTGz83AAAAOCbPGnGvysmBDWHyUCu4u7lPynqAwAANBFn1/t0NkZz4u9ftW7lTTdVFfB/OZ4xGKr+r8nEJrkAAADwHK6a8e+KCUHsE9Aw7l7+k6I+AAAAmoWxY6vWraxtoyqTybmNqgAAAAB3cXYijysmBLFPQMO4e/lPivoAAABoNsaOrVq3cvv2qlkxHTtWLbnDDH0AAACgbq7eJ4DlP51b/pOiPgAAAJoVf3/H1q0EAAAAmjuW/6wfdy//6ed0hgAAAAAAAAAAwKZ6+c8LL7Rv79Spqt2Z5T+ZqQ8AAAAAAAAAgIu5a/lPivoAAAAAAAAAALiBO5b/pKgPAAAA5eXlOR3DaDT69GZXAAAAAOAJKOoDAAA0YyUlJTIYDJowYYLTsUJDQ7Vnzx4K+wAAAADOyxWTisrKyhQcHOx0HG+cnERRHwAAoBkrLS2V1WrV2LFjZTQaHY5jsViUkZEhi8XidQ/EAAAAABqHKycVGQwGWa1Wp+N44+QkivoAAACQ0WhUVFSU03FYxgcAAABAXVw1qWjv3r3avHlzs52cRFEfAAAATmMZHwAAAAD15eykIovF4pI43oqiPgAAAJzGMj4AAAAA0Dgo6gMAAMBlmutMGQAAAABoLH5NnQAAAAAAAAAAAKgfivoAAAAAAAAAAHgJivoAAAAAAAAAAHgJivoAAAAAAAAAAHgJivoAAAAAAAAAAHgJivoAAAAAAAAAAHgJry3qp6amqkuXLgoJCVFcXJy2b99+3v5bt25VXFycQkJCdNFFF+nZZ59tpEwBAAAAeDJ3jC3Wr1+vXr16KTg4WL169dKbb77prvQBAADQzHhlUT89PV2zZs3S3LlztWvXLiUmJmrkyJHKz8+vtf/+/fs1atQoJSYmateuXXrggQd09913a/369Y2cOQAAAABP4o6xxc6dOzV+/HglJSXpiy++UFJSksaNG6dPPvmksW4LAAAAPswri/qLFy/W5MmTNWXKFPXs2VMmk0mdO3fWihUrau3/7LPPKjo6WiaTST179tSUKVM0adIkPfPMM42cOQAAAABP4o6xhclk0rBhw5SSkqIePXooJSVFQ4cOlclkaqS7AgAAgC8LaOoEGqq8vFw5OTmaM2eOXfvw4cO1Y8eOWs/ZuXOnhg8fbtc2YsQIPf/88zpz5owCAwNrnFNWVqaysjLb5+PHj0uSCgsLncr/yJEjkiSz2azy8nKfiONJufhqHE/KxdPieFIuvhrHk3LxtDielIuvxvGkXDwtjifl4so4R48elSSVlJSouLjY4TiuUH19q9XapHnAfdw1tti5c6dmz55do8/5ivqMP7wzF1+N40m5eFocT8rFV+N4Ui6eFseTcvHVOJ6Ui6fF8aRcXBnHa8cfVi9TUFBglWT96KOP7NoXLlxo7d69e63ndOvWzbpw4UK7to8++sgqyXr48OFaz3nkkUeskjg4ODg4ODg4OJr5cejQIdc8yMLjuGtsERgYaH355Zft+rz88svWoKCgOnNh/MHBwcHBwcHBwSHVb/zhdTP1qxkMBrvPVqu1Rtuv9a+tvVpKSoqSk5Ntn8+ePauffvpJ7dq1O+91AAAA4BusVqtOnDihqKiopk4FbuaOsUVDYzL+AAAAaN4aMv7wuqK+0WiUv79/jddQi4qKFBERUes5kZGRtfYPCAhQu3btaj0nODhYwcHBdm1t2rRxPHEAAAB4nfDw8KZOAW7krrFFXX3qiikx/gAAAED9xx9et1FuUFCQ4uLilJWVZdeelZWlIUOG1HpOfHx8jf6bNm3SgAEDal1PHwAAAIDvc9fYoq4+dcUEAAAAGsLrivqSlJycrOeee06rV69WXl6eZs+erfz8fE2fPl1S1aurt99+u63/9OnTdfDgQSUnJysvL0+rV6/W888/r/vuu6+pbgEAAACAB3DH2OKee+7Rpk2b9OSTT2rPnj168skn9eGHH2rWrFmNfXsAAADwQV63/I4kjR8/XkePHtWCBQtkNpvVp08fZWZmKiYmRlLVrsf5+fm2/l26dFFmZqZmz56t5cuXKyoqSsuWLdONN97YVLcAAAAAwAO4Y2wxZMgQvfrqq3rwwQf10EMPqWvXrkpPT9egQYMa/f4AAADgewzW6l2dAAAAAAAAAACAR/PK5XcAAAAAAAAAAGiOKOoDAAAAAAAAAOAlKOoDAAAAAAAAAOAlKOoDAAAAAAAAAOAlKOoDAAAAAAAAAOAlKOoDAAAAAAAAAOAlKOoDAAAAAAAAAOAlKOoDAAAAAAAAAOAlKOoDAAAAAAAAAOAlKOoDAAAAAAAAAOAlKOoDAAAAAAAAAOAl/j9yuMVz+9OrogAAAABJRU5ErkJggg==", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "fig = plt.figure(figsize=(16, 16))\n", "\n", "vert_coord = 0.99\n", "fig.text(\n", " 0.5,\n", " vert_coord,\n", " \"THIS RUN = \" + case_name + \" \" + start_date + \" to \" + end_date,\n", " ha=\"center\",\n", " va=\"center\",\n", " fontsize=14,\n", " color=\"royalblue\",\n", ")\n", "vert_coord = vert_coord - 0.015\n", "if base_case_name is not None:\n", " fig.text(\n", " 0.5,\n", " vert_coord,\n", " \"BASELINE RUN = \"\n", " + base_case_name\n", " + \" \"\n", " + base_start_date\n", " + \" to \"\n", " + base_end_date,\n", " ha=\"center\",\n", " va=\"center\",\n", " fontsize=14,\n", " color=\"red\",\n", " )\n", " vert_coord = vert_coord - 0.015\n", "\n", "fig.text(\n", " 0.5,\n", " vert_coord,\n", " \"Other runs = 1979-01-01 to 2023-12-31\",\n", " ha=\"center\",\n", " va=\"center\",\n", " fontsize=14,\n", ")\n", "vert_coord = vert_coord - 0.015\n", "\n", "fig.text(\n", " 0.5,\n", " vert_coord,\n", " \"Validation data = ERA5 1979-01-01 to 2023-12-31\",\n", " ha=\"center\",\n", " va=\"center\",\n", " fontsize=14,\n", ")\n", "vert_coord = vert_coord - 0.03\n", "\n", "ax = plotnmse(\n", " fig,\n", " nmse_cmip6[\"AM\"],\n", " nmse_cesm2[\"AM\"],\n", " nmse_dat[\"AM\"],\n", " nmse_base_dat[\"AM\"],\n", " 0.3,\n", " 0.7,\n", " vert_coord - 0.16,\n", " vert_coord,\n", " \"NMSE, SLP, AM\",\n", ")\n", "ax = plotnmse(\n", " fig,\n", " nmse_cmip6[\"DJF\"],\n", " nmse_cesm2[\"DJF\"],\n", " nmse_dat[\"DJF\"],\n", " nmse_base_dat[\"DJF\"],\n", " 0.05,\n", " 0.45,\n", " 0.57,\n", " 0.72,\n", " \"NMSE, SLP, DJF\",\n", ")\n", "ax = plotnmse(\n", " fig,\n", " nmse_cmip6[\"MAM\"],\n", " nmse_cesm2[\"MAM\"],\n", " nmse_dat[\"MAM\"],\n", " nmse_base_dat[\"MAM\"],\n", " 0.55,\n", " 0.95,\n", " 0.57,\n", " 0.72,\n", " \"NMSE, SLP, MAM\",\n", ")\n", "ax = plotnmse(\n", " fig,\n", " nmse_cmip6[\"JJA\"],\n", " nmse_cesm2[\"JJA\"],\n", " nmse_dat[\"JJA\"],\n", " nmse_base_dat[\"JJA\"],\n", " 0.05,\n", " 0.45,\n", " 0.37,\n", " 0.52,\n", " \"NMSE, SLP, JJA\",\n", ")\n", "ax = plotnmse(\n", " fig,\n", " nmse_cmip6[\"SON\"],\n", " nmse_cesm2[\"SON\"],\n", " nmse_dat[\"SON\"],\n", " nmse_base_dat[\"SON\"],\n", " 0.55,\n", " 0.95,\n", " 0.37,\n", " 0.52,\n", " \"NMSE, SLP, SON\",\n", ")" ] } ], "metadata": { "kernelspec": { "display_name": "cupid-analysis", "language": "python", "name": "cupid-analysis" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.11.4" }, "papermill": { "duration": 27.982836, "end_time": "2025-10-13T17:49:34.704504", "exception": null, "input_path": "/glade/derecho/scratch/richling/tmp/tmpljh8iqc0.ipynb", "output_path": "/glade/work/richling/CUPid_pr_test/CUPiD/examples/key_metrics/computed_notebooks/atm/Global_PSL_NMSE_compare_obs_lens.ipynb", "parameters": { "CESM_output_dir": "/glade/campaign/cesm/development/cross-wg/diagnostic_framework/CESM_output_for_testing", "base_case_name": "Obs", "base_end_date": "0101-01-01", "base_regridded_output": true, "base_start_date": "0001-01-01", "case_name": "b.e30_beta02.BLT1850.ne30_t232.104", "end_date": "0101-01-01", "lc_kwargs": { "threads_per_worker": 1 }, "obs_data_dir": "/glade/campaign/cesm/development/cross-wg/diagnostic_framework/CUPiD_obs_data", "product": "/glade/work/richling/CUPid_pr_test/CUPiD/examples/key_metrics/computed_notebooks//atm/Global_PSL_NMSE_compare_obs_lens.ipynb", "regridded_output": false, "serial": false, "start_date": "0001-01-01", "subset_kwargs": {}, "ts_dir": null, "validation_path": "atm/analysis_datasets/fv0.9x1.25/seasonal_climatology/nmse_validation/PSL/" }, "start_time": "2025-10-13T17:49:06.721668" } }, "nbformat": 4, "nbformat_minor": 5 }