{ "cells": [ { "cell_type": "markdown", "id": "3f230d52-dca7-4ce4-98cc-6267fc04893d", "metadata": { "editable": true, "papermill": { "duration": 0.006336, "end_time": "2025-10-28T23:29:04.282910", "exception": false, "start_time": "2025-10-28T23:29:04.276574", "status": "completed" }, "slideshow": { "slide_type": "" }, "tags": [] }, "source": [ "# SLP (NMSE)\n", "\n", "This notebook computes the normalized mean square error of atmospheric surface pressure.\n", "It is compared to ERA5 observations, as well as the CESM2 large ensemble and CMIP6 model output." ] }, { "cell_type": "code", "execution_count": 1, "id": "2292c691-9bd9-44d2-8a3f-cb90dbe2e383", "metadata": { "editable": true, "execution": { "iopub.execute_input": "2025-10-28T23:29:04.293415Z", "iopub.status.busy": "2025-10-28T23:29:04.293095Z", "iopub.status.idle": "2025-10-28T23:29:06.418219Z", "shell.execute_reply": "2025-10-28T23:29:06.417805Z" }, "papermill": { "duration": 2.129767, "end_time": "2025-10-28T23:29:06.419716", "exception": false, "start_time": "2025-10-28T23:29:04.289949", "status": "completed" }, "slideshow": { "slide_type": "" }, "tags": [ "hide-input" ] }, "outputs": [], "source": [ "import glob\n", "import os\n", "\n", "import matplotlib.pyplot as plt\n", "import numpy as np\n", "import xarray as xr\n", "\n", "from nmse_utils import nmse\n", "from averaging_utils import seasonal_climatology_weighted" ] }, { "cell_type": "markdown", "id": "9d67416c-a2d4-403b-85f4-647aa0a816eb", "metadata": { "editable": true, "papermill": { "duration": 0.003875, "end_time": "2025-10-28T23:29:06.428883", "exception": false, "start_time": "2025-10-28T23:29:06.425008", "status": "completed" }, "slideshow": { "slide_type": "" }, "tags": [] }, "source": [ "## Parameters\n", "\n", "These variables are set in `config.yml`" ] }, { "cell_type": "code", "execution_count": 2, "id": "b7486e94-e493-4369-9767-90eb15c0ac3a", "metadata": { "editable": true, "execution": { "iopub.execute_input": "2025-10-28T23:29:06.433789Z", "iopub.status.busy": "2025-10-28T23:29:06.433397Z", "iopub.status.idle": "2025-10-28T23:29:06.437413Z", "shell.execute_reply": "2025-10-28T23:29:06.437184Z" }, "papermill": { "duration": 0.007003, "end_time": "2025-10-28T23:29:06.437906", "exception": false, "start_time": "2025-10-28T23:29:06.430903", "status": "completed" }, "slideshow": { "slide_type": "" }, "tags": [ "parameters", "hide-input" ] }, "outputs": [], "source": [ "CESM_output_dir = \"\"\n", "case_name = \"\"\n", "start_date = \"\"\n", "end_date = \"\"\n", "base_case_output_dir = None\n", "ts_dir = None\n", "base_case_name = None\n", "base_start_date = None\n", "base_end_date = None\n", "obs_data_dir = \"\"\n", "validation_path = \"\"\n", "regridded_output = False\n", "base_regridded_output = None" ] }, { "cell_type": "code", "execution_count": 3, "id": "68a16d3a", "metadata": { "execution": { "iopub.execute_input": "2025-10-28T23:29:06.442475Z", "iopub.status.busy": "2025-10-28T23:29:06.442356Z", "iopub.status.idle": "2025-10-28T23:29:06.447820Z", "shell.execute_reply": "2025-10-28T23:29:06.447508Z" }, "papermill": { "duration": 0.008415, "end_time": "2025-10-28T23:29:06.448396", "exception": false, "start_time": "2025-10-28T23:29:06.439981", "status": "completed" }, "tags": [ "injected-parameters" ] }, "outputs": [], "source": [ "# Parameters\n", "case_name = \"b.e30_alpha07c_cesm.B1850C_LTso.ne30_t232_wgx3.232\"\n", "base_case_name = \"b.e30_alpha07c_cesm.B1850C_LTso.ne30_t232_wgx3.228\"\n", "CESM_output_dir = \"/glade/campaign/cesm/development/cross-wg/diagnostic_framework/CESM_output_for_testing\"\n", "start_date = \"0001-01-01\"\n", "end_date = \"0021-01-01\"\n", "base_start_date = \"0001-01-01\"\n", "base_end_date = \"0045-01-01\"\n", "obs_data_dir = (\n", " \"/glade/campaign/cesm/development/cross-wg/diagnostic_framework/CUPiD_obs_data\"\n", ")\n", "ts_dir = None\n", "lc_kwargs = {\"threads_per_worker\": 1}\n", "serial = False\n", "regridded_output = False\n", "base_regridded_output = False\n", "validation_path = (\n", " \"atm/analysis_datasets/fv0.9x1.25/seasonal_climatology/nmse_validation/PSL/\"\n", ")\n", "subset_kwargs = {}\n", "product = \"/glade/work/richling/CUPid_pr_test/CUPiD/examples/key_metrics/computed_notebooks//atm/Global_PSL_NMSE_compare_obs_lens.ipynb\"\n" ] }, { "cell_type": "code", "execution_count": 4, "id": "9dfe1566-abe3-4b23-a59c-113334a0458f", "metadata": { "editable": true, "execution": { "iopub.execute_input": "2025-10-28T23:29:06.453331Z", "iopub.status.busy": "2025-10-28T23:29:06.453076Z", "iopub.status.idle": "2025-10-28T23:29:06.459727Z", "shell.execute_reply": "2025-10-28T23:29:06.459426Z" }, "papermill": { "duration": 0.010003, "end_time": "2025-10-28T23:29:06.460566", "exception": false, "start_time": "2025-10-28T23:29:06.450563", "status": "completed" }, "slideshow": { "slide_type": "" }, "tags": [ "hide-input" ] }, "outputs": [], "source": [ "# Want some base case parameter defaults to equal control case values\n", "if base_case_name is not None:\n", " if base_case_output_dir is None:\n", " base_case_output_dir = CESM_output_dir\n", "\n", " if base_start_date is None:\n", " base_start_date = start_date\n", "\n", " if base_end_date is None:\n", " base_end_date = end_date\n", "\n", " if base_regridded_output is None:\n", " base_regridded_output = regridded_output\n", "if ts_dir is None:\n", " ts_dir = CESM_output_dir" ] }, { "cell_type": "markdown", "id": "74c7803f-a8c5-445d-9233-0aa2663c58bd", "metadata": { "editable": true, "papermill": { "duration": 0.002052, "end_time": "2025-10-28T23:29:06.466088", "exception": false, "start_time": "2025-10-28T23:29:06.464036", "status": "completed" }, "slideshow": { "slide_type": "" }, "tags": [] }, "source": [ "## Read in the current case" ] }, { "cell_type": "code", "execution_count": 5, "id": "7f4132b5-db1f-4ae8-92df-07dd531b650e", "metadata": { "editable": true, "execution": { "iopub.execute_input": "2025-10-28T23:29:06.470426Z", "iopub.status.busy": "2025-10-28T23:29:06.470306Z", "iopub.status.idle": "2025-10-28T23:29:06.473173Z", "shell.execute_reply": "2025-10-28T23:29:06.472722Z" }, "papermill": { "duration": 0.005747, "end_time": "2025-10-28T23:29:06.473783", "exception": false, "start_time": "2025-10-28T23:29:06.468036", "status": "completed" }, "slideshow": { "slide_type": "" }, "tags": [ "hide-input" ] }, "outputs": [], "source": [ "def fix_time_dim(dat):\n", " \"\"\"CESM2 output sets time as the end of the averaging interval (e.g. January average is midnight on February 1st);\n", " This function sets the time dimension to the midpoint of the averaging interval.\n", " Note that CESM3 output sets time to the midpoint already, so this function should not change CESM3 data.\"\"\"\n", " if \"time\" not in dat.dims:\n", " return dat\n", " if \"bounds\" not in dat.time.attrs:\n", " return dat\n", " time_bounds_avg = dat[dat.time.attrs[\"bounds\"]].mean(\"nbnd\")\n", " time_bounds_avg.attrs = dat.time.attrs\n", " dat = dat.assign_coords({\"time\": time_bounds_avg})\n", " return xr.decode_cf(dat)" ] }, { "cell_type": "code", "execution_count": 6, "id": "caf05d8b-a711-40fb-b88a-c10472a49d30", "metadata": { "execution": { "iopub.execute_input": "2025-10-28T23:29:06.478622Z", "iopub.status.busy": "2025-10-28T23:29:06.478397Z", "iopub.status.idle": "2025-10-28T23:29:06.482697Z", "shell.execute_reply": "2025-10-28T23:29:06.482342Z" }, "papermill": { "duration": 0.007338, "end_time": "2025-10-28T23:29:06.483230", "exception": false, "start_time": "2025-10-28T23:29:06.475892", "status": "completed" }, "tags": [] }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "/glade/campaign/cesm/development/cross-wg/diagnostic_framework/CESM_output_for_testing/b.e30_alpha07c_cesm.B1850C_LTso.ne30_t232_wgx3.232/atm/proc/tseries\n" ] } ], "source": [ "if regridded_output:\n", " file_path = f\"{ts_dir}/{case_name}/atm/proc/tseries/regrid\"\n", "else:\n", " file_path = f\"{ts_dir}/{case_name}/atm/proc/tseries\"\n", "print(file_path)" ] }, { "cell_type": "code", "execution_count": 7, "id": "318b8c9a-344f-41d5-87be-593847e4b6f1", "metadata": { "execution": { "iopub.execute_input": "2025-10-28T23:29:06.489482Z", "iopub.status.busy": "2025-10-28T23:29:06.489324Z", "iopub.status.idle": "2025-10-28T23:29:06.494305Z", "shell.execute_reply": "2025-10-28T23:29:06.493858Z" }, "papermill": { "duration": 0.008064, "end_time": "2025-10-28T23:29:06.494839", "exception": false, "start_time": "2025-10-28T23:29:06.486775", "status": "completed" }, "tags": [] }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "/glade/campaign/cesm/development/cross-wg/diagnostic_framework/CESM_output_for_testing/b.e30_alpha07c_cesm.B1850C_LTso.ne30_t232_wgx3.228/atm/proc/tseries\n" ] } ], "source": [ "if base_case_name is not None:\n", " if base_regridded_output:\n", " base_file_path = f\"{ts_dir}/{base_case_name}/atm/proc/tseries/regrid\"\n", " else:\n", " base_file_path = f\"{ts_dir}/{base_case_name}/atm/proc/tseries\"\n", " print(base_file_path)" ] }, { "cell_type": "code", "execution_count": 8, "id": "ccca8e3a-a52f-4202-9704-9d4470eda984", "metadata": { "editable": true, "execution": { "iopub.execute_input": "2025-10-28T23:29:06.499878Z", "iopub.status.busy": "2025-10-28T23:29:06.499663Z", "iopub.status.idle": "2025-10-28T23:29:11.502160Z", "shell.execute_reply": "2025-10-28T23:29:11.501627Z" }, "papermill": { "duration": 5.006461, "end_time": "2025-10-28T23:29:11.503537", "exception": false, "start_time": "2025-10-28T23:29:06.497076", "status": "completed" }, "slideshow": { "slide_type": "" }, "tags": [ "hide-input" ] }, "outputs": [], "source": [ "dat = (\n", " fix_time_dim(xr.open_mfdataset(f\"{file_path}/*PSL*.nc\", decode_times=False))\n", " .sel(time=slice(start_date, end_date))\n", " .PSL\n", " / 100.0\n", ")\n", "\n", "# Ensure all datasets have the same coordinates as the output data\n", "# (Avoid round-off level differences since all data should be on the same grid)\n", "lon = dat.lon.data\n", "lat = dat.lat.data\n", "\n", "if base_case_name is not None:\n", " base_dat = (\n", " fix_time_dim(\n", " xr.open_mfdataset(f\"{base_file_path}/*PSL*.nc\", decode_times=False)\n", " )\n", " .sel(time=slice(base_start_date, base_end_date))\n", " .assign_coords({\"lon\": lon, \"lat\": lat})\n", " .PSL\n", " / 100.0\n", " )" ] }, { "cell_type": "code", "execution_count": 9, "id": "073a2ad0-81e6-4817-9024-4b9b718fabb4", "metadata": { "editable": true, "execution": { "iopub.execute_input": "2025-10-28T23:29:11.515527Z", "iopub.status.busy": "2025-10-28T23:29:11.515287Z", "iopub.status.idle": "2025-10-28T23:29:14.078811Z", "shell.execute_reply": "2025-10-28T23:29:14.078515Z" }, "papermill": { "duration": 2.570058, "end_time": "2025-10-28T23:29:14.079641", "exception": false, "start_time": "2025-10-28T23:29:11.509583", "status": "completed" }, "slideshow": { "slide_type": "" }, "tags": [ "hide-input" ] }, "outputs": [], "source": [ "# --Compute seasonal and annual means\n", "dat = seasonal_climatology_weighted(dat).load()\n", "\n", "if base_case_name is not None:\n", " base_dat = seasonal_climatology_weighted(base_dat).load()" ] }, { "cell_type": "markdown", "id": "e0527e3e-cd26-46b5-8c1e-08882109e12e", "metadata": { "editable": true, "papermill": { "duration": 0.004206, "end_time": "2025-10-28T23:29:14.089136", "exception": false, "start_time": "2025-10-28T23:29:14.084930", "status": "completed" }, "slideshow": { "slide_type": "" }, "tags": [] }, "source": [ "## Read in validation data and other CMIP models for comparison (precomputed)" ] }, { "cell_type": "code", "execution_count": 10, "id": "126e65b3-2b8c-400c-af02-2ad0b0f82e6e", "metadata": { "editable": true, "execution": { "iopub.execute_input": "2025-10-28T23:29:14.094321Z", "iopub.status.busy": "2025-10-28T23:29:14.094071Z", "iopub.status.idle": "2025-10-28T23:29:17.947882Z", "shell.execute_reply": "2025-10-28T23:29:17.947457Z" }, "papermill": { "duration": 3.85794, "end_time": "2025-10-28T23:29:17.949294", "exception": false, "start_time": "2025-10-28T23:29:14.091354", "status": "completed" }, "slideshow": { "slide_type": "" }, "tags": [ "hide-input" ] }, "outputs": [], "source": [ "# ---ERA5\n", "era5 = xr.open_dataset(\n", " os.path.join(obs_data_dir, validation_path, \"PSL_ERA5.nc\")\n", ").assign_coords({\"lon\": lon, \"lat\": lat})\n", "era5 = era5 / 100.0 # convert to hPa\n", "\n", "# ---CESM2\n", "lens2 = xr.open_dataset(\n", " os.path.join(obs_data_dir, validation_path, \"PSL_LENS2.nc\")\n", ").assign_coords({\"lon\": lon, \"lat\": lat})\n", "lens2 = lens2 / 100.0 # convert to hPa\n", "\n", "# ---CMIP6\n", "modelfiles = sorted(\n", " glob.glob(f\"{os.path.join(obs_data_dir,validation_path)}/CMIP6/*.nc\")\n", ")\n", "datcmip6 = [\n", " xr.open_dataset(ifile).assign_coords({\"lon\": lon, \"lat\": lat}).mean(\"M\")\n", " for ifile in modelfiles\n", "]\n", "datcmip6 = xr.concat(datcmip6, dim=\"model\")\n", "datcmip6 = datcmip6 / 100.0" ] }, { "cell_type": "markdown", "id": "22cc331d-413c-4a87-bd89-812ad118cf8c", "metadata": { "editable": true, "papermill": { "duration": 0.002167, "end_time": "2025-10-28T23:29:17.957671", "exception": false, "start_time": "2025-10-28T23:29:17.955504", "status": "completed" }, "slideshow": { "slide_type": "" }, "tags": [] }, "source": [ "## Compute the NMSE" ] }, { "cell_type": "code", "execution_count": 11, "id": "6857717d-7514-45b5-ba33-a774f38b7c3e", "metadata": { "editable": true, "execution": { "iopub.execute_input": "2025-10-28T23:29:17.962852Z", "iopub.status.busy": "2025-10-28T23:29:17.962562Z", "iopub.status.idle": "2025-10-28T23:29:18.684543Z", "shell.execute_reply": "2025-10-28T23:29:18.684118Z" }, "papermill": { "duration": 0.726073, "end_time": "2025-10-28T23:29:18.685832", "exception": false, "start_time": "2025-10-28T23:29:17.959759", "status": "completed" }, "slideshow": { "slide_type": "" }, "tags": [ "hide-input" ] }, "outputs": [], "source": [ "nmse_dat = []\n", "nmse_cesm2 = []\n", "nmse_cmip6 = []\n", "if base_case_name is not None:\n", " nmse_base_dat = []\n", "else:\n", " nmse_base_dat = {key: None for key in [\"AM\", \"DJF\", \"MAM\", \"JJA\", \"SON\"]}\n", "for ivar in era5.data_vars:\n", " nmse_dat.append(nmse(era5[ivar], dat[ivar]))\n", " nmse_cesm2.append(nmse(era5[ivar], lens2[ivar]))\n", " nmse_cmip6.append(nmse(era5[ivar], datcmip6[ivar]))\n", " if base_case_name is not None:\n", " nmse_base_dat.append(nmse(era5[ivar], base_dat[ivar]))\n", "nmse_dat = xr.merge(nmse_dat)\n", "nmse_cesm2 = xr.merge(nmse_cesm2)\n", "nmse_cmip6 = xr.merge(nmse_cmip6)\n", "if base_case_name is not None:\n", " nmse_base_dat = xr.merge(nmse_base_dat)" ] }, { "cell_type": "markdown", "id": "1014f119-fc3f-428b-99ca-ab9de700148d", "metadata": { "editable": true, "papermill": { "duration": 0.004941, "end_time": "2025-10-28T23:29:18.696679", "exception": false, "start_time": "2025-10-28T23:29:18.691738", "status": "completed" }, "slideshow": { "slide_type": "" }, "tags": [] }, "source": [ "### Set up the plot panel" ] }, { "cell_type": "code", "execution_count": 12, "id": "53494900-0145-4ab2-85b8-5ed6ae347892", "metadata": { "editable": true, "execution": { "iopub.execute_input": "2025-10-28T23:29:18.703693Z", "iopub.status.busy": "2025-10-28T23:29:18.703410Z", "iopub.status.idle": "2025-10-28T23:29:18.711152Z", "shell.execute_reply": "2025-10-28T23:29:18.710647Z" }, "papermill": { "duration": 0.012793, "end_time": "2025-10-28T23:29:18.711708", "exception": false, "start_time": "2025-10-28T23:29:18.698915", "status": "completed" }, "slideshow": { "slide_type": "" }, "tags": [ "hide-input" ] }, "outputs": [], "source": [ "def plotnmse(fig, cmip6, cesm2, cesm3, cesm_baseline, x1, x2, y1, y2, titlestr):\n", " ax = fig.add_axes([x1, y1, x2 - x1, y2 - y1])\n", "\n", " cmip6 = cmip6.sortby(cmip6, ascending=False)\n", " binedges = np.arange(0, cmip6.size, 1)\n", " ax.bar(\n", " binedges,\n", " cmip6,\n", " width=1,\n", " bottom=0,\n", " edgecolor=\"black\",\n", " color=\"gray\",\n", " label=\"CMIP6\",\n", " )\n", "\n", " ax.plot(cmip6.size + 1, cesm3, \"o\", color=\"blue\", label=\"THIS RUN\")\n", " if cesm_baseline is not None:\n", " ax.plot(cmip6.size + 1, cesm_baseline, \"x\", color=\"red\", label=\"BASELINE\")\n", "\n", " ax.fill_between(\n", " np.arange(0, cmip6.size + 3, 1) - 0.5,\n", " np.arange(0, cmip6.size + 3, 1) * 0 + np.array(cesm2.min()),\n", " np.arange(0, cmip6.size + 3, 1) * 0 + np.array(cesm2.max()),\n", " color=\"salmon\",\n", " alpha=0.5,\n", " label=\"LENS2\",\n", " )\n", "\n", " ax.set_xlim(-0.5, cmip6.size + 2 - 0.5)\n", " ax.set_xticks([])\n", " ax.set_ylabel(\"NMSE\", fontsize=14)\n", " ax.set_title(titlestr, fontsize=16)\n", "\n", " ax.legend()\n", "\n", " return ax" ] }, { "cell_type": "code", "execution_count": 13, "id": "56b4cd99-a27e-4f28-86c2-8013e7c7bc78", "metadata": { "editable": true, "execution": { "iopub.execute_input": "2025-10-28T23:29:18.716665Z", "iopub.status.busy": "2025-10-28T23:29:18.716557Z", "iopub.status.idle": "2025-10-28T23:29:19.226458Z", "shell.execute_reply": "2025-10-28T23:29:19.225729Z" }, "papermill": { "duration": 0.513774, "end_time": "2025-10-28T23:29:19.227799", "exception": false, "start_time": "2025-10-28T23:29:18.714025", "status": "completed" }, "slideshow": { "slide_type": "" }, "tags": [ "hide-input" ] }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAABfUAAAQGCAYAAACer1CDAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjUsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvWftoOwAAAAlwSFlzAAAPYQAAD2EBqD+naQABAABJREFUeJzs3XdcU9f7B/BPEkLYewkiOMC99wT3qnXU3bqqrb8OW9v67bRFu7Rara3WLhXU1tGq1TpxAG7FhRtFFFQc7E0IJOf3x/GGhNyEhOFon/frxav15uaOc8899+a55z5HwhhjIIQQQgghhBBCCCGEEELIU0/6pDeAEEIIIYQQQgghhBBCCCHmoaA+IYQQQgghhBBCCCGEEPKMoKA+IYQQQgghhBBCCCGEEPKMoKA+IYQQQgghhBBCCCGEEPKMoKA+IYQQQgghhBBCCCGEEPKMoKA+IYQQQgghhBBCCCGEEPKMoKA+IYQQQgghhBBCCCGEEPKMoKA+IYQQQgghhBBCCCGEEPKMoKA+IYQQQgghhBBCCCGEEPKMoKA+IYSQ/4Rxs1MwbnbKk96MZ8o3azLQ6/XbeJBRWqXlUNkTQgghhBBCCCHVx+pJbwAhhDxJvV6/bdH8Ucvr4EFGKcZ/eg/tm9jgmze9ROe7cqsYby58iP6d7PHBRHft9G/WZCDyRAGW/c8bTeoqtNPVaobtR/KxP7YAyfdLUFzC4GQvhZebFZrWU6BfR3sE+VtXuH0RO7KxZleu3jSFXIJaHlbo2sIWY/s5wd5W/3musD8tgxT47h1v0eUam0fYHwBY/r43GgUqDL77zncPcT6hGJvm+cHNWVbhPvzb5BdqEL4jG9eSVbifUYr8Qg2c7GXw97bCsBBHdG9lC4lEYvC9giINVu/MwaG4QmTlquHqJEOPVnaYNNjZ4BgSQFXCsGFfLvbHFuBhZikc7aTo1MwWLw9xMah3YudJeQM72+N/E9xNzkMqFnddiXeXpBpMt1VIUMdHjl7t7DA81BFWMv1z4NiFQpy+qkTCHRUS75ZAqWKYOMgJk59zMbqu9OxSbNibizPxSjzMVMNWIYGflxzPdXNA7/Z2kEn112Gq/Z821Bnj+zsbTM/MUWPV9mycuFSEvEINvN2s0KeDPcb1c4LcyvA8Bnj7vje2AAfPFiLhjgp5BRoo5BLU9pKjXRMbDO7qAB93y2/Je71+G/7eVlgd5qs3XWhzzbV4phdaBdtYvP6n0brIHJy7VozbD0qQU6CBjbUEPu5W6N3eDkO6O8DG2rDt1GgYth3Kx84j+bibVgpbhQStgm0w9Xln1PaSV2o79hzPx4K1mXh/ghsGdHbQ+4wxhtgrShy7UITLicV4mFmKUjXg52WFnm3tMKq3E6zl+nXpQUYp1kfmIj65GKlZahQqNXB1kqFuLTlG9XZCm0b6x6+oWIMjcUU4drEIiXdVSM1SQ24F1PezxpDuDujd3r5S+/UsqEwdEHM3tQQHzxYi9ooS99JKkZOvhqujDK2CFXhxgDPq+BjWDUvXffGGEkfOFyHuOm+zioo18HHn92vj+zvDwc6ya/3d1BKs/CcHcdeVKCpmqO1phcHdHDC0hwOkUsP2yZLrpuDUlSKsi8xFwh0VGAOC61hjfH8ntG9iazDv+QRezxNuq5BwR4UCJTO4L7bUgVMF2BSVh+T7JbCSAU3qKTDlOWc0DDC8/6zMdcQUS9uKfScLcDGxGNdvq3DrngolpRBtEyoitOlRy+tUarstYek1zpIyScsuxcGzhTh5SYk7D0uQmauGo70UzeopMLavExrXNTyGN+6oEHO2ENcf1aGcfI3J3yvm+C/XYULIvw8F9Qkh/2kTBzkZTFuzKxf2thK80NPxsWyDWsPw4Y9pOBOvhLuzDCFt7ODsIENGjhq3H5bg7+g82FhLzArqC3q0tkVgLX4znZWrwckrRfgjMhfHLxVh+fs+BgGD6vDr1mwsnln5m+x/q5x8NXYfL0CTQGt0a2EHR3spsvPUOH6xCHN+S8fgrvZ470X9HwdFxRq8891D3LhbgraNbNCrnT1u3lVhU1Qe4q4r8f173rBVUGBfoNEwfPpLGk5dUaJxoDW6tXLCvbQS7DlegNPxSiz/n49egMJUAHPXsQKkZ6vRvsm/I8j5tAiuY41OzXiZahiQmcvPgZ82Z+PqLRU+m+ahN/9fB/JwPqEY9jYSuDvLkJJm+m2Re+mleGPBA+QWaNC+sQ06N7dFgZLh6PlCzF+dgXPXlKI/wr3dZOjfyTDA2by+4Y/rzBw1Xl/4AGlZanRtYYva3nJcSixGxI4cXLlZjK9f9zQInD3IKMWnv6Qh8W4JXJ2kaNvIBl6uVlAWa5BwpwTr9+biz/25WDW7FvwqGUAur38ne7QM0t/+yBMFeJipxoiejnCw1d/GyjxQeFrtOJIPZ3sZ2ja2gYujDEXFGpy/XoyfNmdj78kCLJ3lbRBY/W59JnYeLUBALTmGhzggK0+D6DMFOH21CEtn+WivpdWlpBT46Mc0yK14W9SuiQ1UJQynryqx8p8cHDlfhCXveEGhs50paaWIPlOAJvUUaFJXATsbKdKzS3HsQhFOXk7F1Oed8eKAsodQF28UY97qDDjZS9GmoQ26t7JCdp4ah+MK8VV4Bi7fLMZbY9yqdb+eFpWpA2LCt+cg+kwh6vrK0aWFLextJLh5rwT7Ygtx6FwRvpnhiRYN9K8Tlq57zop05ORr0Ly+An072kACIC5BiQ378nAorghLZ3nD1dG8zhBJ90sw49sHKFYxhLaxg4eLDLGXlVj6ZxZupqgM7jMsvW4CwP7YAnwdkQFnByn6dbSHRALEnC3EB8vS8PFkd/TpoN+W7jlegMgTBbCxlsDLVYYCZdXe+vtjTw5W/pMDLzcZhnR3QFExQ/TpAry16CG+edPw4aSl15GKWNpWrNqejYeZajg7SOHmJMPDTHWV1l/TKnONs6RM/o7Jx4a9ufD1tELbRvwcSUkrwZHzRTh6vgizX3ZHaFv9OnTkfCHWReZCbgXU9pIjJ19TpX38r9dhQsi/z7/nLp4QQipBrKfDml25cLCVPrZeEAdOFeJMvBLtm9jgq9c8DXqsZuaokZ5j2Q+BHq3t0Ktd2Y2pqoThjYUPkHi3BAdOF2Cghb2EKuLraYW468WIvVyEDk0Ne7r8l/l4WGH7t7UhK3dcC5UavLHwIXYeLcCIno6o61v20GbjvlzcuFuCsX0d8epwV+10oYf5xn251EtHR+TJApy6okTPdnaYPcVd++bD7uP5WLg2E79uzcaHk8oCGq2CbUQD+5m5avyxJxdO9lJ0bWn32Lb/v6BhHWuDOptXqMHUL+8j5mwhpqWXwtej7LZ0yhBnuDnJ4OdphegzhfhyVYbJ5f+5Lxc5+Rq8OcoVI3QeyL4y1AWvfH0fkScKMGmws0EA28fdyuxz6det2UjNVOPtsa4Y2oOvgzGGBWszEXmiAJEn9dvWQqUGHyxLxZ2HpRjTxxFThrgYPFBNSS3B8s3ZKCpmZm2DOcR6gZ5PKMbDTDVG9nL8VwXxy4v4zFf0ofW8iHTsiy3EnuMFGBZSVj/OXVNi59ECNG+gwMIZXtrv9utoj/8tTcWS9ZlY8m71PqyWSoGpzztjaA9HvZ7YpWqGsF/TcfxiEf4+mI+xfcs6HbRooMDWhbUNAmrp2aWYPv8BVu/M0Vueu7MMn0xxR0gbO717iqlDXfDGggfYejAf/Trai75d96yztA4Y076JDcb3d0L92vodKqJOF+DLVRn4bn0Wwj+tVaV1j+zlhH4d7eGuEzxnjOH7DVn453A+1uzMwdtjzXv4smR9JgqKGL5+3ROdmvH7sJefZ/hwWSp2Hi1Ar3b2aN2w7Lpn6XUzr1CDHzZmwtlBil8+9IGXG29Hxvd3xvR59/HDxkx0bGYLR506PSzEAaP7OKKOjxzXklV4c+FDs/ZFzN3UEkTsyEFtLyss/8AHDo/eWBwe6oA3FjzEt39kYvVntfTutSy9jphSmbZi1kvu8PO0go+7FdZF5mDFtpxKr/9xsPQaZ2mZNAqwxpJ3vQwehl24ocSs71OxZEMWurSw0zuHQtrYoUsLO9TzkyM3X4ORH1U+leN/vQ4TQv6d/r139YQQ8oy4cpOnSRjSzcEgoA8Abs6yKqetsZZL0Lu9PRLvZuP6bRUGdq7S4gxMHOSMhWsz8Nu2bLRvYiOaTuZpkVeowS9/Z+H4hSIUKBnq+srx0kAndG1hWRD3fIISG/fl4sotFYqKNfBytUJoWzu8OMBJryde+ZQfAjsbKdo3tkHy/RLcSyvVBvUZY9h5tAC2CgkmDNJP/zG+vzP+jsnHrmM8QGlpOd95WIJdR/Nx5poSqY9e9fd2s0K3VnaYMMAJtjYV914U0qlMHOSE1g1tEL49B9fvqCCXSdC+iQ2mD3eBp6v47UVRsUbb+zG3QA1/LzkmDHJGSBv9srd0O3ceyQfAA7i6ZTKwswP+3JeL6DMFeGuMK+wq2L/IEwVQa4C+He1FXzO/n87Tu5y6WoSMHDXsbaQIqCVH/072Fr9OLzh6oRDbDubj+m1ej9ycZGjeQIFx/Zz0HvSUlDJsPZiHfbEFuPuwFBIJ0KC2NUb3dTSou/lFGvy1PxeHzhXiYZYaMglvR5rU5a94Cz9khYdEi2d64X5GKTYdyENKWincnKQY2csJI3o6gjGGLdF5+OdwPh5klMLbzQovDXRGv45VT9/haCdF40BrHI4rQk6+Wi+oX/5Hf0XuPxr3oWNT/e852EnRrL4CDzMLkZOvrnRAu1DJex/W8rDC893LjrVEIsG0oS7Yd7IAO4/k6wU8/tyfizsPS9Gngx2mj3AVWyz8vOT46jVPlJRWX1DfEofOFWJLdB5uPyhBgVIDFwcZAn3lGNLNAd1a6der4xeL8Nd+nrKgRA34e1uhfyd7DA91NNrO6dJtO7q0sMOKbdm4fLMYUgnQqqEN3hjpKnp87qeX4o89OTh9VYmsPDUc7aRo38RW9CGNsbfQerSxw77YQoNejjuP8rbj5SHOet9t08gG7RvbIPYKTxPh721+b33dtHQL1mZiwdpM7WdRy+vASibR61UvsJJJML6/E45fLMKFBKVeUN9YaicPFys0ravAkfNFeJhZCgc73mbUr21tEIwGADcnGYZ0c8CKf3JwPqHY4qD+sr+ysCU6D79+5IMGOm8PfvRjKk5eVmJQF3vMeqksEHzychE++jENrwxzwbh+Zftz/roSq3bkIOG2CtZyCdo0tMH/jXDBvNUZemlGsvPUmPbVfRSrGH75uJZeG5GVp8a0L+9DVcrw28e1tHXB0jpgjLE2vVc7e0TsyEHy/RLk5Kvh7FB2f2bpunXLRCCR8Gv/P4fzzU6jdedhCS7cKEarYIU2oA/wOjX1eRecXfgQO4/m6wX1Lb1uHjxbiPwihsnPOWmvIQB/gPRCLyf8tjUbB88W4rluZeUmlk6ksvYc59fnlwY4aYOhAFDX1xp9O9pj++F8nL2m1EuhYul1xJTKtBVtG1V9/bpp4nT/v3wKmKq2z5W5xllaJj1ai99nt2jAO1qcvqrErXsqvXqjex9UVf/1OkwI+Xeid/cJIeQJc7TnTXGNv1L5KGZkzs29pWp7WWFwVwck3i3B/tjCal9+dSlVA7O+f4jLicXo19EefTvY4c7DEnz2Szr2xxaYvZx/DuXh3SWpuHJLhc7NbTE81BEeLjL8sScX//sh1awAnaqE4dx1JSQSIEDn9eS7qaXIyFGjWX2FQYoda7kELRookJ6trlR9ORxXiN3HC+DrYYV+He0xpLsjHO2k2LA3F/9bmopStfmBxatJKry/NBVO9lKMCHVEo0BrRJ0uxIxvHyIz1/DNklI18P7SVMReLkL3Vrbo094e99JL8fnKdJy6UlTp7VSVMMQnqeDvbSUaEGzb2BYlpXyci4rsPsZ/oA7qYhiwvnyzGK/Ou48dR/NRx1uOkb2c0L2VHYpLeNC7Mn7ZkoVPf07H9dsqdG1hi5G9nNC8vgJn45U4E6/U28cPlqbip83ZAICBXezRp4M9HmaW4tOf0/F3TNn6GePzrt2dC0d7GZ7r6oBBXR1Q11eOI+cLcS/dsN5sjsrD8k1ZCPK3xnNd7VGq5sG7nUfzsfTPLKzbm4vm9RUY2NkBOfkazF+dgYs3lAbLsVR+oQbxSSrYKCQWBU3FCK/4x17R366CIg0uJRbD1Umqd55pt6FIg51H8/HHnhzsOJKPu6klosu/fLMYJaVAu0aGDy3dnWWo6ydHfJIKqpKyurn7GG9TJg4yDOCWZyxoW5O2HcrDnN/SkZJWim6t7LS52VOz1Dh6Qf+c3ByVi09+SsPNeyXo1d4eQ3s4oFjFsHxTNj5fkQ7GzG87rt9WYebih5BJgee6OSA4wBpHzxdh1g+peuUHAFdv8fMu8kQBgutYY0SoI5o3sMH+2AK8seCBaH0Wc/ISrxd1y9WB8wnFsFFI0Ewk3VK7Rym4LBmfAAC6trBF1xa22v+fOMhJ+1cRq0fxYXOv0zn5alxNUsHGmo+dYw6hF6isEn0FWgfzcjp3vew8U2sYLiUWP5quX1bnH83XKrisfE9d4cf6WrIKIW3sMLirA1KzSvHW4ofIL9JPreHiKMOHk9xRWMzw1ap0qB+1/YwxfLMmA1l5Grwzzs2sh3XG6kBlCB0wzD1Olq5bWw/MPEZCHW3X2DAA2CjQGg62Er16XJnrZtyjYym2jvaNhXOl6tcFY8rWb/g2qLD+Cxaeq5aoibbCHBMHOcHbTab9f+FPaGOA6mmfK3ONq84ysbTtq4z/eh0mhPw7UU99QgippJS0UkTsyBb9LD3b/HQ53VvZYf3eXKzano0HmaXo1MwWQf7WcHOqvkFli1UabdBaLFd0dZg4yBl7YwsQviMboW3tKh2k2hSVi/xC83NmDuhs/iCTGTlq1PGxwjdveml/lI/q7YTp8x7gh42Z6NLCtsLe3En3S7D0zyzUry3Ht295wcm+7DgJr1f/HZOH0X30Azj5hRpsisoFY0B2ngYnLxchNUuNiYOc9AYTS0nlQSo/T/F98vPi0++mllo8iGPfjvYY1dtwsLM1u3IQsSMHMWcKDfKJGnPqihKzXnTDoK5lPZqE5azclm0wyGxGjhqNAqyxeKa3dv2929tj1g+p2BSVp9czyZLtTEkrgYYZL6/aj8orJbUU7Rob358LN5S4m1qKJnWtDXqGqUoYvliZjiIlw7zXPQ1STKVlWf6A5cSlImzcn4d6vnIsmuml19tTrWbIKSg7B9buykFcQjEmDXbGxEFO2h/chUoN3luSip+3ZKF7K1t4uFjh1r0SXE1SoVtLW3w+3dNgP9QiD24uJhbjl4/KesGO7lOKCXPu4ectWXB1lGHlJ7Xg8iivc//O9nhjwUNs3J+H5hb0ILt2W6VtL9mjnPonLimhLNbgvfFuer3WKmNMHyccu1CEH//KQuzlItT1s0ZhkQZHLxTBSgbMfcVTNI924t0SLPqjrCe1RAL0bm+Hd8e76c0vPEQTzr/y/DytkHi3BPfSSxFYS44HGaVIy1bD00VW6cFWa9quo/mQWwG/feyjPb6CnPyya9i99FL8vCUbro5S/PRBWcqCaUNd8P7SVByOK8L+2EL0NfPtjROXlPj0ZXf01EkRJ6QnOXK+UJs6rlTN8MWqdDAG/Pyhj17P84s3lHhnSSqW/ZmJr183HLBeuI7kFzFcTizGtdsqtGtsg3464ycUFWuQkaNGXV+5aCCptic/bilGHvQY062VHfIf1b2uLW0teotHeBAkFnQC+BgNe47nQ8OAjGw1jl0sQn4hD2xXdO0CeAB+38kCSCSV60XcMsgGUgkQd70Yo3rzaddv88Ej2zRU4Ow1PvCv96M6cu56MexsJAiuY61d/+J1mWAM+G6ml97AmLpvOOhq19gWo3o74s/9eYjYkYOpQ12wJToPsZeV6N/JXi/VoC5z6kBlXE0qRtL9EjQMsDY6kG1V162tB2YeI+FhpFhbI5FI4Ocpx7XbKihVGthYSyt13TR1b6J7X1JTUh4Nwir25qp2/TXUOaam2gpzTH7ORZs+TSxVXHW1z5Ze46qzTB5mluJMvBJuTlLU9au56+V/uQ4TQv69KKhPCCGVdC+tFGt25VZ5OcF1rPH+BHcs35SFbQfzse0g7y3s6SJDm0Y2GB7qqP1BbK5D5wpx+wG/kc7K0+DExSKkZfOBr7q3qpmc927OMozs5Yjfd+di26E8jOxVca9EMZuj8iwaTKxVsI1FKTWmPOeil+aojo8cA7rYY9vBfBw9X1ThD58dh/Og1gAzRrnqBfQBYGxfJ2w6kIeo04WGQf0ijV59sZIB04e7YHQf/dy+BUoezLU3EuS0fxS4KSiyfLAwTxfxchoW4oCIHTk4E680O6jv722FgeV6tI/p44itMXz/Z45zMwjKvz7SVW9am0Y28HaT4VqyqtLbWVDEg9TGgsJ2ZpaXEEQZ1MUwAHfsIn8A06+jveiYEcbSDZmy7SDvXf/GKFe9gD7Ae9IKD/U0GoZ/DufDz9NKL6AP8H2bMMgJs39Ox+G4IgwPLatLCmvDH9nWcgkgkh5ieKijXloLLzcrNKuvwLlrxZgxykkv4Ns4UIFaHlZIvKsyWI4p12+rcP22/nckEp57t0WDqj9odHOWYdn/vPFVeAZOXlbi5GXeI85aLsHYvo5o4G8YKBjdxxEhbexQ20sOCYCEOyqs/Ccb+2MLodYAn75cNnivUH/MPS+zHr2t4ulafQ9na4JMJhFN+6ZbJw/E8pQBo3rrpyyQW0nwyjAXvLnwISJP5Jsd1G/RQKEX0AeAgV0csC+2ENeSVdog7fGLRXiQocaUIc4GqWSaN7BB1xa2OHq+CAVFGoPjUv460qeDHd4Z66a3rxUdU7tHAwoXKB9PaqTYy0XYcSQfAT5WGCjSDgE8qK97HbFVSPD+BHezyz58ew5u3ivBwM72lUpr4WAnRb3acly4oYRawyCTShB3vRgSCTBpsDPOXkvFuWtKDOjsgIIiDRLuqNC+sY026HfpBg9OdmtpqxfQB3gKj32xBdCINNVTn3fBuWtKrN+bC1cnGX7dmg1fTyvMGC2e1gowrw5YKr9Ig29WZ0Aq4dfvmlj3jTsqrNmVA1dHKcaKpOcRY3ZdLmKwsa7cdVO4NxH7jq1CCqm0cvcl5ioo0hg8fBRU5b7I3HUDT09boau62mdLr3HVVSalaoZ5ERkoKQVeHe5aoz31/8t1mBDy70VBfUIIqaT2TWzwzZuGPQQB/sqyJYMp9etoj9A2djh9tQiXEotx/bYKl2+qEHmiAPtO8rymz/eoeGA3waFzRTh0Tj99QvdWtpjzikeN5rsf29cJOw7n4489uRjY2cHozb4p67/0q4Et46xkQJO6hoGMFvUV2HYwHzfuqir84XMliQcmY6/op0gRyGQS3H5o2DPJx90KUcvrQK1hSMtSI+p0AVZt5zmlw6Z5GAykWxMYY9hzvAB7ThQg6V4JCoo00Oj83sqwYEDmZvUUBnVJYS1FcB1rxF5R4m5qiV7QyMFWPD2Ep6uVdlyJmthOcxQUaXDwbCFsFRL0bGuY8zU+yXhqg8qKT1ZBbgW0DDId0L7zsBR5hRq4O8uweqfhIHs5+fwHoFDnAnzkqOcrx4FThUjNeohuLW3RvL4CQXWsjf5YFgt4uz96qCCWl9vdWYarZqQz0jWkmwPeGc8HfGSMISNHjWMXivDT5mycu6bELx/5GDzcsERKWgk+WZ4GW4UUS971QlBta+QXaXDgVCFW/pON2CtK/PCet15Q7f/K5blv3dAG377thVe+eoDo04V4aYCqWvP5Pm1C29rjt63ZePnL++jZ1g6tgm3QvL7CoPdxwh3e5rUMNqyrTeoqoJBLcOOu+T1Ug0QeUnu68GOv+5aWUMfuPCgRfSsuM1cNDeO9lMvnPRauI5k5apy7rsSvf2fj9YUPseBNz0o9hKtp15KL8cXKdNjbSvHZNA+judlbBdsgankdlKoZHmSUYseRfMxfk4H45GLMGG16QNUdR/KxLjIXDfzleHOU8WB4RVoH2+DGnTwk3FahUaACcdeVqO8nR/MGNnBzkiLuejEGdHbAhRvF0GigNyh5YgqvJ03rGdYlT1creLvKcD/DsH2XW0kw+2UPTJ//AMv+yoJMCnwyxd3k2wnVXQdUJQxhv6bh9sNSTH3eWXSw9aqu+356KT7+KQ1qDcPslz2r1CY+a27cUeHIef30jT7uVpUer8ZScdeV2vQogga1rQ3GFnnaVHf7/DhpNAwL1mbgwo1iDO5qX+WxeoQ3mXQ52Ekr3cnIUk+6DhNC/puevrtaQgj5j7KWS9ClhR26PBr0UlXCsHF/LsK35+DHTVno1tLO7AFzZ7/sjl7t7KFWM9x+WIJftmTjcFwRwnfk4OUhLnrzCnFZjYnONMJnFT0PsLOR4sUBTvhxUzY27MvF1OddTH/hMXOyl0IqEth0fRTAFHrxmJL3KC3KH3sq95aGTCqBj7sVxvd3hlQqwa9/Z2PH0XwMffTQpqLeOhX15Ddl6Z9Z2HowH16uMnRpYQs3Jxnkj+4E1uzKtWiwTmO9jbRlWaS/LGPbK5Ma1j1LttP+UW+w8rmYBYVmlFfU6QIoVQyDutiLDhYsLNvDpfoCLPmFGni4yETro668R0HOpPslSLpv/Ie5spiXiUwmwaKZXojYmYMjcUXaPPzODlIMD3XEiwOcDIL79iL7LDxkEis3mRRQV6EzmUQigYeLFZ7v4YiMHDXW7s7FtkP5ZuWeN2bB2kw8zFTjj8+9te2krQ3v6ZpbqMGGvbnYF1ugN8ifGBtrKXq1s8Pa3bm4fLMsqC+Ug7nnpXAeWJKK7XEb29cRTvZSbD+cj01RefjrQB5kUqBjM1u8MdJV+xBOOIdcjZzzLo5Si/bT3sawzgv1TbctyH1U9/efMj1Oi1D3xbg5y9C7vT38PK3w+oKH+GlzNj6bxt/AqOiYFj5qw8S2tzol3FHh/aVpgAT45k1Psx4kWckkqO0lx/+NcEWxiuHvmHx0aGqLjiJvEgHA7uP5+G59Jur5yrFwhpdZg6Ib0yrYBn8dyEPc9WIE+VvjUmIxBj9Kw9Yy2EYbGBX+qzs4q3CeuDiKr9/VSTyoD/CUMPV85bhyS4VGgdZobOYgv6bqgLlUJQyf/ZKGc9eKMb6/k+hAx1Vd94OMUry75CFy8tWY84qnXrlVxNy6bGcjtOuWXzeF60R+kcbgYUNRsQYaTeXuSwQ37qoM3n5tGaTQBkTtbaU1cl8kiLuuNFh//0726NbK7qlpK0TXXU3ts6XXuKqWCWMMi/7IxP7YQv4myzjTDyXNUf5NJgDwdpNpg/r/9jpMCPlvoqA+IYQ8pazlEkwY6IwzV5W4cKMYl24Wo0dry3oMyWQS1PW1xufTPTH1y/v4Y08uurW000vnI9xA5hYYj9IJ+ZXNudl8vocjtkTnYXNUHoaHmP92gaAmc+rnFmig0TCDQKqQKkMsuFme8KN4x+LaZuUwNqV9Yxv8+jdw/nqxNqgv5NU0NhCukBO0tpG8p8Zk5amx7VA+6vnJsex/3nr5wjNz1BanksrOE/+RqC1L28r9uLV0O/085ZBKjJeXkB/VWJ5YANglpN7pKh7wFV7Vrs4ArYOdlPc0FqmPuoT61qO1Lea84ml0Pl3ODjK8PcYNb41muP2gFOeuK/F3DM9HbSUFxpsZkHocGj0KzCXctiydj65CpQYXbxQjyF8u+uCzdbACG/byFEADO1e8POHHvlJV1g4JOXhTjOTbTUkrhVQCbRojH3creLjIkJqlxt3Ukqcyr75EIsHgrg4Y3NUBOflqXLxRjKjThYg5W4iU1BKsmF0LMqlE285l5alF29rsPMP0N9VBaI+/es0TnZtXLW1co0AFHO2keoMg2iqkcHeW4X5GqTaVjK67afwhml8NHrvrt/mA4xoNw4IZXtrzwRLtGttg26F8nL+uFA3q7z6Wj0V/ZCLAR45v3/aqcu/vFg0UkEp5ELR5AwWKipl2INzWwTaIPl2IlLQSxF1Xwt5Wgga1y8pPOKbZeeLX+CyRQdYFG/fl4cotFZzspbh8U4UdR/LxXDfze8CK1QFzqEoYPv0lDaeuKDG2ryOmDXWx6PvmrFsI6GfkqBE2zcPi+i60L2IDfTPGkJJWAndnGWwVvPwrc93087LCtdsqpKSVGtShyt6X6BrQ2cFkj2Y/TytcuaVCZo7aoJ3Xrt/IGAHmmPyci2jOeuDpaCuMqa722dJrXFXKRKNh+PaPTOw5XoBe7ezwwUT3Cjs4mEN4k8mYf3sdJoT8N9GjQEIIecrZKKp+o2stl+D/RriAMeC3rdl6nznYSuHlJsPdhyV6gyPqEtKj1DdjACu5lQRThrhAqWJYvcswXUhFNkflYc2uXLP/HmSYP6hUqRq4cssweHghke9fA5FUI+UJvQOvWJh+REz6ozQyMp17+9peVnB3luFSYjGKivUDH6oShgs3iuHuLDM6wJ0x99NLwRgfHLH8gKHC/lvi0s1iMKbfQ7ZYpcH12yoo5JJKBzEt3U5ruQSNAq1x52GpaF04c7UIcisY7dV5M0WFa8kqBNaSo0ld8XmEQNvpq5YFg0xpFGCNklLgfILpsg/wkcPeRoJrySqUigxya4pEIkFALTmGhThi4QyeKuzYxaIKvvV45RXwc8DUm0IVEd7cyDHyYFJIUWRt5uDdVx+lW/LRyU/cpK4CcivgdLzSoN5n5KhxK6UEjQKt9dKmDHo05sTvuyt+YGbJWzI1wdlBhm6t7PDZNA+0bqhA8oNSbcAvyJ+3i+evG9bVq0nFKC5hqF+7+oNZjQP5esun56qMIqUGBUUag8BRiyAFlMUMl0TaltNX+PleUYosMcJ6xPLDC67fVuF/P6SiVM0w/00vgxzz5tJeR0SCYruP5ePbPzLh78MH5Db2hpUl7G2lCKptjYuJxTh9VQmpFGgRxHuVt34U3D8cV4TEuyVo0cBGr8yFe4jLIsc0LasUqVni9yDXb6uwans2AnyssHJ2LXi7ybB8U5ZoqjtjjNUBU3QD+qP7OOLV4ZVLW2Rq3Q8ySvHOdw+Rnq3Gp1M90LWl5elehDoqdo2KT1Ihv4jp1ePKXDdNrePUVeFcqb4UdeUJyz591fAaJqy/RSXOVXPVVFthDumjWyG1yIWyutrnylzjKlMmugH9nm3t8NFk9xrNo6/rv16HCSH/ThTUJ4SQJyzqdAHOXjO8iQaAS4nFOH+9GDIp0FgkF7wlura0Q5C/HGfilbhwQ/+Gtl9He6g1wC9/ZxtsR1pWKTbuz4NUCvRub16+y97t7dCgthy7juZbFHQHeC7aqOV1zP4zlddWTPiObL3g6O0HJdhzrAD2thJ0bVnWO65UzXD7QQlS0vSDBkNDHCCT8hQxqZmG+5ZfqNHmOAV4jk2xV9xzC9RYuS0bANChSdl6ee9ZexQVM6wt91BkXWQO8go1GNzV3uKxEbwfBSgv3yyGRueHYVpWqcGDHnPceViqHVxWsHF/HrLzNejVzs5gkNya3M7Bj3pr/rZNv/7uPp6P5Ael6NnW3mhPNaGXfvlBf3V1aW4LTxcZ9scW4NQVwx9jadmW1XEAGProLZYf/8pCboF+IEutZsjMFR74SDCkhyMeZqrx8+Ys0cD+rXsqZD16c+J+eqlomh7hc2O5uqtKqdLg9oMSPBQ5J4xRlfBBgAGgeRUGy3V2kMHf2wqpmWrsPKqfT7egSIMN+3hQXbetSLij0uuJL4g5W4io04VwdpCibaOy+e1tpejZ1h7300u12wzwXrArtmVDw8rqoWB0Hyf4e1th78kCrNiWDVWJ4bG7n16KT39OQ7KJ1Eo15dSVIqjL1adSNdOmGFM8qiu92ttBJgX+ispFuk5dL1Uz7TnZv5OD3nSxttNSXVrYwctNhr+i8kR7OJeqGS7qXMseZIgHKEvVDD9uyoKGAR2b6l8vnnv0ds6q7Tl6D1bOxitx6qoSLRoo4O9t+QMLp0fjEqQZebtHL6D/hpdojnldV5OKRevPg4xSrI/k9btDuX3bdZQH9Ot4W2HR215G03NURqtg3kN/28E8BPlba99m8vOSw9NFhj/35ULDoO3BL2jWQAEvNxmOXSjSPjwTrNqeI5rWq6hYgy9XpUMiAT6Z4gF3Zxk+nuwOVSnDV6vS9Y5bZeqAsbZLVcIw+2ce0B/V29FgDI7yKrNu3YD+7Jc90L2S+dv9veVo0UCBuOvFOHGp7BpVqmZYtZ3fRwwu9yaapdfN0Lb2sLeV4O+YPL17n4wcNTZH5cLBVoKQNjWXf35AZ3vIpMDve3L17qlu3VNh38kC+HpaoY0FKYssVVNthTkchfZE5KGXpe2zMZW5xllaJhoNw8LfeUA/pI0dPn6MAX2A6jAh5N+J3u8hhJAn7MotFbZE58HDRYYWDRTwcrNCaSlD8oMSnLmqhIYBrwxzgadL1ZvsSYOdMfvndERsz8Hid8puHF/s74Sz8UrsOV6AKzeL0baxDexspHiYWYpjF4pQVMzwfyNczP7BIpFI8MowF3ywLA0PM5+enNLuzjLkF2rwytcP0KmpDQqUDFGnC6AqZXjvRf1B99Kz1Zj8+X14u8n0Bu+t62uNt8e6YcmGTEyaex8dm9nA18MKBUqG++mlOJ+gxIBOZYOC7jlRgF3H8tEqSAFvdyvYWkvwMFONE5d4ufZobYve7fV/RIzp64RjF4qwYV8eEu6UILiONRJTVIi9rESD2nKM6Wv5oF/uzjL0aG2LQ+eK8H/fPECbhjbIylXjxCUlWjdU4H66ZYHpdo1t8P3GTJy4VIQ6PnIk3FHh1BUlvFxlmFqJ9ARV2c5+He0Rc6YQ0acL8SC9FC2DbXA/vRSHzxXCy1WGV4eJb09JKcP+2ALIrWBygDZruQSfTfPAh8tS8eGPaWjfxAb1/axRqNTgxl0VilUMv35cy6L97NTMFqP7OOLP/XmYOOc+urW0hYujDOnZapy9xnuFCnlgJw92RsJtFbbE5OPEZSVaNlDA2VGG9OxS3LpXgsS7JVj2P2+4OsqQeFeFz35NR8MAa9T1lcPNiS/z6PlCSKXA6N41M2BcfJIK7y5JRcsgBb57x9vg82u3VXqDnWbmahB7pQipmWrU85NjaA/9YMGRuEIcvcCDU8IxP3qhSNueNKuv0AtSvTHSFZ/8lIZFf2Qi6nQBgvz5QLnHLxYhK1eDTs1s0KlZWZu3JToPR84Xok1DG3i5WYExHui/eKMY1nIJPpjobpB3/JVhLoi7rsQPG7NwNl6J2l5yXEwsxqXEYrRvYoP+5eqQnY0U37zphU9/ScO6yFzsOZ6Pdo35AyJlCcONOypcSiyGTMbfpKqMzBw1vlmTIfqZl6sMU8qNoaLr85XpsLGWoll9BbzdZChVA2filUi+X4Kebe20D9j8POV4dbgLftqcjWlfPUBoGzvYKCQ4cbEItx+WomsLW/TtUNaGGWs7LWUtl2DONA98+GMa3vkuFW0aKhD4KN98amYpLiYWw8leitVhvgD4A9Q5v6WjeQMF/Lys4GwvQ1aeGmfjlUjNUsPf2wovlxvnpXVDGwzqao9dRwvw6jx+XcjK0yD6TAHsbCSYWck8z03qWUMhl2BzVC4KlRo4O/C6NL6/M3IL1PjfD6nIK9SgQxMbnL5aZNBzs/zgjuv25OJiYrH2HkEmBe6llyL2chFKSoGRvRzRvEFZ/T57TYlF6zLBGNCigQ3+OZRnsI1VGQS0VUMb7UPcAZ31A/etghXYF8vHQWhd7qG7TCrBO+PcMPsnfkx7trWDm5MM5xOUSM9Ro35tOW6m6D8MWvZnFu6mluK1F1zQ4FGv5OYNbPBifyes3Z2LFduy8doLPOBemTpgrO36bn0mTl9Vws1JCluFRHSwZt30f5VZ9zvfPcTDTDWa1LXGzRQVbqYYvkloLCVMeTPHuWHGtw8Q9msaQtrYwcNZhtgrStxMKcGgrvYGOfotvW462knx1mg3zFudgenzH6BnWztIJUD02UJk5Wrw0SR3bfBZcPGGUvvgXEjZdzGxWNtm+Xvz8YXM4e8tx6TBzli1PQfTvrqPkNZ2UBbze7hSNcN74920Y3MILL2OmFKZtmLn0XxtL3bh2O46VqB9Q69rC1uzzsHWDW1w6FwR5q5IR8emNrCWS1DP1xqdmtta3D6bYuk1ztIyWbMrB5EnCmCrkKC2lxXW7jZ8m7dbSzvteQ7wjjfr9/IHl8Uq/uDg9sMSbR1yspdqz/+K/NfrMCHk34mC+oQQ8oSN7u0IXw8rnL5ahGvJKhy7yHtPujrJ0L21HYZ0d6i2nhtdWtihYR1rxCUU4+w1pXa5CmspFs/0xrZDeYg+U4i9J/jAoc4OUrRuaIMRoY4WDdoGAO2b2KJ1QwXOXat66oTqYiUDFr7lhV+3ZmPvyQLkF2lQz9caLw1yQtcW5gc3nuvmgAa15fgrKg8XEopx7EIR7G2l8HLlA3L171T2wyektS0KijS4eqsYF28UQ6licLKXonl9Bfp2tEevdnYGve5tFVIsfscba3bm4NC5QpxPUMLNSYaRvRwxcbCzNi+upT6Y4A5vtxwcjivE3zF58HazwsjejhjXzwn9ZtyxaFlN6lrjxQFOWLU9B1ui82AlA3q2s8P0YS5wc6paj1BLt1MmleCL6Z7YsC8X+04W8B5XdlL072SPl593MTrA9NHzhcgt0CC0jV2Feaab1lPg5498sD4yF6euKHE2XglHOykCfOQY0tvysSMA4P9GuKJJXQW2HszDwXOFUJUwuDvL0DpYoddL3Fouwfw3PbH7WAH2nizAoXOFUJXyNiLQR44hYx1Q15c/cGsYYI1x/ZxwPkGJk5eKkF+kgauTDG0b22BMXyezB5esbtdvq3BdJ2++jbUEvp5WGDjYAaP7OBrU6Rt3VYg8of8mSOJd/gBDoPtDtkNTW/z4vg827OXBzwsJxZDLJQjwkWN8PzsMC3HUO8+6tLDVvlVz6ooSag2Dh7MMg7rYY3QfJ9TxMXyA6e4sw4/v+2DVP9k4cbkIJy4VwcvVCpOfc8bYvk6iqTV83K3w0wc+2BdbgINnCnHqahHyCjSwlkvg52mFMX2d8Hx3B3i5Ve6WvEDJDMpJUL+23GRQf9pQF5y6okR8UjGOX9TAxppv07vj3TCws37wZlRvJ/h6WmHTgTzsP1WAklIGfy85XnvBBSNCHS1+c8hcjQIV+O0TH2zcl4fYy0W4mJgHaysJPFxk6NrSFr3alW1nUB1rjOjpiAs3inEkjtd9WwWvA8NCHDE0xEG07Xx3nBvq+Vpjx5F8bInJg61Cis7NbTH1efMfZJfnZC9D2CseWL0zB/8cykfxo1724/s7o1DJtANgx15RIvaK4VsIuoM7Any8D2trnobrdLwSpaUMLo4ydGxqi8HdHAxy6adm8jRmALD9iP7bKwJhENDKaFFfoR0wu/zbcq0a2mBfbCEc7aSoJ5Kyr2NTWyyY4YWIHTmIOVMIhbUErRva4LOpHvhoeZp2HBEAOHi2ELuPF6BtIxuM7KXfzk4c5Iwz8UpsispD+yY2aNfYttJ1QIzQ6z4zV2N0zJlWwTbaoH5l1i0E5q7cUommBgTMD+oH1pJj+fs+WPlPNmIvK1FUrIGfpxxvjnLFsBDDoF9lrpt9O9rD2UGKdZG52nYnyN8aH050QvsmhuMApKSVGrRP99JKce9Raq+WQQqzA6IA8NJAZ/i4W2FzVB7+OZQPKyt+bZ78nLPoeBSWXkcqYmlbcSmx2GD9lx4FyQF+nptzDj7X1QEPM0oRdaYQf+zJhVrDz99Oj8ZeqK72uTLXOEvKRKjvRcUMf+wRP6d83K30gvqZuWqDMszK1WinebvJzA7qA1SHCSH/PhImlu+BEEIIIURE3HUl3l2SiomDnMwONhBCCCGmFCo1eOGDFNT148FpQgghhBBiGuXUJ4QQQgghhBBS44qKNShU6ifPV2sYftmSjeIShm4tDHvLEkIIIYQQQ5R+hxBCCCGEEEJIjUtJLcVbix+ifWMb1PKwQpGS4UJiMZLvlyCwlhzDe1YunRkhhBBCyH8NBfUJIYSQZ9SNOyocOV9Y4Xw+7lYY0Jlybtak/EINNkWJ54gtj9IWETGbonKRX6ipcD7dwTnJ4/FvPr/jrisRd90wr395VRlYV5eHiwwhre1wIUGpHc/Cy9UKo/s44qUBlR8zhhBCCCHkv4Z+ERBCCCHPqBt3VUYH8NPVMkhRbUH9VsE2iFpep1qW9W+SX2R8MMXynrWgH3k8NkflaQcSNEV3cE7yePybz++460qz9q0qA+vqcnGU4YOJ7lVeDiGEEELIfx0NlEsIIYQQQgghhBBCCCGEPCPo/UZCCCGEEEIIIYQQQggh5BlBQX1CCCGEEEIIIYQQQggh5BlBQX1CCCGEEEIIIYQQQggh5BlBQX1CCCGkOiQlARIJMHnyk96SZ0tgIP+rCip7QgghhBBCCCH/IRTUJ4Q83YRgXfk/e3ugRQtg7lwgP9/0MlatKvvepUum5z16FBg1CvDzA6ytAVdXoFEjYPx4YPVq/XljYsS3Tfdv2DD970gkfHkVEZb9f/+nP33y5LJlnzol/t3QUP75gwdl04yVo+5fq1YVb5fu8oU/qRRwcQG6dgV++QXQaAy/ExHB550zx/hyjc0TGMin+/gABQXi3zW3XP+tzp8Hpkzh54S7O2BjA9SvD4weDZw+bfx7CQl8Hk9PwNaWf3/ZMvFjSPg5NW0aUKsWL+PgYODzzwGVynDe8ueJ2N/atY99F/6V5swxLFuZDPDwAPr1A7ZtE//e0qVl542VFf9eTIzpdZ09y68RdevycyYgABg6FDh0yHDeiq4RJ06Ir+PUKWDQIH79sbcHOnQA1q0zvV1ZWcCXXwKdO/M2QC7n53WfPnw/K7pOijF2HQIqrtvl//4tsrOBt97i5ezjAygU/H6hVy9g82aAMfHv5eYC777L64tCwf/77rt8emUJ9wNJSYafFRQAv//O2/fgYF5XXVyAkBBg/Xrx5cXE8Hudxo35vHZ2QMOGwMsvA9euGc6fkgIsWcLPsTp1+D2Tjw/wwgvAyZOV36+nXWXrgJgjR4D33gPati27djdqBHzwAV9PeZUt84QE3tYFBfG64OcH9O0L/POPhTsPIDKSX9+cnABHR/7/kZHG57fkugnw+49ly3i7bGvL27HRo/k+iPn9d2D6dKBdO34sJBJ+P1lZxcV8+4KD+fbWqsW3X/eeWldlriOmWNJWFBYCixbx87ZRI34/bqxNqIhEwo/l42DpNa6q7efgwXz/bGzEPzd1vzZggMW795+vw4SQx8rqSW8AIYSYpX594KWX+P8zBqSlAbt382BOZCRw+DAP4ogRgvqMAStXAt99Jz5fRAT/8WplxW82g4KAoiLg5k1g1y4etJk0yfB7bdsCzz0nvsyaDDR/8AEQFWXZd3TLsTwfH8uW9d57gIMDoFYDycnAli08+HPuHPDzz5YtyxwPH/IfL599Vv3LftadOsXraOfOPGhjb8/r7fbtwKZNwJo1hsf9yhWgSxf+o3D0aP4jf/duYMYM4MIF4Ndfn8y+PK0ePAA6dgTu3OEP64KDeUAmLAw4fhzYuZP/oBZMniz+A7mkBJg3j8/bu/dj2vj/iBdeAJo14/+vUgGJiTxotW8f8OOPwOuv68//1lv8v7Vq8R/dxn7wCrZu5etQKIDhwwF/f14f/v6bryc8XPxtkZAQ8bpQu7bhtJgYoH9/HqwbOxZwduZt64sv8kDNxx8bfufAAX4OZ2bygOyoUTxAmJHBr1tvvcUDgYmJpvfPEmFhhtPmzuXbO3Nm9a3naZOezu8pOnXi7YCbG5CaytvakSOBV14xbDsLCngdiIvjgdRx4/iD2O++A6KjeTtib1+923n4MDBhAq8HvXvzepuayuvS+PHAsWM8kKNr/36+LR07ltXBq1f59WPdOn596NmzbP6lS4FvvuH3FX37Al5ePGi1dSv/W7+e18t/m8rUAWNGjuTL69YNmDixLJi2YAF/QHDsGC9XQWXK/ORJftxKSoDnn9evC0OH8vtosfNZzB9/8HsJDw9+PyyRAH/+yQOfv//O2yldll43AX4f+dtvQJMm/H7k4UNg40Zg715eHk2a6M8/eza/B/Xw4G15crJ5+yJGo+FlEhnJt3vECN5uhofz68jJk4b3ypZeR0yxtK1ITQVmzeL/HxDAg+SZmZVf/+Ng6TWuqu3nqlXAnj08uF3RAzex86BBAwt3EP/tOkwIefwYIYQ8zW7dYgxgrH9/w8+USsZat+afR0WJfz8+nn8+ahRjgYGMubszVlxsOF9BAWOOjow5OTF28aLh5yoVY3v36k+LjubLnj7d/P0BGGvYsOL5jC170iQ+vX59/t/duw2/GxLCP7t/v2yaqXK0lNjyGWMsIYExe3vGJBLGEhP1PwsP598JCzO+XGPzBAQwJpczVqcOP0apqYbfNbdca5JQxpMmPf51FxWJT790iTEbG8a8vBjTaPQ/69GDb+/OnWXTVCrGevc2fU5Vt4AA/lcVj6PsJ07k61i+vGyaRlN2Tq5aZd5yNm3i8w8ZUiOb+Z8UFsbLdP16w89OnuSf1alj+NmOHWXt2PTpfL7oaOPradyYt2/nzulPP3OGT69bV3+60I6bavd0lZTwtl2hYOzs2bLpubmMNW3KmJUVY9ev638nLo4xW1v+9/vv4suNjmasUyfztkFs+829xgFVP5efdqWl/DiVl5vLWJMmvAwuXdL/7LPP+PT33xef/tlnldsWoe25dcvws7g4xv74g7fpuh484McIYCw2Vv8zY9eR/fv5/O3a6U/fvJmxQ4cM5z90iF+z3dz4fdq/TWXqgDHz5zN2757+NI2Gsdde48t5/XX9zypT5gMH8mVt26Y/PTmZ3/Pa2pp3nDIzGXNxYczDg7Hbt8um37vHmI8P/ywzU/87ll43o6L49O7d9bdp/37exvboYbhd+/YxlpTE/3/ePP798PCK90fMqlX8+2PH6t8zCdMnTjT8jqXXEVMsbSvy8vhvk4wM/u/+/Y23CRUB+P19TarMNa4q7eedO4w5OzP27ru83VMoxOcTftdUh/96HSaEPHaUfocQ8uxSKMp6jaWlic+zciX/78SJvHdRRoZ4KoZLl4C8PL48oaenLrmc9xB5WoSF8TcKPvzQsle9a1KDBrw3DWM8RUV1kkp5L9C8POCLL6p32TXh0iVg4EDeA8nJCRgyhPeMtwRjvIdR1658GXZ2/NXcVasM5zX2SnHTprznbmqq/mvK16/zHrw9e/K3UgRyOfDVV/z/f/vNsu0VREfzN14aNuRvcjg48O22pOe/kE4lJoZvR9OmfB/r1AE++ghQKo1/9+ZN3vtReK27Tx/eq6sq25mXx3tZ1aunn4pEIinrdW9uea1Ywf87dar454cP817g3t68jfP35z2tjhwxb/nlqVTA99/z19sdHfl+NmnCX13PytKfNzUVeOcdfi4rFLzX2AsviKctE9I51K3Lj42HB9CmDX+DR5fwWntxMe+BV6cOfx29bVveMxjg5fvWW/xtERsb/saJqbRRlujQgfekFbtGDB5s2RtKN28Cvr6GqcratOE93FJTq7SpiIriPerGjwdaty6b7ugIfPopUFrKe9vpeust/kbZ0qWGvWQFoaFP7lV6pZK/YdWyJW8PHRx4L+Nx44CLF/XnLS3lvS9btuR1xNmZt1E7d5q/Pt22488/+bGxteXHRygrMYcO8Xbaw4PX/aAg3nuysFB/PpmMX3vLc3TkvU8B4MaNsumM8XPewcHwLbOPPuLt1MqVll/HAwPLUgLWrVuWKkJ4I6RlS16P5HL973l78zQPAHDwoP5nxq4jvXvz7dTdL4C3S927G87fvTs/bpmZhsfYHK1a8TcMdNPAqdW8PkgkvEe4rg8+4NPLp5/55Zeya4e/P/D++7w+lk8zcvAgP65t2xqmhImO5p916MB7ugOW1wFTPviA101dEgk/34Vt01WZMr95UzyNSJ06/H63qIi3wRX56y+eEmjGDF6eglq1+Ns52dl8HkFlrpvCv7/8kp+Hgt69edkeOsTvX3T16cN7qVcHYf3z5+unDZsyhd9LbdxoWFaWXkeMqUxb4eDAf5u4uVV+vUKaNYDXN93UM7opYKqjfbb0GlfV9nPqVN7z/Msvzd/Gqvov12FCyBNBQX1CyLNLpSq7GRXLB19ayl8b9/TkP2YmTuTThUC/LuGG+NatZyOfeFAQf8X7/Hn+OvTTQrixFvvBW1UTJ/IfoL/8wn+kPq1u3uSB+NJSnu6jXz+eGqdrV57KwByM8YdQU6fyV/PHj+f5MAsK+DThdeuKJCbyXMj+/vwHmEAI8PXrZ/idDh14PuXywQRzffMN/9HSvj3w5pt8P9LTeSCpfMC3IosW8eBz587A22/zfZg/n7/GL/YjLimJv26clsYD9n378tQkPXvy158ru53Hj/OgdN++hvnBa9UCmjfnASVTDxsA4O5d/vq1jw//EVXejz/yB2N79/J1vfcez9N8/jxPo2QppZIvRwi4TJkCvPYaT4Hw88/6r3gnJvKg1vff86D+jBn8gc+ePTzNhG7A7N49Xk/++IO3vTNn8tfoPT0NU3oIxozhPyaff57X58uXedqys2f5PkZH84cxI0YAsbH8x29V8o0Lzpzhga42baq+rKZNgfv3eXoqXXFxfHqvXuLfS0gAfviB193163k9E2PqvBSm6Z6XN27wOly7Nj+2pugGFx6nSZPK2qspU4A33uB1JzqaHxsBY7yOvPsur7dvvMHryYULvJ788INl6/3xR94GNG7M67yrK6+b06YZzvvzzzzIe+wYX5fwgOmrr/j5Yyz3ty6lkgesJBL91AoJCfx86drVMEWEjQ3QowfPk25uEFgwcyYPrgG8bQwL43/mDBYuBPrNvU4fP84fAIp1eKiudegSgtO6D2PPni1rD6Kj9eePieFBwbZty6Z99hkPJGdlAa++ylNS/fWXeDqgkBAeIDx7Vj/1R2YmT2FkZ8fTD5V/QFKesTpQGZUpP2PfadqUn1979+pPv3OHP7Bt3pw/zKqIqfZJeJih2z5V5roZE8PPk65dzVtHdVIq+fY0bCgeYO3Xj++PsbFQqqqm2oqKBAaWpZ0JCChrS8LCyn5bVVf7bOk1ripl8uuvPN3MihX8IYQ5NmzgD5x++IHX38r4L9dhQsgTQTn1CSHPhhs3ygZQZYwHRSIj+c3cggU8SFXejh08kPfWW/xHTlAQDw7u28d/zOj2NKpfnwd9hADT5Mk8OBgcbDxXv+D0aeMDwA4YwANiNeGzz/hDi08/5T9Ura0r/o5uOZbXqVPlBoQSXLvGb1Tlch60qW5SKfD11zwoOHt2xQNHGpOdzfNLW8LUAL/lHT7Mt0/3jYI1a3hw6803eZC5IitW8P2bOpUHnIQf6SoVD3wuWsR7uuoGMQAeXNy6lfcoTE4uGwSv/BgHwmBdQUGG65ZIeFD39GneS9XOzpy9LvPTT7znqK7SUh4g/v57HoCqU8e8Ze3fz7ejaVP+76++4suJjOS9NSdM0J//4EEeOP3gg7Jpn37Ke0yFh/M3WyqznabKS5h+/jx/oGMqmBMezh8aTp5sGHi5eJGvs1YtPmB3YGDZZ4zxoLGlPvuMB30nTODr1m3LcnL0/z1xIs+jGhmp/1bS7Nn8DYZXXikLZm/ezM+j778vy8UqMBawTk/n3xd+mPfrxx8E9O7N17duXVmZtGrFj+HKlfzNAXNt2gTEx/P/V6n4Q9p//uE9RX/80fzlGLN4MQ9gdOnC36aoXZs/qNmyhfeU/eUX8e+tW6ffXtna8jeP/vc//flM1TNXVx540x1o7+hR/t/QUMO81E+DnBweSG3XjgcRdOubWq3fW/D333k5Cg+1hOvZJ5/wdm7WLN6Tvvw5a8y+ffyhQcOG/N9ffcXr1fr1wMKF/I0LgL9BNWMG/2z/fv0er/Pn82Dv0qWGD/qE64hGw9/Q2LWL31eEhekfP3PaDmE+Y/OImTmTt/fnz/P/120vTFGr+fVIIuG9Q8XExPC/4mK+XTt28LpnbDyi8m7f5mXp48MDt5bq2ZOXbXR0WW/e6OiyHva6Qf3cXH6c+/cvaz+uX+f3CnXq8Hs6d3c+/fPPjd+PzZnDr82LF/O2qV8//gAoJYW3nWJ5tc2tA5UhvJEnFvwUY6rMv/iCv+k1YgTPtd2gAX/wvWULD/z9+ad56zBVl3XrsTnzC9N1r5sFBfw616yZ+H232DqqU2IiP5bmnKs18eZuTbUVFQkM5PV/7tyy/y+vutpnS69xlS2T5GS+Tf/3f3ybzTVunP6/27fnnRHMve781+swIeSJoKA+IeTZkJjIbzjLe/558R6vQFmPfN3A38SJvPdFeLj+q5wSCQ8+vPQSDwwKvSjs7PiDgJde4ssRu0k7c0a/x6EuF5eaC+r7+PCA15dfAsuXmzc4obFyBHhA0ZKg/rff6g+Uu3kzDwLrBkyq25AhPHi2YQMPiOm+vmuu7GzjZWCMJUF9V1f94DHA687ChbwXX/kHSmKWLePBz2XL9IO/1tY8OLV9Ow9OiQX1dffN25sHcMoHBnJy+H91e+/rcnIqm8/SoL7Yjx8rK/7jat8+HpARG3BazIQJZQF9YTlff82Xs3q1YVC/bl3DQOnUqfwcOXWq8ttpSXkZw1jZa+ViqXd+/pmfS19+aRigk0gsP6fUah5kdnbmwffybZfuvpw7x3spT51q+EMvOJgH9Bcv5r06dXvrivV+M9bj86uv9HvajRzJHwBmZ/O2RLeejxvHg/piaZNM2byZ/+myt+ftfnUMWh4Swh+SjBqlnwLE35/3Qi+fRsPTk5/3zz3HA4zZ2bxeffABTwXi5FSWCgUwr57dvVv2b2EwO7EBd58GwgD1CoVh/ZPJ+PVRIKR5WLBA/wF17dr8OvfRR/zNkNmzzVv322+XBfQBXlfHjePt45kzZefTL7/wh3k//GCYwuL993m9X79ePKiv29bK5fxYl5+vOtqO6vTpp/wB4ssvG+95HxOjv28NGvBrbvnrjZiSEt4uFxfzY1lRpwgxPXrwh1RRUbxnMMDPmxYt+Ln3+uv8razAQP4QXa3WT6ezfj2f9t57ZQF9gN+vzJ5tGLgDePuzbh1/uCM8gP/7b95hwtjbD+bWAUsJ13EvL14HK1JRmTdpwh+qjRql/8aXqytvt8wNEJuqy/b2fL269djSuv+kz5X/+vpNqa722dJrXGXKhDF+L+Pqyt/INMewYfy+vVUrvsyEBN72r1nDH35evGjevfCTPoZPev2EkCeCgvqEkGdD//48DYQgNZX3qnrrLd5r8uRJ/d769+8Du3fzQE67dmXTx4zhwe/wcP7jVveV4Hr1eGArLo73eDp1iv/7wAH+t2YNX2b5NAbTpxv2hH5c3n+fByW++or/SBdu2IwpX45VsWiR4bQlS3gwpSZ98w0/5h98YPg6uTkCA2t2HILWrQ1fE5ZIgG7deFD0/HnTQf3CQv4DwteX9xQtT8jrK/RI1jV5Mv9TKvmPkkWLeG7/b74xP2VPVeXl8SDt1q38IVJBgf7n9+6Zvyyx3MHt2vEAXVyc4WctWxr2WBYCntnZNbed5oiK4j3HQ0LEe33GxvL/mtszsyLx8bwXa58+/MetKcKr2A8eiD/AEupafDwPBD73HP8B/MYb/AHIgAG8fou9MSUo/wBOJuNBq4ICwzc3hOB4Sorp7S5v/Xre+x/g58nt2/yBxpw5vHwtyf0rZvduvvznnuMP1gID+QPNr7/mwbELF3ggQNC0qf5DKTs7nve+ZUseIA0L4w9MnsZe9tXByYnXjT17+JtwI0fyc7pjR8M3y86d4+e12FteQsBW7Jw3RizdklhbINT9PXvKxnjQJZeLt7XCdUSt5g9qN2zgvVaPHeM9n2siBV1V/forTy3RujU/L4yZM4f/FRTwNxk+/5ynkli1iqfcMEaj4fchhw7xel3+oau5XFx4cE0I2DPGe5pPm1Y2jlJ0ND/nhF77wnSg7GFgly6GyxabJqhbl7/B9eKLPDhZp47xt2+AmqkDt27x9kWt5surKC2OOWV++jTvod+0KX+g1agRf4t1+XL+0OTwYd4L+79g61bDdiQ0VP+hUE2KiOAPpHQNGyaeQvRpUt3tc0366Sf+m233bp6WyxzlO0W1bMk7jpSW8od94eH8fgcoe5NJV6tW/Dg+Dk+6DhNCnjpP4R0nIYSYwcuL97YqKuI9MubP1x9AdPVq/qOo/A8cV1fe23vTJh5k693bcNmtWunfYMfE8J760dH8R5Al6SBqmqMj/xE5cybvQfM4B4O6f5+/LVBUxB+qCLneGzUqyxspEIJWpsYrED6rKMDVuTO/ed66ld+4ix3DJ8nLS3y6tzf/b0U9ZLKyeKAgJcX0GwXlg9C6bGz4K/gREfw1+w8+4ME1oWem0IvH2LYIuYsrekhUnkrFf1icPcsDRxMm8J6SVlb8h+zq1bw3obmMlaWXl3jAV6x3khBYUasrv53mlpex3lFA2QC5Yjm9AR5olEgMe3tXlhC49POreN7MTP7fnTtNB76FOle3Ln/jae5c/sNZGByxYUOe6mHUKMPvitUlKyvTx0x4gFUZcjlPq/bDD/wH8K5dPPDVo0fllpeZyQOaQUHA2rVl7VSjRry+JCTwQOkbb/D1mtKsGQ9sHz7MU6IJD0PMqWe65SUMbGfpw4/HadMm/tBj/Xp+rQL4devll/l0ofdjbq7xh53CflrSu9DctkCo+8IA4ZaSyXhw98MP+f+//z4fqPC11/S3oyptR3UID+dvITVvzh/EOThU/B17e55+4u+/+cPUV1/lb/J4ehrOyxgPKv/+O79fqmpHh549eft85gw/Xvn5fFqjRryN1A3qOzvrPzQUylRsO4XrsDF9+/Kyyc/n+6H7NokxFdUBcyUn831MS+NvHOk+qBBjTpmXlPDOLBIJv2cSzre6dflbBXfu8PQi0dEVr0+3Luu+AQHwa4MwmLHY/GLK1/3Hca5s3Vo2wLSu0NDHs/6ICMN86oGB/DfH09JWGFt3dbTPll7jLC2TlBR+vzt5ctXSiQqmTuVB/aNH9YP65e/NJ03iv0v+C3WYEPLU+Zd2DSKE/GcIvUbOntWfLgT4P/mE/5jR/RNePxYbMFdMaGhZfvSoqCpvcrV77TX+A+2778rSMTxOtra8jHbu5OX78su8t7ku4QYyI8P4coRc3ObcbM6bx388f/CB5b3us7PLeiKa+2eJ1FTx6cJArRXtnxD8bNuW75uxv/KDBRrTrx9/YHL4cNk0U3k9GeOBRl9fwzcOKrJtGz8Xp03j//3pJ/6gac6cyv3AMlaWqalV+1Fi6XZWlAc1IYEHeevVE/88K4sHxlxcgBdeEJ/HxaXyufONLQ8wL+Ar1LmlS03XOd20SS1a8MBTZiYP8H/2Ga/jY8aU5Xp/Whi7Tlji6FHedoSEGD54lEh4QEyj4T0azSH0wNVtK03Vs6ws3kbqpsoQBuKLiXl6B3i3t+cB85s3+d/KlTww+/33+g/InZwMB7MWCNMtfchoDmGZubmm6745hLdsdHtxmtN26M5XE1at4m1dkyb8QXj5gGxFrKx4/S4o4L2+y9NoePBr1Sre2SIioupvn+j2yI+J4csTHsiFhvLp2dn8gV2PHvopZ4RjmpZmuFxjdUwwZQoP6Lu787duLl60bLvF6oA5kpL4ft27x3v5P/ec6fnNLfP4eH7edewonj5EGNzbWApJXabqslg9tvS6aW/PH9jcuqX/4M3UOiwVEWF4bgv3ePXr8+2pyXM1JsZw/UJ6p6ehrTCmutpnS69xlpZJQgI/fyMiDH/7JSfzzhrCv8u/vSlG7Do9Z47hMRTSE/0X6jAh5KlDQX1CyLNN6GWnG9A4dIjfuNSvz3/0iP25ufEgW1aWeeuxNLj5OFlb84cOhYWW54qvTo0a8Z4s9+4ZDkQrDNx2/Ljx7wuftWhh3rqmTOE/RM0d5E0g5MG15M8S586J96IXAp0tW5r+vqMj0LgxcPWqeT86KiKkkdFNBSC8piuWvig2tix4aanERP7f5583/Ez3oYK5xL5z+jR/O6Qqr6tbup2dOvG0W/v2GQb47t/ngZ+OHfkbEmJ+/53/mHzxRfE89EBZ4LkyKaXENGzIf2SfOlVxO9exI/+vqfPTGLmcl8/cubxXPGN8YM2nidh1wlIqFf+vWKBQd3r59GxiSkv5AwaJRD/1kHDOidUBYZruedmgAQ9o3rkj3nNPlyVvyNSUunX5Q9+DB3lvaGEgb4D3tC4qKktDpUvo2VoTKSqEui+k4akKsbY2KIg/ID161PC6oFTy+xVfX/GUXBURAtliwSOBENBv1Ih3ShDrvW4OsX0D+Dk1bRp/E2DMGP4WS2Xy6JfXvTtfTlQUD+C3aVP2oLJXL553e+VKvv7yaSeEa+yxY4bLFZsm+OEH3jlh8mT+BpJazQPmSqX5222snEwRAvopKbzX/NChpue3pMyrs90y1T5FRurPA1TuuhkSws8TsQfDYuuoTjY2/Dp87RoPAJe3dy/fH6HNqG412VaYQyo13pZUV/ts6TXO0jKpVcv47z4HB36eCP82p86fPMn/a+5A5ML2/1frMCHkyWCEEPI0u3WL90Po39/wM7WasZEj+eevv142feJEPi083Phy33mHz7N0Kf/3zZv8/3NzDefNz2esSxc+//z5ZdOjo/m06dPN3x+AsYYNK57P2LInTeLTjx/Xn67RMNaqFWNWVowFBPB57t8v+9xUOVoqJMRw+YIHDxiztWXM1ZWxnBz9z7p1M35c9u1jTCZjLDCQsZIS/c8CAhhTKAy/k5LC19WggfnlWpOEMgYYmz1b/7PVq/n0Xr30p2dnM3b1KmP37ulP/+knPv/Ikbz+lXfzJl+f4MgRw3JjjLFz5xhzcuL1Qnd+xhjr0YOvY+fOsmkqFWN9+vDpUVGm91fMunX8u++/rz89JoYxuZx/Fham/1lAAP/TFRbG57WxYezSpbLpJSWM9e3LP1uzpmy6UPaTJolvF8DrbVW2U2hXli8vm6bRlJ2Tq1aJr5sxxlq25POcPWt8ngsX+Dng68tYUpL+ZxqNYR0xx//+x9c7YQJjpaX6n2VnM5aXV/bvjh0Zk0gY27DBcDlqNS8bQWwsYw8fGs63cCFf39y5ZdOE9kKM2LEXlD9mjDGWlsbPl7Q0/elCfVm/3nA5ycmMubjwz2NjxdfFGG9rAd72irl7lx8fW1vGzp/X/+zSJcbs7Xk7pbttx47xY6erpISxmTP5ugYMMPysXj2+nHPnyqbn5jLWtCk/j69d0/9OXBzfJjs78WPHGGOHDvFrmKUsvcYB+sczNZWxkycN50tJ4edZ3bpl03TbSJWqbPrdu4x5e/N9T0wsm26s7RTqgthxDA83vAZdvMiX3bAhY7dvG34nK0v/vD13jq+7vIwMfg0GGFu7Vv+zzz4Tb2+E6Z99Zrg8c8yaxb+ve27qWrGCn9ONG/Nrc0UOHjSsr4wxFhnJj5ezs/71SK1mbPJkvg2jRolfg6qifXt+XtnZ8bZMcOMGX6enp3i7Gh/PmFTK62J6etn0/HzGmjUTb1suXODXm/r1y9rFr7/m877xhv68lakDxtquW7f4dlpZMbZ5s8niYIxZXuZKJT9uUik/jrpSUvj1BuD7X5HMTL4sDw/9c+XePcZ8fHg7m5mp/x1Lr5tRUXx69+6MFReXTd+/n9flHj1Mb+O8eRXf/5uyahX//tix+ueCMH3iRNPfr+g6UpGqthX9+/P5yt/vmcPDg9+Di7G0fTamMte46mo/jf2WSEwUv7+6cqWsjSn/m8uU/3odJoQ8dpRTnxDybLhxQz8NSloa77119SrP8zh7Np+em8vT6zg4iOd1FkyZwtPVrFwJvPkmzz84Ywbwv//xHmJNm/IetSkpvNdpZiZPhzJjhuGyTp82nqLFxcVwAKb798tety2vTh0+KJ2lJBI+rsCAAeK9MwTly7E8S1PNlOftzdMBLV7MyzcsrOyzFSt4r9IpU/jrox068F4zFy7wQQrt7HiPM3N7uPn68kF5xQaTfZK6d+c9/k6c4PmIr1/nb4U4OwPLlunP+/ffvDwmTSp7fRfggy+fOMF73x49ygc79fXlrznHx/PeQ+vWlfUeeuMNfk507crrUGkp76mzdy9/zLB4sWFPo59+4oMGDh8OjB7Nl79nDz8eugMSWmLIEL6eBQv4oMDNmvHt2LGD5xvdvNmy5fXpw3v7jR3L367ZtYsvt39/nkO4siqznfPn8zbnjTf4gJrBwbxX/9GjfHt0U9PoOnOGD9zYpo3hYLG6mjfnb7i89RZvf4YNAwICeEqtQ4eAwYMN34CpyOef83q0di3/78CBvJfWzZv8WB85Uta7bv16fszHjuXraduW9/q6fZv34E9LK+ux+scffHyR0FDeQ87JiQ+ouWsXf1395Zct205zLVvG3wgICxNvqzZtKhvUtLSUt4Vbt/LX8adO5eejrvnzy+YX3lKYP7/sXJw2jQ8ADPCxCT76iKdpat+eH5/AQF4+f//Ne8IvXKg/sOW4cbxt7tKFfz87mx/La9f4eVo+B7aVFW8n+/fn7ci4cbxst2zhr/N/+aXhYMQtW/JBe0eP5sfu8895O+vmxq9bR4/yHrFV6d0ZHW38mtWvn/HBU1NSeI/Apk15/ffz4ynYtm3jub7ff79s3gkT+H5u28bf1nruOd7b8c8/+XcWLdJPb2Ws7bRUs2a8Lr/2Gn+7ZdAg/pZfbi4/Tw4e5PsuHKuICH6Mevbk56e9Pa9nO3fyevbCC4bl8f77/K2EBQv4m1xt2/I2Yfdufv7ploMlevXig31Pn87vd+zteb0aP573cH/lFd7+9+jB2/vyyg/u+PzzvP62b8/vq4qK+PXg0CH+Rs6KFfpvLX7+OS8PBwdeL8XG9KnKIKA9e/I3jYT/F9Svz7fvzh0+TlL5t98aNuT57b/+mrero0bxc2vLFv7vS5f0U9UolbzMhEExhfEGPviA96z98Ud+byWkxKlMHTDWdoWG8u926sTL+sIFw3LQnd/SMlco+LkzbRpv/wcP5m8CPnzIz6HcXH5NE96mNMXVle/HhAn8fB47lpfjxo18eWvXGg7Kbul1s2dPvq0rVvDr5eDBfNkbN/K2UKwer1jBr2VAWbqkFSvKUiANG2b+IKYTJ/J1bdjA29zQUN4ObN7M69w33xh+x5LrSEUq01bMmlWWvlLY/1mzyurxhx/yN3Uq0qsXb29HjuRlL5Px8m/e3PL22ZjKXONqqv0UCINM9+zJ2xZHR/62986d/Dr12Wf8/DTXf70OE0Ievyf9VIEQQkzS7f2s+6dQ8J51776r3/Pp55/551OnVrzstm35vGfO8N5Mmzcz9uqrvFethwfvlenqynuYL17MWFGR/veFXoym/sr3Qq1o/pYt9Zdtbk99Qa9eZcsS66lf0Z85TPXUZ4z3CLSz4z26yvfaunePH7NGjXjvUoWC99p59VXGEhLEl2esdw1jvLecm9vT1VN/0iTe623AAMYcHRlzcGBs8GD9HucCoeeosR7mGzfynvOurrynpJ8fY6GhjC1apF/v16xhbNgwXla2toxZW/P/Hz+e9xY25to1/jaAuzsv46ZNGfvhB94bsLJu3mTshRd4Dyc7O97bcsOGsjptSU/96GjGfvmFsSZN+PbVrs3Yhx8yVlioP7+lPfUrs52M8fr78su8Z5q1NX9LZO5c3n4Y89prhj0VTYmOZuy553i9trbm+/zCC4wdPWre98tTKhn79lveg9TWltfHJk0Ye+893gtZV2Ymf8ukWbOyeYOCeD3asqVsvhMneNvUrBnvnWlry+d76y3D3s7V2VNfqBflj40wXfdPIuFtUPfu/DwT64EsbJuxP7Gecn/+yVjv3vyclMn4cerXj7Ht2w3nnT+fn6++vvxY2tkx1qIFY598Ytg26jp5krcfzs68bNu1Y+z3343PzxjvJfzFF4x16sS3zcqKn9ehoYx9/734Gz8VMeca9/bbZfOXv+ZlZTE2Zw7vmVirFi8DX1++b+V7DTPGe3F++y1jzZvz893RkR+jbdsM5zXWdlraU18QG8t7Nvr68rbWw4OxNm14e3P1atl8hw/zntKNGpW9BeXlxfdp3TrxesYYv1a98w5j/v58+f7+/N9iPb4tsWABP/eEN4yEc0bYV1N/5ctuyRK+H7Vr8/K3seHLnjZN/Pol3I9Yeg6Za/duvgwrK/23ihgr6wE+dKjx7y9fzt9SENrRWbMYu3PH8HtvvMGnffml4TJu3+bnk6dn2T1PZeqAsbbL0vuyypb5/v38uuLpydstJyfeNq5ebbz8jNm9m5/TDg78r0cPxvbsMT6/pddNtZrfhzRtyuuhuzu/Tynfg1tQUZmIXctNUSr59jVowLfX25tvv7G35SpzHTHF0rZCeDvX2J+5Pa7v32ds9Gje9kmlhttuSftcEUuvcdXRfhr7LXH+PH+bsXFjvj1WVvyYP/+8+HXKHP/1OkwIeawkjDH2pB8sEEIIIYRozZnDezVGRxvmSyaEEEIqY/9+oG9f3rtXrMcqIYQQQsgzhAbKJYQQQgghhBDy75CWZjjoZ3Y2T6EFmJ/KghBCCCHkKUY59QkhhBBCCCGE/Dv88Qcfb6BXLz5ezP37fByR1FQ+RkLnzk96CwkhhBBCqoyC+oQQQggxbutWIC6u4vlCQylVTk2Li+PHoyKBgcYHNiX/XdnZ5g+2XNVB04nl/s3nd0QEkJRU8XxVGVhXV5cufEDN/fv5gNEyGR8g9tNPgddfr/ryCSGEEEKeApRTnxBCCCHGTZ4MrF5d8XxhYRQIrGkREcCUKRXPFxICxMTU9NaQZ01SElC3rnnz0s+Dx+/ffH6HhgIHD1Y8X3j4s/fAghBCCCHkCaGgPiGEEEIIIYQQQgghhBDyjKCBcgkhhBBCCCGEEEIIIYSQZwQF9QkhhBBCCCGEEEIIIYSQZwQF9QkhhBBCCCGEEEIIIYSQZwQF9QkhhBBCCCGEEEIIIYSQZwQF9QkhhBBCnjExMTGQSCSYM2fOk94UQgghhBBCCCGPGQX1CSGEEEJqWHR0NMaMGQN/f38oFAq4ubmhW7du+O6776BUKkW/ExgYiMDAwMe7oaRGpaamYt68eRg5ciTq1q0LiUQCiURi8jsajQbLli1DmzZtYGdnBycnJ4SEhOCff/4RnV9Ypqm/O3fu6H0nKysLs2bNQoMGDaBQKODp6YmRI0fi8uXLldrPBw8eYNq0aahVqxZsbGwQHByMzz//HCqVqlrKpCIJCQkYPXo0PD09YWtrixYtWmDZsmXQaDQG8yYmJmLOnDl4/vnn4efnB4lEUqnz7nE9aIuLi8Onn36KTp06wcvLCwqFAvXq1cPrr7+OlJQUo98zt0wYY9i9ezdee+01tGjRAs7OzrCzs0PLli3x9ddfi7ZXycnJ+L//+z+0bdsWnp6eUCgUCAgIwODBg3HgwIFK7ePHH3+M/v37w9PTExKJBKGhodVeJsbMnz8f/fr1g7+/P2xtbeHu7o527dph8eLFKCwsNJi/JuowIYQQQkhFJIwx9qQ3ghBCCCHk36i0tBRvvPEGfv31V9jb22PgwIFo0KABcnJysHfvXiQmJiI4OBg7d+5EgwYN9L4rBBaTkpIMlhsTE4OePXsiLCyMeus/Q4TjJpFIEBQUhLt376KwsBDGbscZYxg1ahQ2b96M+vXrY+DAgSguLsa2bduQmpqKpUuX4s0339T7jrH6cOPGDfzxxx9o3Lgxrly5op2ekZGBzp07IyEhAZ07d0bnzp1x//59bN68GVZWVoiKikLHjh3N3scHDx6gY8eOuHPnDoYNG4bg4GAcOXIER48exYABA7Bz505IpWX9iiwtk4pcuXIFXbp0QWFhIUaPHg0/Pz/s3r0bFy9exCuvvIJff/1Vb/6IiAhMmTIFMplMWzb+/v6i550pj+uc7NSpE2JjY9G+fXt07NgRCoUCJ0+exOHDh+Hh4YHDhw+jUaNGet+xpEyUSiVsbW2hUCgQGhqK5s2bQ6lUIjIyEgkJCWjfvj0OHjwIW1tb7Xf279+PUaNGoXPnzqhbty6cnJyQkpKCbdu2ITc3F1999RU+/vhjs/dxzpw5mDt3LqytrREcHIxLly4hJCQEMTEx1VYmptStWxceHh5o3rw5vLy8kJ+fj5iYGFy+fBktW7bEsWPHYGdnp52/uuswIYQQQohZGCGEEEIIqRGzZs1iAFj79u3Z3bt39T4rLS1ln332GQPAGjRowHJycvQ+DwgIYAEBAaLLjY6OZgBYWFhYDW05qQkPHjxgBw8eZLm5uYwxxho2bMhM3Y7/9ddfDADr2rUrKyws1E5PS0tjAQEBTKFQsFu3bpm17jfffJMBYIsWLdKb/sYbbzAA7N1339WbfuzYMSaTyViTJk2YWq02cw8ZmzhxIgPAli9frp2m0WjYpEmTGAC2atUqvfktLZOK9OjRgwFgO3fu1E5TqVSsd+/eDACLiorSmz8xMZEdP35cW74KhcLoeWfK4zonly5dym7cuGEwff78+QwAGzRokMFnlpSJSqViX331FcvKytJbhkqlYkOGDGEA2IIFC/Q+Ky4uFq0jKSkpzNvbm8nlcoPlmXLp0iV25swZplKp2P379xkAFhISYnT+ypSJKUVFRaLTJ0yYwACwZcuW6U2v7jpMCCGEEGIOutsghBBCCKkB169fZ1KplLm5ubEHDx4YnW/8+PEMAPv0008ZY4zdunWLARD9EwKGugHEM2fOsH79+jEHBwfm5OTEhg0bZjTQe/PmTTZ16lTm7+/PrK2tmY+PD5s0aRJLSkoymFcIpN29e5dNmjSJeXt7M4lEwqKjo03ud0hICAPAlEol+/TTT1n9+vWZlZWVdtuFz8UIgV/d7Q8PD2cAWHh4ONu/fz/r2rUrs7OzY25ubmzixIksPT3dYDlRUVFswIABrFatWsza2prVqlWLhYSEsN9++83ktj9uFQX/XnzxRYNgrGDJkiUMAPvss88qXE9RURFzdXVl1tbWLDU1Ve8zPz8/JpVKWV5ensH3hg0bJhoINyY3N5cpFApWr149ptFo9D67d+8ek0qlrHPnziaXUZWA6LVr1xgA1rNnT4PPTpw4wQCwcePGmVxGZYL6YWFhRs9Z3bqcnp7OZs6cyQIDA5m1tTXz9PRko0ePZpcvX7ZofWJKS0uZnZ0ds7e315teHWUiOHbsGAPABg8ebPZ2DR8+nAFgcXFxZn9HlzlBfWOMlUllbdu2jQFgM2fONDkfBfUJIYQQ8jhYVWevf0IIIYQQwkVERECj0eDVV1+Ft7e30fk+/fRTrFu3DqtWrcLnn38OFxcXhIWFYcmSJQCAmTNnauctn1f69OnTWLhwIUJDQzF9+nScO3cOW7duxcWLF3Hp0iXY2Nho5z158iT69++PgoICDBkyBA0aNEBSUhL++OMP7N69G8ePH0e9evX0li+kZnFzc8OYMWOgUqng5ORk1v6PGDEC58+fR//+/eHm5mawbEtt374dO3bswJAhQ/Daa6/h0KFDWLNmDRITE3HkyBHtfDt37sSQIUPg4uKCoUOHolatWkhLS0NcXBz++OMPTJs2rUrb8Tg9fPgQAE8HUp4wLSoqCnPnzjW5nC1btiArKwsjR46Ep6enwTo8PDzg4OBgch09e/ascHuPHz+O4uJi9O3b1yCneK1atdC8eXOcPHkSSqVSr25WFyE9S79+/Qw+69ChA1xcXHDw4MFqX29oaCiSkpKwevVqhISE6J2nLi4uAPi51KlTJ9y4cQOhoaEYO3YskpKSsGnTJuzcuRP79u1D586dK70NEokEMplML7URUL1lIpfLAQBWVub9hMzIyMDJkydhZ2dX5fO/MoyVSWXt3LkTANCsWbNqWR4hhBBCSFVQUJ8QQgghpAYcO3YMANC7d2+T8zVq1Ai+vr5ISUnBnTt34O/vjzlz5iAiIgKA8RzpAA8ybdiwAWPGjNFOmzhxItauXYutW7di7NixAICSkhKMHTsWGo0Gp0+fRsuWLbXzHzlyBKGhoXj77bexfft2veVfunQJU6ZMwW+//QaZTGbJ7uPevXu4cOEC3NzcLPqeMf/88w9iYmLQtWtXAIBarUafPn0QExODEydOoFOnTgCAVatWgTGGmJgYtGjRQm8ZGRkZZq1r69atiIuLM3vbQkNDTQ7kWVlCAP7WrVto3Lix3me3bt0CAFy/fr3C5axcuRIARB9oeHp64uHDh8jPzzcI7FuyDoAPxgoAQUFBop8HBQXh/PnzuHnzJpo0aWLWMi1hav0SiQQNGjTA6dOnUVhYqJcTvaqEY7969WqEhoaKnrPvv/8+bty4gY8++ghff/21dvrkyZMxYMAATJo0CfHx8ZUOQG/atAl5eXkYNWqU3vTqLJNVq1YBEH9AAPDxPyIiIqBWq3Hv3j38888/yM7Oxs8//wxHR8fK7FaVGCsTcy1ZsgTZ2dnIzs7G0aNHcfr0afTr1w8TJ06s5i0lhBBCCLEcBfUJIYQQQmrAgwcPAAD+/v4Vzuvv74979+7h/v37Zs0v6NGjh15AHwBefvllrF27FqdOndIG9Xfs2IGkpCR88cUXegF9AOjWrRuGDh2KrVu3Ijc3V68nvrW1NRYsWGBxQB8A5s6dW20BfQAYP368NqAPADKZDJMmTUJMTAxOnTqlDeoLdAfyFLi7u5u1rq1bt2L16tUWbV9NBPUHDhyI9evXY/78+ejVq5e2d3tGRob2TY7s7GyTy7h16xaio6NRp04d9O3bV3Qdq1atwty5c7Fw4ULt9NjYWOzYscOsdQhycnIAAM7OzqKfC3VLmK+6WbL+6gzqV0SlUmH9+vVwd3fH7Nmz9T7r378/+vfvj8jISBw7dgzdunWzePl37tzBW2+9BVtbW3zxxRd6n1VXmezZswe//PILGjdujKlTp4rOk5SUpPfWiIODA8LDw/HSSy9ZtD/VwVSZmGvJkiVITk7W/vull17CTz/9pH1jgRBCCCHkSaKgPiGEEELIE8YYAwCDlCUVadOmjcG02rVrA9APxJ44cQIAEB8fL9qL+MGDB9BoNLh+/TratWunnV63bl14eHhYtE2CDh06VOp7xpi7r6NHj8aWLVvQsWNHjBs3Dr169UL37t3h5eVl9roiIiK0b0o8SePGjUN4eDiio6PRvHlzDBgwACUlJdi6das2pVNFD1yENxemTJki2gt87ty52L17N7799lscP34cnTp1wv3797Fp0yY0adIEFy5c0FuH0HtZ1+TJkxEYGFjl/TWHWP2dOXOmNs3N0yg+Ph5FRUUIDQ0VDZyHhoYiMjIScXFxFgf1MzMzMWjQIKSmpmLNmjVo2LBhdW221unTpzFmzBg4Ozvjr7/+gkKhEJ0vNDQUjDGUlJQgKSkJv/76KyZOnIjY2Fj88MMP2vkiIiKQlJSk991hw4ahVatW1bK9FZWJuXVY2MYHDx4gOjoa77//Pjp27IjIyEht20MIIYQQ8qRQUJ8QQgghpAb4+PggPj4ed+7cqTDQdvfuXe13LCHW+1bId61Wq7XTMjMzAQB//PGHyeUVFBTo/dvUWAAVqcp3xZi7r2PGjIFcLseSJUvwyy+/YPny5ZBIJAgNDcXixYurLXD4OFhZWWH37t2YP38+1q1bh19//RXOzs4YPnw4Zs2aheDgYIMc+bo0Gg0iIiIglUrx8ssvi85Tu3ZtnDp1CmFhYdi9ezdiY2Ph7++Pzz//HIGBgRg7dqzeOsr3XgZ4MDcwMFB7jIz1xM/NzQVgvNe4OcTGD5g8eTJcXFzMXr+540JUF2G9xs4J4by39A2GrKws9OnTB5cvX8ZPP/0k2iO+qmVy7tw59OvXDxKJBJGRkWjatGmF2yWXyxEUFISFCxeisLAQS5cuxcCBAzFw4EAAPKhfPo9/YGBgtZyb5pSJqTosxsfHB+PGjUODBg3QoUMHvPfee9i4cWOVt5UQQgghpCooqE8IIYQQUgO6dOmCmJgYHDhwAH369DE6X3x8PO7duwc/Pz+LUu9YQgjYbd++Hc8995zZ37P0zQFzviv0Fi8tLTUYcLO60rKMGDECI0aMQG5uLo4dO4YtW7Zg5cqV6N+/P65du1Zhr+6nJac+ACgUCoSFhSEsLExvujAAqu6bFeXt2bMHd+/eRf/+/VGnTh2j8/n5+WHFihUG04Ve8brrKN/DWpeQt13I415eQkICpFJplQZNFd5qsXT9jDHcuHEDvr6+sLe3r/T6K0M4/4SBj8sTplvysCEzMxN9+vTBuXPn8OOPP2L69Omi81WlTM6ePYu+fftCrVZj7969aN++vdnbJ+jXrx+WL1+OmJgYbVBfqLvVzdwyMVWHTWnfvj1cXV1rbPsJIYQQQixBQX1CCCGEkBowadIkzJ8/H7/99hveffddoz2qv/rqKwAw6Ektk8mgUqmqZVs6duwIADh+/LhFQf2a4OrqCgBISUlBQECAdrpGo8H58+erdV1OTk4YMGAABgwYALVajVWrVuHkyZPo37+/ye89LTn1TRHeuhDGTRBjaoDciqjVamzYsAFWVlZ44YUXzPpOp06doFAosG/fPjDG9B7s3L9/HxcvXkTHjh21YwNUN+EY7N27Fx9++KHeZ7GxscjOztYGlqubkKJI960RQaNGjWBjY4NTp06JDkgr9Fo3t6e6bvB66dKleP31143OW9kyOXv2LPr06YPS0lJERkZq2xBL3bt3DwAMHuBVN0vKpLLy8/ORk5Nj8RtVhBBCCCE1wTCxJiGEEEIIqbLg4GC8/fbbyMjIwJAhQ3D//n29zzUaDb744gv8/vvvqF+/PmbNmqX3uZubG9LT06FUKqu8LUOHDkWdOnWwePFiHDp0yODzkpISHDlypMrrMYfQ67t8zvrFixfj1q1bVV7+gQMHRMssNTUVgPgAuuVFRESAMWb2n1ie9+oipEfRtWnTJqxatQrt27fHiBEjRL+XlpaG7du3w8PDA88//7zR5ZeUlKCoqEhvmkajwaxZs3Dt2jXMmDEDvr6+Zm2rk5MTxowZg5s3b+Lnn3/WTmeM4aOPPoJGo8Err7xi1rIqIzg4GD169EB0dDR27dqlnV5SUqIdoLam1i8MCi2k0tJlbW2NcePGIT09HfPmzdP7bP/+/di9ezcaNGigNxC0MZmZmejduzfOnTuH77//Hm+++abJ+StTJkJAv6SkBLt370bnzp1NriM2Nlb0nEtOTtbub009TAEsLxNTkpOTRXvyl5SUYObMmdBoNDW6L4QQQggh5qKe+oQQQgghNWTBggXIycnBqlWrEBQUhMGDB6N+/frIzc3F3r17kZCQgKCgIOzatcsg9UavXr1w+vRpDBkyBN27d4e1tTW6detm8UCaAE/hsmnTJgwcOBAhISHo3bs3mjVrBgC4ffs2Dh8+DHd3d8THx1fLfpsyZcoULFiwAHPmzEFcXBzq16+P06dP49KlSwgJCTHItW2p9957D7dv39bmyJZIJDhy5AhiY2PRpUsXswKnNWny5Mna/xce9OhO+/bbb/UGJ+7YsSP8/f3RuHFj2NjYIDY2FjExMahXrx7++usvowPlrlmzBiUlJZg4cSKsra2Nbs/Dhw/RtGlT9OvXD3Xr1oVKpUJkZCTi4+MxePBggyB0RebPn4/o6Gi88cYb2L9/P4KDg3H48GEcPXoU/fv3x6RJk6pcJqb89NNP6NKlC4YPH47Ro0fD19cXe/bswYULFzBt2jT07NlTb/709HS9B2olJSVIT0/XW785gyY3atQIvr6+2LBhA+zs7FC7dm1IJBK89tprcHZ2xjfffIODBw/iyy+/xLFjx9CxY0ckJSVh06ZNsLOzQ3h4uOhAxuWNGDECcXFxaNSoETIzM80aONiSMhF6vGdlZWHAgAHYt28f9u3bp7d8FxcXzJw5U/vvr7/+GocPH0ZISAjq1KkDKysrJCYmYteuXVCpVHjnnXcsarfi4+Mxf/58ANA+cIqPj9ceEw8PD3z77bdVKhNjzp07hxdeeAHdu3dHUFAQPDw88PDhQ+zfv187PorwdpWu6qzDhBBCCCFmYYQQQgghpEbt27ePjRo1ivn6+jK5XM5cXFxY586d2aJFi1hhYaHod/Ly8tgrr7zCatWqxaRSKQPAwsLCGGOMRUdH6/1b161btxgANmnSJIPP7t69y95++20WFBTEFAoFc3JyYo0bN2bTpk1jBw4c0JsXAAsJCbF4X0NCQlhFt5hnz55lvXv3ZnZ2dszJyYkNHTqUJSQksEmTJjEA7NatW9p5w8PDGQAWHh5usByxctiwYQMbPXo0q1+/PrOzs2POzs6sVatWbMGCBSw/P9/i/aluAEz+6e47Y4yFhYWx5s2bM0dHR2ZjY8MaN27MZs+ezXJyckyup3HjxgwAu3Llisn5cnNz2YQJE1i9evWYjY0Nc3R0ZJ07d2a//fYbU6vVldrHe/fusZdffpl5e3sza2tr1qBBAzZ37lymVCpF57e0TCpy7do1NnLkSObu7s4UCgVr2rQp++GHH0T3RzhfTP2Z68SJEywkJIQ5OjqKbntaWhp76623WEBAAJPL5czDw4ONHDmSXbx40ex1BAQEVKq8zC0Tc8ojICBA7zvbt29nY8eOZfXr12f29vZMLpczPz8/Nnz4cLZr1y6z900gnNfmrr+yZSImOTmZvfPOO6xt27bM3d2dyWQy5uzszDp16sS++eYbo21IdddhQgghhJCKSBgzMdoUIYQQQgghhBBCCCGEEEKeGpRTnxBCCCGEEEIIIYQQQgh5RlBQnxBCCCGEEEIIIYQQQgh5RlBQnxBCCCGEEEIIIYQQQgh5RlBQnxBCCCGEEEIIIYQQQgh5RlBQnxBCCCGEEEIIIYQQQgh5RlBQnxBCCCGEEEIIIYQQQgh5RlBQnxBCCCGEEEIIIYQQQgh5RlBQnxBCCCGEEEIIIYQQQgh5RlBQnxBCCCH/KXPmzIFEIkFMTIzedIlEgtDQ0CovpzpNnjwZEokESUlJNbaO6hIaGgqJRPKkN4MQQgghhBBC/vUoqE8IIYSQp8a4ceMgkUiwYcMGk/NlZGRAoVDAw8MDKpXqMW1d9YuIiIBEIkFERMST3pSnwrP0EEOMsP2m/rZu3aqdXzj+un+2trYIDg7GjBkz8ODBA5Pru3nzJqRSKSQSCZYtW2Z0vqSkJJPbVNH5puvQoUOYNWsWevbsCWdnZ0gkEkyePNnkd+7evYvp06ejTp06sLa2hq+vL6ZMmYI7d+4YzCtWJuX/evfubfC9kydPYujQofDw8IBCoUBwcDA+++wzFBUVmb1vuiIjIxEaGgonJyc4OjoiNDQUkZGR1VYmFVm3bh06dOgAe3t7uLq6YtCgQTh9+rTovNu3b8eMGTPQtWtX2NvbQyKRYM6cORav83GcfyUlJdi8eTMmT56Mxo0bw97eHo6OjujYsSOWL18OtVpt9LvmlklGRgZ+/fVXPP/886hXr572WjFw4ECjx3DLli0YOXIkgoKC4OTkBAcHBzRt2hQzZ85ESkqKxfv5+++/Y/r06WjXrh0UCoXJdr4qZSImOTkZ//d//4e2bdvC09MTCoUCAQEBGDx4MA4cOCD6nZqow4QQQgipWVZPegMIIYQQQgRTp07Fhg0bEB4ejrFjxxqd7/fff4dKpcKECRNgbW1dLeu+evUq7OzsqmVZ1WXevHn48MMP4efn96Q3hVhg6tSpqF27tuhnjRo1MpjWu3dvdOvWDQCQnp6OqKgoLFu2DFu3bsXZs2fh6ekpuqxVq1aBMQaJRIKVK1fizTffNLldLVu2xLBhwwymN2vWrII90l/n6tWrYWdnhzp16iA3N9fk/ImJiejSpQtSU1PRt29fjBkzBgkJCVi9ejV27dqFY8eOoX79+tr5W7VqhbCwMNFlbdq0CZcvX0b//v31pm/ZsgVjxoyBTCbDCy+8AB8fHxw9ehRffPEFoqKicODAASgUCrP38Y8//sBLL70EDw8PTJo0CRKJBH/++ScGDBiA33//HS+++GKVyqQiX3/9NT755BPUqVMH//d//4f8/Hxs2LABXbt21T5s0LVo0SIcPHgQTk5O8PX1xY0bN6q0/pqUmJiIkSNHwtHREb169cLzzz+PnJwcbN++HW+88Qb27NmDbdu2Gbz1Y0mZ/PXXX3jttdfg5+eHXr16wc/PD3fv3sXmzZuxZ88eLFy4ELNmzdJb/t9//43z58+jffv2qFWrFgAgLi4OP/zwA1avXo0jR46gadOmZu/n7NmzkZycDA8PD9SqVQvJycnVXibGJCQkYOPGjejcuTM6deoEJycnpKSkYNu2bdi1axe++uorfPzxx3rfqe46TAghhJDHgBFCCCGEPCU0Gg0LDAxkUqmU3b592+h8LVu2ZADYxYsXLV5HWFgYA8Cio6OrsKXVs5zw8HAGgIWHh1dpW54GISEhrKq3lpMmTWIA2K1bt6pnox4zYfuPHz9u1vzC8Z83b57edLVazQYNGsQAsM8++0z0u6WlpczPz4/VqlWLvfjiiwwAO3PmjOi8t27dYgDYpEmTLNofMadOnWKXLl1ipaWl7Pjx4xUud/DgwQwA+/777/Wm//nnnwwA69+/v1nrLS4uZu7u7szKyoo9ePBAO72wsJB5eHgwuVzOTp8+rZ2u0WjYG2+8IVq+pmRmZjIXFxfm4eGh1wbdu3eP+fj4MBcXF5aZman3HUvLxJTr168zKysrFhwczLKzs7XTL126xOzs7Fj9+vVZSUmJ3ncOHTrErl+/zjQaDVu/fj0DwMLCwixe9+M4/+7evcuWL1/OCgoK9Kbn5+ezdu3aMQDszz//1PvM0jI5cOAA27FjB1Or1XrLiY+PZ87Ozkwul7OUlBS9z4qKikS3d8WKFQwAGzlypEX7uW/fPpaUlMQYY2zevHkm2/nKlIkpxcXFBvvOGGMpKSnM29ubyeVylpWVpfdZddZhQgghhDwelH6HEEIIIU8NiUSCKVOmQKPRYPXq1aLznDlzBufPn0eHDh3QrFkz3Lt3D2FhYejUqRO8vLygUCgQGBiI119/HampqRatWyyn/p07dzBu3Di4ubnBwcEBISEhOHTokOgyVCoVli5div79+8Pf3x8KhQJeXl4YMWIEzp07pzfv5MmTMWXKFADAlClT9NKL6M5jLB3G6tWr0alTJzg4OMDBwQGdOnUSLbOYmBhtOo6zZ8+if//+cHR0hLOzM4YPH25xqo0jR44gJCQE9vb2cHd3x5gxY0TTqACw6NgEBgZqt79u3brastA9Jn///TfGjRuHBg0awM7ODs7OzujevTs2b95s0T487aRSqTb1xZkzZ0TniYyMREpKCsaPH6+tRytXrqzxbWvXrh2aNm0KmUxW4bxKpRKRkZHw9vbGjBkz9D4bNWoUWrVqhcjISNy8ebPCZf3999/IyMjAc889B29vb+30o0ePIj09HcOGDUPbtm210yUSCb788ksAwM8//wzGmFn799dffyE7OxszZsyAv7+/dnqtWrUwc+ZMZGdn46+//tL7jiVlUpHw8HCUlpbik08+gbOzs3Z606ZNMXHiRCQmJiIqKkrvO927d0dQUFCVxrQw5/wDgGPHjmHw4MFwc3ODjY0NGjVqhDlz5qCwsNCs9fj5+eG1114zeCvK3t4e7777LgDg4MGDep9ZWia9evXC4MGDIZXq/9Rt2LAhxowZg5KSEhw7dkzvMxsbG9HtHTVqFABY/PZDnz59EBAQYNa8lSkTU6ytrQ32HQB8fX3RpUsXlJSUGLw5UJ11mBBCCCGPBwX1CSGEEPJUmTJlCqRSKSIiIkQDceHh4QB4ihOA5wJetGgRvL29MW7cOMyYMQP169fHTz/9hM6dOyMnJ6fS23L//n107twZGzZsQIcOHfDWW2/Bzc0Nffv2xYkTJwzmz8zMxMyZM1FcXIxBgwbhnXfeQWhoKHbt2oUuXbrg1KlT2nmHDRuGoUOHAgCGDh2KsLAw7V9F3nnnHUyePBl3797F1KlTMW3aNKSkpGDy5MnaIFB5p0+fRvfu3WFlZaXN9bx161b06dMHSqXSrPI4cOAAevXqhZMnT2LkyJF49dVXcevWLXTt2hVZWVkG81tybGbOnImWLVsCAN5++21tWejmdf7oo49w+fJldOvWDW+//TZGjRqFa9euYeTIkVi6dKlZ+/CsEOq+lZV4tkwhgD9x4kT07NkT/v7+WLduncljee/ePfz000+YN28eVq9ejbt371b/huvIyMhAaWkpAgICRAPOdevWBQBER0dXuCxhf6dNm6Y3/eHDh3rL0uXi4gJXV1ckJyeb9eAAgHbg6379+hl8JqT9sSTAaqkntX5zzr/NmzcjJCQEMTExGDZsGGbOnAkHBwfMnTsXffr0QXFxcZW2QS6XAzCs89VZJsbWYczOnTsBWJaiqjpZur2mZGRk4OTJk7Czs0O9evWqvDxCCCGEPFmUU58QQgghTxV/f3/07dsXkZGROHToEEJCQrSfFRcXY926dbCzs9Pm3O/VqxcePHgABwcHveWsWbMGkyZNwrJly/DJJ59Uals++ugjpKSk4Msvv9Rbxq+//orp06cbzO/q6orbt28b5MC/fPkyOnXqhI8//hj79u0DwIP62dnZ2LZtG4YNG2b2oISHDx/GkiVL0LhxYxw/flzbc3Xu3Lno1KkTvvvuO4wYMUKbo12wc+dObNiwAWPGjNFOmzhxItauXYutW7eaHMMAADQaDV599VWUlpbi0KFD2uUzxvDSSy9h3bp1Bt+x5NjMnDkTcXFxOH/+PGbOnInAwECD5e3atcsgGJWfn48uXbrg008/xdSpU80aFyEiIsKiNxSGDRuGVq1amT3/ihUrsGfPHtHPPvzwQ6O9ggVqtRqrVq0CAIPjCABpaWnYvn07mjdvjhYtWgAAXnrpJcybNw+bN282yPku2Ldvn7b+ATxQ+NZbb2HhwoWiPXurytXVFTKZDMnJydrc/7pu3boFALh+/brJ5SQnJ+PAgQPw8/PDgAED9D4TxhsQlqUrJydH+7Dp+vXrern7jUlISAAABAUFGXwmTBPmqQkJCQlwcHCAj4/PY11/RedfXl4epk2bBplMhuPHj2vrne75v3DhQsyePbvS2yDU+fLB++oqk7y8PGzatAk2Njbo3r276Dxbt25FXFwcCgsLcfnyZURGRqJu3br4/PPPLd2damGsTMyRlJSEiIgIqNVq3Lt3D//88w+ys7Px888/w9HRsbo3lRBCCCGP25PM/UMIIYQQImbjxo0MAJs4caLedCFftDm5fjUaDXNycmKhoaF6043lwgfAQkJCtP8uLi5mNjY2zMvLyyDfslqtZsHBwRbl1B8yZAiztrZmKpVKO62inPpiOa5ffvllBoBt3LjRYH6hfKZOnaqdFh0dzQCwHj16GMwvfPbuu+9WuP0HDx5kANiQIUMMPktKSmIymczsnPrGjk1lc3ovWrSIAWAxMTFmzS/k/zf3z9wxD4TtN/Wnm8taOP69e/dmYWFhLCwsjL355pusYcOGDADr1KkTy8/PN1jPt99+ywCwhQsXaqddvXqVAWA9e/Y0mP/hw4csLCyMxcXFsdzcXJaamsr++ecf1rhxYwaAffjhh2btX3nm5N7u1asXA8CWLVumN33z5s3aMnn11VdNrkc4Z2fPnm3wWV5eHnNycmJyuZydPXtW77MZM2Zo17Fu3Tqz9ikoKIgBMMhbL5DJZCw4ONjo96uaj1wulzM/Pz/Rz27fvs0AsH79+hn9fk3l1F+zZg0DwF577TXR7bKysmL169e3eJ2CX375hQFgvXr1MvisqmUiGD9+PAPAPv/8c6PzlD+H27Vrx27cuGH+joioKKe+MabKxBxC+y78OTg4sLVr11b4PcqpTwghhDwbqKc+IYQQQp46w4YNg7u7OzZt2oRly5ZpexUKvRZffvllvfm3bNmCX375BWfPnkVWVhbUarX2s3v37lVqG65duwalUolevXoZ9KyWSqXo0qWLaA/juLg4LFiwAEeOHMGDBw9QUlKi93l6ejpq1apVqW0CoM3NL5b/X5gWFxdn8FmbNm0MptWuXRsAkJ2dXeF6z58/DwCiPVwDAgLg7+8v2vu9Oo9Namoq5s+fj927dyM5ORlFRUV6n5u7PCGdR005fvw4OnXqZPb8Bw4cwIEDB/Smde7cGVFRUaK9+letWgWpVIrx48drpzVq1Ajt27dHTEwMbt68qfdGg5eXF+bMmaP9t6OjI4YMGYL27dujWbNmWLx4Md5//324urpasJfmWbx4Mbp164Y333wT27dvR4sWLXDjxg1s27YNLVq0wIULF0zm8dZoNAgPD4dEIjE47wHAwcEBixcvxrRp09C5c2eMHDkSPj4+OHbsGM6cOYNGjRohPj5euw6h97IuFxcXzJw5szp326i4uDhs3bpVb1pgYKDZb+o8KabaHX9/f9SvXx/Xrl1DXl6exb3Ad+7ciTfffBMBAQH4/fffq2NzDXz88cdYt24dBgwYgI8//tjofBEREYiIiEBOTg7OnTuHTz75BG3btsWWLVvQq1cvALy9XLJkicF3dc+xqjJVJubW4dDQUDDGUFJSgqSkJPz666+YOHEiYmNj8cMPP1TbthJCCCHkyaCgPiGEEEKeOtbW1njppZfw/fff488//8TUqVNx584dHDhwAEFBQejRo4d23kWLFmHWrFnw9PREv379ULt2bdja2gIAlixZUuk8z0K+dy8vL9HPdQfrFBw7dkwb+OnXrx+CgoLg4OAAiUSCrVu34vz581XOO52bmwupVKpNO1J+m6RSqeg4AroDTAqEPM26gXZjzCmP8kH96jw2mZmZaN++PW7fvo2uXbuiT58+cHFxgUwmQ1xcHLZt21blsn1S5s2bhw8//BAajQZJSUmYM2cO1q5di1deeQVr167Vm/fEiRO4cuUK+vbtC19fX73PJk2ahFOnTiE8PBxffPFFhev18fHBoEGDsHbtWpw6dapSKT4q0rJlS5w6dQphYWGIjo5GdHQ0GjRogF9++QXZ2dn43//+J1qXBfv27cPt27fRu3dv0bz5AB9fw9fXFwsWLMC2bdugVqvRrl07HDhwAN988w3i4+O160hKSsLcuXP1vh8QEKANiArnSU5ODtzd3fXmKygogFqtFj2XzBUXF2ew/pCQEG1Q39nZ2eg4ILm5uXrb+DgJ6xZr9wBel65du4bc3FyLgvqRkZF44YUX4O3tjaioKNEHnlUtk7lz52LevHno1asXtmzZYtZgsM7OzggNDcXu3bvRsGFDTJw4Ebdu3YJcLkd2drbBMQSqL6hfUZlUVIfLk8vlCAoKwsKFC1FYWIilS5di4MCBGDhwYLVsLyGEEEKeDArqE0IIIeSpNHXqVHz//fdYtWoVpk6dioiICGg0Gr3euqWlpfjiiy/g6+uLuLg4veAgYwwLFiyo9PqFIFFqaqro58IAnbq++uorFBcX48iRI+jataveZydOnND2dq8KJycnaDQapKWlGQTYU1NTodFo4OTkVOX1lGdpeVT3sVm5ciVu375tML4BAMyfPx/btm0ze1k1nVO/sqRSKerVq4fVq1cjOTkZv//+O1544QUMGzZMO48wYOy+fftEB58F+P7NnTvXrDz5Hh4eAIDCwsKq74ARjRo1wsaNGw2mC4Hsdu3aGf2usQFyyzMWpJwwYQKkUqn2TRWh97IxQUFBOH36NBISEgyC+qby7Ztr8uTJJnvlBwUF4fjx43jw4IFBDvnqWH9lCW2KWLunO92StmfPnj0YPnw4PDw8EB0dbXTw1qqUydy5czFnzhyEhoZi+/bt2oeK5nJyckKnTp2wdetW3LhxA40bN0ZgYKDJOlQV5pRJRXXYlH79+mH58uWIiYmhoD4hhBDyjKOgPiGEEEKeSs2bN0f79u1x7NgxxMfHIyIiAjKZDJMmTdLOk56ejpycHPTu3dugt+/p06cN0rNYomHDhrCxscHp06ehVCr10qBoNBocO3bM4DuJiYlwc3MzCOgXFhbi7NmzBvMLPUbN6SkvaN26Nc6dO4eYmBiMHj1a77ODBw8CQI0EoFu2bAmAD9T7v//9T++z5ORk3LlzR29aZY6NqfJITEwEADz//PMGnx0+fNiCPeFBb6GszBEYGPhYgvoCiUSC77//Hm3atMFHH32EIUOGQCaToaCgABs3boSdnR3GjRsn+t0TJ05oB/g0J2gXGxsLAKIDE9ekvLw8bN++HW5ubujbt6/oPBkZGdi2bRvc3NwwfPhwi9dx9OhRJCUlYdCgQWb3bg8JCcH69euxd+9egxRKkZGR2nlqSkhICI4fP469e/di4sSJj3X9ps6/1q1bA4Bou5OSkoLExETUq1fP7F76e/bswbBhw+Dm5qZ9e8OYypbJnDlzMHfuXISEhGDnzp1mDaItRkjrJbzZVFMsKZPKelz7QgghhJCaV3H3HUIIIYSQJ2Tq1KkAeC/dmzdvYtCgQXqpCLy8vGBra4uzZ8/q9TTOysrCjBkzqrRua2trjB49GqmpqVi0aJHeZytWrBDNpx8QEICsrCxcvnxZO02tVmPWrFlIS0szmN/NzQ0AcPfuXbO3S3ioMXfuXG3qCYCnoRBSMug++Kgu3bp1Q926dbFjxw4cOXJEO50xho8//tggEFiZY2OqPAICAgBAb90AsG7dOuzatcuifYmJiQFjzOy/J5HvvFWrVhg2bBji4+Oxbt06AMCff/6JvLw8jBo1CitWrBD9+/rrrwGU9XAHeOC+/NgOAM93f/ToUTRp0kT70Ka6FRUVobS0VG9acXExpk6diszMTISFhYmOGwAAa9euhUqlwksvvQSFQmF0HbrngeDevXuYNm0arKyszEpFJBg9ejScnZ2xdOlSvQdV9+/fx5IlS+Di4oJRo0aZvTxLTZkyBVZWVvjqq6/0Us5cvnwZa9asQf369bUpvqqbqfNv6NChcHZ2Rnh4uF77xhjDRx99hJKSErPPEyF47erqiujo6ArfPKhMmYSFhWHu3Lno3r17hQH94uJinDhxQvSz8PBwxMbGokGDBjX6hoSlZWJKbGwslEqlwfTk5GTMmzcPAKiXPiGEEPIvQI/oCSGEEPLUGjduHN59910cPXoUQFmQXyCVSvH6669j0aJFaNmyJYYMGYLc3Fzs3r0bAQEBBjnHLTV//nwcOHAAs2fPxpEjR9C6dWtcvXoVu3btQr9+/bB37169+WfMmIG9e/eiW7duGD16NGxsbBATE4OUlBSEhoYaDNDauXNn2NraYsmSJcjNzdX2aP/www+NblOPHj0wY8YMLF26FM2aNcMLL7wAxhi2bNmCO3fu4K233tIbc6C6SKVS/Prrrxg0aBD69OmDMWPGwNfXF1FRUbh//7520FPd+S09Nr169cK3336L6dOnY9SoUbC3t0edOnUwfvx4TJgwAd988w1mzJiB6OhoBAQE4MKFC9i/fz9GjBiBLVu2VPs+V9aKFSuwZ88e0c9CQ0NFBxsVM2fOHGzduhWff/45xo0bpw3Uiw0YKxg0aBC8vb3xzz//IC0tDZ6ennj//fcRHx+PkJAQ+Pv7o6ioCMePH8e5c+fg6uqKtWvXGk3lU96RI0ewYsUKANA+qDpy5Ig2oNuoUSO9+nvmzBmMGDECffv2hb+/P3Jzc7Fz507cvn0br7zyismHb+am3vnhhx/w+++/o1u3bvDy8sKdO3ewbds2FBYWYuXKlaKDRBvj6uqKZcuWYcKECWjTpg3Gjh0LqVSKjRs34uHDh1i7dq3BgMKWlokpwcHBmDNnDmbPno0WLVpg5MiRKCgowPr161FSUoLffvvNoJf11q1btYPv3rp1SztNSDHVrVu3CssQMH3+OTk54bfffsO4cePQsWNHjBkzBp6enjhw4ABOnz6NDh06GLzBIyY+Ph7Dhg1DcXExQkNDsX79eoN5yg8cbGmZRERE4PPPP4eVlRU6dOiAhQsXGqxD9zwsKipC586d0axZM7Rq1Qp+fn7IyclBbGwszp49CwcHB4SHh1e4b7pWrFihfQB58eJF7TThGjBs2DBtWq3KlIkpX3/9NQ4fPoyQkBDUqVMHVlZWSExMxK5du6BSqfDOO++gW7duet+pzjpMCCGEkMeEEUIIIYQ8xSZOnMgAMG9vb1ZSUmLwuUqlYl999RULCgpiCoWC1alTh7377rssLy+PBQQEsICAAL35w8LCGAAWHR2tNx0ACwkJMVh+cnIyGzNmDHNxcWF2dnase/fu7ODBg0aXs2nTJtamTRtmZ2fHPDw82OjRo1liYiKbNGkSA8Bu3bqlN//OnTtZ+/btma2tLQPAdG/PjH2HMcZWrVrF2rdvz+zs7JidnR1r3749W7VqlcF80dHRDAALCwsz+OzWrVsMAJs0aZLBZ8YcOnSI9ejRg9na2jI3Nzc2atQolpyczEJCQlj5W0tLjw1jjC1YsIAFBQUxuVxucEzi4uJYv379mKurK3N0dGQhISFs//79LDw8nAFg4eHhZu9HTRCOl6k/3eMgbPe8efOMLvOFF15gANjPP//MALD69etXuB3vvfceA8AWLVrEGGPst99+YwMGDGC1a9dmNjY2zMbGhjVs2JC9/fbb7M6dOxbto7DNxv7Kn0PJycls1KhRzN/fn1lbWzMXFxfWq1cvtmnTJpPrOXnyJAPAOnToUOE2HThwgPXp04d5eXkxuVzOfHx82JgxY9jZs2ct2jddu3fvZj169GAODg7MwcGB9ejRg+3Zs0d0XkvLxBy///47a9euHbO1tWXOzs5swIABLDY2VnReoS0y9mfJ+W3q/GOMn/8DBw5kLi4uzNramgUHB7NPP/2U5efnm7V8oT2qTHmZWyYVlUf581ClUrG5c+ey0NBQVqtWLSaXy5mdnR1r0qQJmzlzJktOTja3+LQqagt011+VMhGzfft2NnbsWFa/fn1mb2/P5HI58/PzY8OHD2e7du0S/U5N1GFCCCGE1CwJYzU0yg8hhBBCCCGEEEIIIYQQQqoV5dQnhBBCCCGEEEIIIYQQQp4RFNQnhBBCCCGEEEIIIYQQQp4RFNQnhBBCCCGEEEIIIYQQQp4RFNQnhBBCCCGEEEIIIYQQQp4RFNQnhBBCCCGEEEIIIYQQQp4RFNQnhBBCCCGEEEIIIYQQQp4RFNQnhBBCCCGEEEIIIYQQQp4RFNQnhBBCCCGEEEIIIYQQQp4RFNQnhBBCCCGEEEIIIYQQQp4RFNQnhBBCCCGEEEIIIYQQQp4RFNQnhBBCCCGEEEIIIYQQQp4RFNQnhBBCCCGEEEIIIYQQQp4RFNQnhBBCCCGEEEIIIYQQQp4RFNQnhBBCCCGEEEIIIYQQQp4RFNQnhBBCCCGEEEIIIYQQQp4RFNQnhBBCCCGEEEIIIYQQQp4RFNQnhBBCCCFERGBgICQSCSQSCbZu3Wp0vj59+kAikSAiIkJvekREhPb71tbWyMjIMLqM0tJSeHl5aeefM2eO6HyRkZEYMWIE/Pz8YG1tDRcXFzRs2BBDhgzBokWLkJiYqDd/UlKSdpkV/SUlJZlZMhW7cuUKpk+fjuDgYNja2sLe3h51/5+9O4+qutr/P/46gAwqYIkypAg54VCpmGPYYIl6K01Lc6C4msnVTKW6aQ4pWpaV0uBEXxO9JqJpZqYpVqaIWZo0qWWmYQIRdgXUBIHz+4Mf53ZkkOFwgMPzsdZnydmfvd/7/YHW6nzeZ5/98ffXHXfcoVmzZikhIaHImMLf99W/x5KEhoYWuYZ69erJ29tb999/v3bs2GGx67na4cOHTXOOGjXqmv3/nuObb75Zat+pU6ea+vr5+VkoYwAAANgSh+pOAAAAAKjp5syZo0GDBslgMFRo/JUrVxQbG6sJEyYUe37nzp36448/So3xxBNPaMmSJZKkBg0aqHXr1qpfv75+/fVXbdu2Tdu2bVNKSopeffXVYsd37dpVTk5OJcZ3dnYu49WU7t1339WYMWOUk5OjevXqydfXV9dff73S0tL0+eef6/PPP9eOHTt06NAhi8zXtGlTtW7dWpJ0+fJl/fTTT/rwww/14Ycfavr06XrxxRctMs/f/ec//zH9vGXLFmVlZcnV1bXMYydNmlTsuby8PK1fv94iOQIAAMB2sVIfAAAAKIW9vb2++eYbbdq0qULjW7duLYPBYFYIvlrhubZt2xZ7PiYmRkuWLJGdnZ1ef/11nTt3Tj/88IO++uorpaWl6YcfftCMGTPUtGnTEufYuHGj4uPjSzy8vLwqdH1/d/r0aY0dO1Y5OTkaM2aMfvvtN/3888/68ssvdfr0aaWkpOitt95S+/btKz1XoQEDBpiu4dChQ0pPT9fTTz8tSVqwYIEOHDhgsbmkgm9VxMTESJIaNWqkS5cuafPmzWUa27ZtW3311Vf68ccfiz0fFxen1NTUEv87AAAAACSK+gAAAECpRowYIUmaO3eujEZjucf7+vqqT58++uKLL/Tzzz8XOZ+VlaWtW7fK399fvXv3LjbG6tWrJUljxozRk08+WWTFffv27TV//nz9+9//Lnd+lrR+/XplZ2erbdu2evvtt4t8yODl5aWJEydqzZo1VZaDo6OjFi5cqE6dOplysqRdu3YpLS1NzZs31/Tp0yWp1A9s/m706NGSpLVr1xZ7vrA9JCTEApkCAADAVlHUBwAAAEoxZswY+fn56fvvv9eGDRsqFKO0Yu57772nv/76S6NGjSpxe59ffvlFkkyF6pqqMM+bbrpJdnbVd6thMBh02223SZJOnDhh0diFBfyHH35YI0eOlJ2dnT777DP99ttv1xw7dOhQubi4aO3atUU+ILp48aK2bNli+hAIAAAAKAlFfQAAAKAU9erV04wZMyQVrNbPz88vd4yHHnpIzs7Oevfdd4ucKyz0Fxb+i+Pm5iZJ+vLLL8s9tzUV5pmYmKgrV65Uay4V+VbFtWRmZuqDDz6QJI0cOVLNmjVTnz59lJ+fr3Xr1l1zvKurqwYNGqTTp09r//79Zuc2b96sixcvlvrhDgAAACBR1AcAAACuKTQ0VDfeeKOOHTtWoe1c3N3ddd999+nnn3822+P9t99+0549e9StW7dS91Hv37+/pIJV4v/617/01VdfKS8vr/wXUsUK8/z55581YMAA7dixQ5cuXbJ6Hkaj0VQ0b9WqlcXiFn6ron379qZvTYwaNUpS2bfgKdxa5+r+ha9L+3AHAAAAkCjqAwAAANfk4OCgWbNmSZIiIiIqVFAvLNb+vZj77rvvKj8//5qF3GeffVaBgYEyGo1avny5unXrJjc3N912222aNm2aDh06dM35/f39ZTAYij0sta3P3Xffrccff1yS9Mknn2jgwIFyd3fXLbfcorCwMG3btq3KP4zIycnRv//9byUmJkqShg0bZrHYhX+7kSNHmtoefPBBOTo66vvvvzfNWZp+/fqpadOm2rBhg7KzsyVJKSkp+vTTT9WlSxeLPkQYAAAAtomiPgAAAFAGISEhat26tX788cdit9G5lgEDBsjDw0MbNmwwbU2zdu1aOTg46OGHHy51rKurq+Lj4/Xaa6+pXbt2kqRLly5p//79evnll3Xrrbdq8ODBOn/+fIkxunbtqt69exd7dO7cudzXU5IVK1Zo06ZNuv3222Vvb6/c3Fx9++23WrFihe677z7dcsst+u677yw2344dO3TbbbfptttuU9euXeXh4aFXX31VkjR16lTT3vqVdebMGX3++eeS/vfwZElq1KiRBg4cKKlsq/UL/97nz5/XRx99JElat26d8vLyeEAuAAAAyoSiPgAAAFAG9vb2ptX68+bNU25ubrnG16tXT8OGDdO5c+e0fft2JSYm6vvvv1dwcLCaNGlyzfHOzs4KDw/X0aNHdfbsWW3evFlTp06Vv7+/JOmDDz7QkCFDShy/ceNGxcfHF3usWrWqXNdyLUOGDNGePXv0559/Ki4uTvPmzVO3bt0kST/88IPuvvtu/fHHHxaZKy0tTfv379f+/fuVmJgoZ2dnDRgwQO+//74WLVpkkTkkmR5u26NHD914441m5wq34Ckszl/L1d/a+M9//iN7e3uzDwsAAACAklDUBwAAAMpo5MiRatu2rX7++ecy76H+d4UrsdeuXWt6QG5FVmf7+PjogQce0KJFi/TTTz/pqaeekiR99tlnRR7AWp3c3Nx09913a+bMmTp48KA2btwoOzs7paWlKSoqyiJzPProozIajTIajcrNzVVaWpq2b9+uwYMHWyR+oeK23il07733ys3NTampqdq9e/c1Y916660KCAjQ9u3btXfvXn3zzTe655575OnpadGcAQAAYJso6gMAAABlZG9vr9mzZ0uq2Gr9Hj16qHXr1vrwww+1du1aubm56f77769UTg4ODlq4cKG8vLwkSV9++WWl4lWlBx98UEOHDpVUs/O82qFDh3Ts2DFJ0pNPPlnkmQQuLi7KzMyUVPYH5o4ePVo5OTmmD3XYegcAAABlRVEfAAAAKIeHH35Y7du316lTpxQdHV3u8aNGjVJ2drZ+//13DR06VC4uLpXOyc7OTi1atJBU8KDYmqxw65qanuffFRbq69evL09Pz2KPwi2U3n//fV24cOGaMUePHi2DwaCkpCQ1bNjQ4t8sAAAAgO2iqA8AAACUg52dnZ5//nlJ0vz5800PvS2rkJAQ9e3bV3379tW4cePKNCYtLa3U8+fPn9fRo0clSa1bty5XPpZ0rTwlKSEhQVL15lkeubm5Wr9+vSRpyZIlSk1NLfFo1qyZLl26pM2bN18zbosWLTR+/Hj17dtXTz/9tOrXr1/VlwIAAAAbQVEfAAAAKKeHHnpIN910k3799ddy72F/4403avfu3dq9e7d69uxZpjEDBw7UqFGj9Omnnxb5ECExMVGDBg1SVlaWvL29FRwcXK58ShIaGiqDwaDQ0NAyj3nxxRcVFBSkmJgYZWVlmZ1LSUlRWFiY9u3bJ4PBoEcffdQieZaXn5+fDAZDmb9lsXPnTqWlpcnFxcW0dVBx7OzsTA+6LesWPMuWLdPu3btNHxIBAAAAZeFQ3QkAAAAAtY3BYNDzzz+vBx98UHl5eVU+X15entatW6d169bJ2dlZrVq1krOzs5KTk5WcnCxJatSokTZs2KAGDRoUG+Ohhx6Sk5NTiXMsWLBAQUFBlcrTYDAoPj5e8fHxsrOzU8uWLXXdddfpjz/+0JkzZ5Sbmyt7e3stWrRIgYGBxcaYNGmSnn766RLn2LNnjzp27FipPMujsEA/ePBgubq6ltp39OjReuWVV/Tpp5/q7NmzuuGGG6yRIgAAAOoYivoAAABABQwZMkSdOnVSYmJilc+1a9cu7dy5Uzt27ND333+v5ORknT9/Xg0bNlT37t0VHBysiRMnqmnTpiXGOHToUKlznDt3zux1amqqJKlTp05lzvPFF1/UPffcox07dujgwYM6e/asTp8+LScnJ7Vp00Z9+vTRv/71L918880lxrhw4UKpe9KX9+HEf5eXl6f09HRJ0i233HLN/pmZmdq6daukgoL9tdx888266aab9N1332ndunV65plnKpwrAAAAUBKD0Wg0VncSAAAAAGqO/Px8XX/99TIajfrtt9+uuUK9tvj6668VGBioO++8U59++ml1pwMAAABUCHvqAwAAADDzww8/KCMjQ48//rjNFPQlmZ5/8NRTT1VzJgAAAEDFUdQHAAAAYCYhIUEODg568sknqzsVi0pISFBAQIAGDhxY3akAAAAAFcb2OwAAAAAAAAAA1BKs1AcAAAAAAAAAoJagqA8AAAAAAAAAQC1BUR8AAAAAAAAAgFrCoboTAADAluXn5ys5OVmurq4yGAzVnQ4AAACqmNFoVFZWlnx8fGRnx1pKAIDlUdQHAKAKJScnq3nz5tWdBgAAAKzszJkzatasWXWnAQCwQRT1AQCoQq6urpIKburc3NyqORsAAABUtczMTDVv3tz0PhAAAEujqA8AsBlLly7VK6+8opSUFHXo0EGRkZEKCgq65rj9+/fr9ttvV8eOHZWYmGh2btOmTZo1a5ZOnjypli1b6oUXXtADDzxQ5pwKt9xxc3OjqA8AAFCHsPUiAKCqsLkbAMAmxMbGasqUKZoxY4aOHDmioKAgDRgwQElJSaWOy8jI0COPPKK+ffsWOXfgwAENHz5cISEh+uabbxQSEqJhw4bp4MGDVXUZAAAAAAAApTIYjUZjdScBAEBlde/eXV26dNGyZctMbe3atdPgwYO1YMGCEsc9/PDDat26tezt7bVlyxazlfrDhw9XZmamduzYYWrr37+/rrvuOsXExJQpr8zMTLm7uysjI4OV+gAAAHUA7/8AAFWN7XcAALVeTk6ODh8+rGnTppm19+vXTwkJCSWOW7VqlU6ePKm1a9dq/vz5Rc4fOHBAU6dONWsLDg5WZGRkiTGzs7OVnZ1tep2ZmVnGqwAAAHVBXl6erly5Ut1poJIcHR1lZ8fmBwCA6kFRHwBQ66WnpysvL0+enp5m7Z6enkpNTS12zIkTJzRt2jTt27dPDg7F/+8wNTW1XDElacGCBZo7d245rwAAANg6o9Go1NRUnT9/vrpTgQXY2dnJ399fjo6O1Z0KAKAOoqgPALAZVz+MzGg0FvuAsry8PI0cOVJz585VmzZtLBKz0PTp0xUeHm56nZmZqebNm5clfQAAYMMKC/pNmzZV/fr1eYhqLZafn6/k5GSlpKTI19eXvyUAwOoo6gMAaj0PDw/Z29sXWUGflpZWZKW9JGVlZenQoUM6cuSInnjiCUkFN2dGo1EODg7atWuX7rrrLnl5eZU5ZiEnJyc5OTlZ4KoAAICtyMvLMxX0GzduXN3pwAKaNGmi5ORk5ebmql69etWdDgCgjmEDOABArefo6KjAwEDFxcWZtcfFxalXr15F+ru5uem7775TYmKi6QgLC1Pbtm2VmJio7t27S5J69uxZJOauXbuKjQkAAFCSwj3069evX82ZwFIKt93Jy8ur5kwAAHURK/UBADYhPDxcISEh6tq1q3r27KmoqCglJSUpLCxMUsG2OGfPntWaNWtkZ2enjh07mo1v2rSpnJ2dzdonT56sPn366OWXX9agQYP0wQcfaPfu3YqPj7fqtQEAANvANi22g78lAKA6UdQHANiE4cOH69y5c4qIiFBKSoo6duyo7du3q0WLFpKklJQUJSUllStmr169tH79es2cOVOzZs1Sy5YtFRsba1rJXx6JiYlq2LBhucf9nYeHh3x9fSsVAwAAAAAA1G4Go9ForO4kAACwVZmZmXJ3d7dILBcXFx0/fpzCPgAAtczly5d16tQp+fv7y9nZubrTgQWU9jctfP+XkZEhNze3asoQAGDLWKkPAIAV3HffffL29q7w+PT0dG3evFnp6ekU9QEAqKPy8qR9+6SUFMnbWwoKkuztqzsrAABgbTwoFwAAK2jcuLF8fHwqfHh4eFT3JQAAgGq0ebPk5yfdeac0cmTBv35+Be1VwWAwlHqEhoaa+m3ZsqXI+NDQUA0ePLjE12lpaRo/frx8fX3l5OQkLy8vBQcH68CBAyXmNGfOHNP8dnZ28vHx0ahRo3TmzBmzfn5+foqMjCwyPjIyUn5+fkXiFT6DqVBiYqIMBoNOnz5dYi4AAFQnivoAAAAAANRgmzdLDz4o/fabefvZswXtVVHYT0lJMR2RkZFyc3Mza3v99dcrFX/o0KH65ptvtHr1av3000/aunWr7rjjDv3555+ljuvQoYNSUlL022+/KTY2Vt99952GDRtW4TycnZ21cuVK/fTTTxWOAQCAtbH9DgAAAAAANVRenjR5slTc0/CMRslgkKZMkQYNsuxWPF5eXqaf3d3dZTAYzNoq4/z584qPj9eePXt0++23S5JatGihbt26XXOsg4ODKQ8fHx+NGzdOTz75pDIzMyu0f33btm3VtGlTzZw5Uxs2bCj3eAAAqgMr9QEAAAAAqKH27Su6Qv/vjEbpzJmCfrVFw4YN1bBhQ23ZskXZ2dkVjpOamqrNmzfL3t5e9pX4ROOll17Spk2b9NVXX1U4BgAA1kRRHwAAAACAGiolxbL9qsKIESNMhfrC49133y2xv4ODg6Kjo7V69Wo1atRIvXv31nPPPadvv/32mnN99913atiwoerXry9vb2/t2bNHEydOVIMGDSqcf5cuXTRs2DBNmzatwjEAALAmivoAAAAAANRQ3t6W7VcVFi9erMTERLPj/vvvL3XM0KFDlZycrK1btyo4OFh79uxRly5dFB0dXeq4tm3bKjExUV999ZVeeOEFderUSS+88EKlr2H+/Pnat2+fdu3aVelYAABUNYr6AAAAAADUUEFBUrNmBXvnF8dgkJo3L+hXXby8vNSqVSuzw9XV9ZrjnJ2ddc8992j27NlKSEhQaGionn/++VLHODo6qlWrVurQoYOee+45derUSf/617/M+ri5uSkjI6PI2PPnz8vd3b3YuC1bttS4ceM0bdo0GYt7gAEAADUIRX0AAAAAAGooe3vp9dcLfr66sF/4OjLSsg/JrS7t27fXxYsXyzVm1qxZiomJ0ddff21qCwgIKHZ//K+++kpt27YtMdbs2bP1008/af369eXKAQAAa6OoDwAAAABADTZkiPTee9INN5i3N2tW0D5kSPXkVVHnzp3TXXfdpbVr1+rbb7/VqVOntHHjRi1cuFCDBg0qV6wbb7xRgwYN0uzZs01t4eHh2rFjhyIiInT06FEdPXpU8+bN08cff6ynnnqqxFienp4KDw/XG2+8UeFrAwDAGhyqOwEAAAAAAFC6IUOkQYOkffsKHorr7V2w5U5tXKHfsGFDde/eXYsXL9bJkyd15coVNW/eXOPGjdNzzz1X7nhPPfWUevfurYMHD6p79+7q0aOHdu7cqYiICEVGRkqSOnTooJ07d6p79+6lxnrmmWe0bNkyXb58uSKXBgCAVRiMbBYHAECVyczMlLu7u0JDQ+Xn51fhOMnJyYqKitLhw4fVpUsXyyUIAACq3OXLl3Xq1Cn5+/vL2dm5utOBBZT2Ny18/5eRkSE3N7dqyhAAYMvYfgcAAAAAAAAAgFqCoj4AAAAAAAAAALUERX0AAAAAAAAAAGoJivoAAAAAAAAAANQSFPUBAAAAAAAAAKglKOoDAAAAAAAAAFBLUNQHAAAAAAAAAKCWoKgPAAAAAAAAAEAtQVEfAGAzli5dKn9/fzk7OyswMFD79u0rsW98fLx69+6txo0by8XFRQEBAVq8eLFZn+joaBkMhiLH5cuXq/pSAAAAAAAAikVRHwBgE2JjYzVlyhTNmDFDR44cUVBQkAYMGKCkpKRi+zdo0EBPPPGE9u7dq2PHjmnmzJmaOXOmoqKizPq5ubkpJSXF7HB2drbGJQEAAFS70NBQs8UNjRs3Vv/+/fXtt98W6fv444/L3t5e69evL3Lu4sWLevbZZ3XjjTfK2dlZTZo00R133KFt27aZ+txxxx3FLqgICwsz9TEYDNqyZUuxue7Zs0cGg0Hnz583e92xY0fl5eWZ9W3UqJGio6NNr/38/Iqd+6WXXirHbwsAAOugqA8AsAmLFi3S2LFj9dhjj6ldu3aKjIxU8+bNtWzZsmL7d+7cWSNGjFCHDh3k5+en0aNHKzg4uMjqfoPBIC8vL7MDAADAqubMkebNK/7cvHkF56tQ//79TYsbPvnkEzk4OOjee+8163Pp0iXFxsbqmWee0cqVK4vECAsL05YtW/TWW2/p+PHj+vjjjzV06FCdO3fOrN+4ceOKLKhYuHBhpfI/efKk1qxZc81+ERERReaeNGlSpeYGAKAqOFR3AgAAVFZOTo4OHz6sadOmmbX369dPCQkJZYpx5MgRJSQkaP78+WbtFy5cUIsWLZSXl6dOnTpp3rx56ty5c4lxsrOzlZ2dbXqdmZlZjisBAAAohr29NHt2wc+zZv2vfd68gvaIiCqd3snJybSwwcvLS88++6z69OmjP/74Q02aNJEkbdy4Ue3bt9f06dPl7e2t06dPy8/PzxTjww8/1Ouvv66BAwdKKlgZHxgYWGSu+vXrW3wRxaRJk/T8889rxIgRpX7j0tXVlQUcAIBagZX6AIBaLz09XXl5efL09DRr9/T0VGpqaqljmzVrJicnJ3Xt2lUTJ07UY489ZjoXEBCg6Ohobd26VTExMXJ2dlbv3r114sSJEuMtWLBA7u7upqN58+aVuzgAAIBZswoK97Nn/2/F/t8L+n8v9FexCxcu6N1331WrVq3UuHFjU/vKlSs1evRoubu7a+DAgVq1apXZOC8vL23fvl1ZWVlWy7XQlClTlJubq7feesvqcwMAUBUo6gMAbIbBYDB7bTQai7Rdbd++fTp06JCWL1+uyMhIxcTEmM716NFDo0eP1i233KKgoCBt2LBBbdq00ZtvvllivOnTpysjI8N0nDlzpnIXBQAAIJkX9p2crFrQ37Ztmxo2bKiGDRvK1dVVW7duVWxsrOzsCkoKJ06c0BdffKHhw4dLkkaPHq1Vq1YpPz/fFCMqKkoJCQlq3Lixbr31Vk2dOlX79+8vMtfSpUtNcxUeq1evrlT+9evX1/PPP68FCxYoIyOjxH7PPvtskbn37NlTqbkBAKgKFPUBALWeh4eH7O3ti6zKT0tLK7J6/2r+/v666aabNG7cOE2dOlVzStmT1s7OTrfeemupK/WdnJzk5uZmdgAAAFjErFmSo6OUk1Pwr5VW6N95551KTExUYmKiDh48qH79+mnAgAH69ddfJRWs0g8ODpaHh4ckaeDAgbp48aJ2795titGnTx/98ssv+uSTTzR06FD98MMPCgoK0ryrnhUwatQo01yFxwMPPFDpaxg7dqw8PDz08ssvl9jnmWeeKTJ39+7dKz03AACWRlEfAFDrOTo6KjAwUHFxcWbtcXFx6tWrV5njGI1Gs/3wizufmJgob2/vCucKAABQYfPm/a+gn5NT8sNzLaxBgwZq1aqVWrVqpW7dumnlypW6ePGi3n77beXl5WnNmjX66KOP5ODgIAcHB9WvX19//vlnkQfm1qtXT0FBQZo2bZp27dqliIgIzZs3Tzk5OaY+7u7uprkKD0ssknBwcND8+fP1+uuvKzk5udg+Hh4eReZ2cXGp9NwAAFgaD8oFANiE8PBwhYSEqGvXrurZs6eioqKUlJSksLAwSQXb4pw9e1Zr1qyRJC1ZskS+vr4KCAiQJMXHx+vVV1/VpEmTTDHnzp2rHj16qHXr1srMzNQbb7yhxMRELVmyxPoXCAAA6rar99AvfC1ZdU99qWDLQzs7O/3111+mffKPHDkie3t7U5/jx49r1KhROnfunNne+3/Xvn175ebm6vLly3J0dKzyvB966CG98sormjt3bpXPBQBAVaKoDwCwCcOHD9e5c+cUERGhlJQUdezYUdu3b1eLFi0kSSkpKUpKSjL1z8/P1/Tp03Xq1Ck5ODioZcuWeumllzR+/HhTn/Pnz+vxxx9Xamqq3N3d1blzZ+3du1fdunWz+vUBAIA6rLiH4hb+a4XCfnZ2tmmbw//+97966623dOHCBd13332KjIzUP/7xD91yyy1mYzp06KApU6Zo7dq1mjx5su644w6NGDFCXbt2VePGjXX06FE999xzuvPOO81W4l+6dKnIlopOTk667rrrTK9PnTqlxMREsz6tWrUq07W89NJLCg4OLvZcVlZWkbnr16/PdooAgBqHoj4AwGZMmDBBEyZMKPZcdHS02etJkyaZrcovzuLFi7V48WJLpQcAAFAxeXnFPxS38HVeXpVO//HHH5u2H3R1dVVAQIA2btyodu3a6aOPPtK6deuKjDEYDBoyZIhWrlypyZMnKzg4WKtXr9Zzzz2nS5cuycfHR/fee69mF34o8f+9/fbbevvtt83agoOD9fHHH5teh4eHF5nvs88+K9O13HXXXbrrrru0a9euIudmz55dJJ/x48dr+fLlZYoNAIC1GIxGo7G6kwAAwFZlZmbK3d1doaGh8vPzq3Cc5ORkRUVF6fDhw+rSpYvlEgQAAFXu8uXLOnXqlPz9/eXs7Fzd6cACSvubFr7/y8jIYJU/AKBK8KBcAAAAAAAAAABqCYr6AAAAAAAAAADUEhT1AQAAAAAAAACoJSjqAwAAAAAAAABQS1DUBwAAAAAAAACglqCoDwAAAAAAAABALUFRHwAAAAAAAACAWoKiPgAAAAAAAAAAtQRFfQAAAAAAAAAAagmH6k4AAAAAAIC6yHj5L+nKFetNWK+eDM4u1psPAABUCYr6AAAAAABYmfHyX8rfGyfjpYtWm9NQv4Hs+txTrsJ+aGiozp8/ry1bthQ55+fnp19//bVI+4IFCzRt2jSdPn1a/v7+atKkiU6ePClXV1dTn06dOmnw4MGaM2eOJOmXX37RjBkz9Pnnn+vPP/+Uh4eHAgMD9corr6hNmzY6ffq05s2bp08//VSpqany8fHR6NGjNWPGDDk6Opb7dwEAQG1GUR8AAAAAAGu7cqWgoO9QT6pnhaL0lZyC+a5ckSy4Wj8iIkLjxo0za/t78V6SsrKy9Oqrr2ru3LnFxsjJydE999yjgIAAbd68Wd7e3vrtt9+0fft2ZWRkSJKOHz+u/Px8rVixQq1atdL333+vcePG6eLFi3r11Vctdj0AANQGFPUBAAAAAKgu9RxlcHKq8mmMkpRr+a1+XF1d5eXlVWqfSZMmadGiRZo4caKaNm1a5PzRo0f1yy+/6NNPP1WLFi0kSS1atFDv3r1Nffr376/+/fubXt9444368ccftWzZMor6AIA6hwflAgAAAACAKjNixAi1atVKERERxZ5v0qSJ7Ozs9N577ykvL6/McTMyMnT99ddbKk0AAGoNivoAAAAAAKBCnn32WTVs2NDs2LNnj1kfg8Ggl156SVFRUTp58mSRGDfccIPeeOMNzZ49W9ddd53uuusuzZs3T7/88kuJ8548eVJvvvmmwsLCLH1JAADUeBT1AQAAAABAhTzzzDNKTEw0O7p3716kX3BwsG677TbNmjWr2DgTJ05Uamqq1q5dq549e2rjxo3q0KGD4uLiivRNTk5W//799dBDD+mxxx6z+DUBAFDTUdQHAAAAAAAV4uHhoVatWpkdLi7FP4j3pZdeUmxsrI4cOVLseVdXV91///164YUX9M033ygoKEjz588365OcnKw777xTPXv2VFRUlMWvBwCA2oCiPgAAAAAAqHLdunXTkCFDNG3atGv2NRgMCggI0MWLF01tZ8+e1R133KEuXbpo1apVsrOjpAEAqJscqjsBAAAAAABQc2VkZCgxMdGsrfABtVlZWUpNTTU7V79+fbm5uRUb64UXXlCHDh3k4PC/ckRiYqKef/55hYSEqH379nJ0dNTnn3+ud955R88++6ykghX6d9xxh3x9ffXqq6/qjz/+MI338vKyxGUCAFBrUNQHAAAAAKC6XMmR0UrzVNSePXvUuXNns7ZHH31UkjR79mzNnj3b7Nz48eO1fPnyYmO1adNGY8aMMds6p1mzZvLz89PcuXN1+vRpGQwG0+upU6dKknbt2qWff/5ZP//8s5o1a2YW02i0ym8QAIAag++qAQBsxtKlS+Xv7y9nZ2cFBgZq3759JfaNj49X79691bhxY7m4uCggIECLFy8u0m/Tpk1q3769nJyc1L59e73//vtVeQkAAKCuqFdPhvoNpNwr0l8Xq/7IvVIwX7165UozOjpaRqOxyBEdHa3Tp08Xe66woO/n5yej0ahOnTqZxVyxYoWMRqPmzJkjqWBf/tdff13fffedsrKylJmZqW+//VZPPfWUaYud0NDQYueioA8AqItYqQ8AsAmxsbGaMmWKli5dqt69e2vFihUaMGCAjh49Kl9f3yL9GzRooCeeeEI333yzGjRooPj4eI0fP14NGjTQ448/Lkk6cOCAhg8frnnz5umBBx7Q+++/r2HDhik+Pl7du3e39iUCAAAbYnB2kV2fe6QrV6w3ab16MjgX/xBbAABQexiMfKwNALAB3bt3V5cuXbRs2TJTW7t27TR48GAtWLCgTDGGDBmiBg0a6D//+Y8kafjw4crMzNSOHTtMffr376/rrrtOMTExZYqZmZkpd3d3hYaGys/Pr+wXdJXk5GRFRUXp8OHD6tKlS4XjAAAA67t8+bJOnTpl+kYhar/S/qaF7/8yMjJKfLYAAACVwfY7AIBaLycnR4cPH1a/fv3M2vv166eEhIQyxThy5IgSEhJ0++23m9oOHDhQJGZwcHCpMbOzs5WZmWl2AAAAAAAAWApFfQBArZeenq68vDx5enqatXt6eio1NbXUsc2aNZOTk5O6du2qiRMn6rHHHjOdS01NLXfMBQsWyN3d3XQ0b968AlcEAAAAAABQPIr6AACbYTAYzF4bjcYibVfbt2+fDh06pOXLlysyMrLItjrljTl9+nRlZGSYjjNnzpTzKgAAAAAAAErGg3IBALWeh4eH7O3ti6ygT0tLK7LS/mr+/v6SpJtuukm///675syZoxEjRkiSvLy8yh3TyclJTk5OFbkMAAAAAACAa2KlPgCg1nN0dFRgYKDi4uLM2uPi4tSrV68yxzEajcrOzja97tmzZ5GYu3btKldMAAAAAAAAS2KlPgDAJoSHhyskJERdu3ZVz549FRUVpaSkJIWFhUkq2Bbn7NmzWrNmjSRpyZIl8vX1VUBAgCQpPj5er776qiZNmmSKOXnyZPXp00cvv/yyBg0apA8++EC7d+9WfHy89S8QAAAAAABAFPUBADZi+PDhOnfunCIiIpSSkqKOHTtq+/btatGihSQpJSVFSUlJpv75+fmaPn26Tp06JQcHB7Vs2VIvvfSSxo8fb+rTq1cvrV+/XjNnztSsWbPUsmVLxcbGqnv37la/PgAAAAAAAEkyGI1GY3UnAQCArcrMzJS7u7tCQ0Pl5+dX4TjJycmKiorS4cOH1aVLF8slCAAAqtzly5d16tQp+fv7y9nZ2dSelJSk9PR0q+Xh4eEhX19fq81ny0r6m0r/e/+XkZEhNze3asoQAGDLWKkPAAAAAICVJSUlKSAgQH/99ZfV5nRxcdHx48fLXdhPTU3VCy+8oI8++khnz55V06ZN1alTJ02ZMkV9+/aVn5+ffv31V8XExOjhhx82G9uhQwcdPXpUq1atUmhoqCTJz89PU6ZM0ZQpU0yvf/31V1OON954oyZNmmT2Dcrs7GxFRERo7dq1Sk1NVbNmzTRjxgyNGTOm4r8QAABqKYr6AAAAAABYWXp6uv766y8NGTJEHh4eVplv8+bNSk9PL1dR//Tp0+rdu7caNWqkhQsX6uabb9aVK1e0c+dOTZw4UcePH5ckNW/eXKtWrTIr6n/xxRdKTU1VgwYNrjlPRESExo0bpwsXLig6OlphYWFq1KiRhg8fLkkaNmyYfv/9d61cuVKtWrVSWlqacnNzy/lbAADANlDUBwAAAACgmnh4eMjHx6e60yjRhAkTZDAY9OWXX5oV5zt06GC2Sn7UqFFavHixzpw5o+bNm0uS3nnnHY0aNUpr1qy55jyurq7y8vKSJM2fP18bNmzQli1bNHz4cH388cf6/PPP9csvv+j666+XpEptawgAQG1nV90JAAAAAACAmufPP//Uxx9/rIkTJxa72r5Ro0amnz09PRUcHKzVq1dLki5duqTY2NgKb4/j7OysK1euSJK2bt2qrl27auHChbrhhhvUpk0bPf3001bduggAgJqEoj4AAAAAACji559/ltFoVEBAQJn6jxkzRtHR0TIajXrvvffUsmVLderUqVxz5ubmKjo6Wt9995369u0rSfrll18UHx+v77//Xu+//74iIyP13nvvaeLEieW9JAAAbAJFfQAAAAAAUITRaJQkGQyGMvX/xz/+oQsXLmjv3r165513yrVK/9lnn1XDhg3l4uKiiRMn6plnnjE9KDc/P18Gg0HvvvuuunXrpoEDB2rRokWKjo5mtT4AoE6iqA8AAAAAAIpo3bq1DAaDjh07Vqb+Dg4OCgkJ0fPPP6+DBw9q1KhRZZ7rmWeeUWJion799VdduHBBCxculJ1dQcnC29tbN9xwg9zd3U3927VrJ6PRqN9++618FwUAgA2gqA8AAAAAAIq4/vrrFRwcrCVLlujixYtFzp8/f75I25gxY/T5559r0KBBuu6668o8l4eHh1q1aiUfH58i3wzo3bu3kpOTdeHCBVPbTz/9JDs7OzVr1qzsFwQAgI2gqA8AAAAAAIq1dOlS5eXlqVu3btq0aZNOnDihY8eO6Y033lDPnj2L9G/Xrp3S09O1atUqi+UwcuRINW7cWP/85z919OhR7d27V88884zGjBkjFxcXi80DAEBt4VDdCQAAAAAAUFelp6fX6Hn8/f319ddf64UXXtBTTz2llJQUNWnSRIGBgVq2bFmxYxo3blyZVIto2LCh4uLiNGnSJHXt2lWNGzfWsGHDNH/+fIvOAwBAbUFRHwAAAAAAK/Pw8JCLi4s2b95stTldXFzk4eFR7nHe3t5666239NZbbxV7/vTp06WOv3qbnqv7X2u8JAUEBCguLu6a/QAAqAso6gMAAAAAYGW+vr46fvy41VbqSwUfJPj6+lptPgAAUDUo6gMAAAAAUA18fX0psgMAgHLjQbkAAAAAAAAAANQSFPUBAAAAAAAAAKglKOoDAAAAAAAAAFBLUNQHAAAAAMAK8vPzqzsFWIjRaKzuFAAAdRgPygUAAAAAoAo5OjrKzs5OycnJatKkiRwdHWUwGKo7LVSQ0WjUH3/8IYPBoHr16lV3OgCAOoiiPgAAAAAAVcjOzk7+/v5KSUlRcnJydacDCzAYDGrWrJns7e2rOxUAQB1EUR8AAAAAgCrm6OgoX19f5ebmKi8vr7rTQSXVq1ePgj4AoNpQ1AcA2IylS5fqlVdeUUpKijp06KDIyEgFBQUV23fz5s1atmyZEhMTlZ2drQ4dOmjOnDkKDg429YmOjtY///nPImP/+usvOTs7V9l1AAAA21S4XQtbtgAAgMrgQbkAAJsQGxurKVOmaMaMGTpy5IiCgoI0YMAAJSUlFdt/7969uueee7R9+3YdPnxYd955p+677z4dOXLErJ+bm5tSUlLMDgr6AAAAAACgurBSHwBgExYtWqSxY8fqsccekyRFRkZq586dWrZsmRYsWFCkf2RkpNnrF198UR988IE+/PBDde7c2dRuMBjk5eVVpbkDAAAAAACUFSv1AQC1Xk5Ojg4fPqx+/fqZtffr108JCQllipGfn6+srCxdf/31Zu0XLlxQixYt1KxZM917771FVvJfLTs7W5mZmWYHAAAAAACApVDUBwDUeunp6crLy5Onp6dZu6enp1JTU8sU47XXXtPFixc1bNgwU1tAQICio6O1detWxcTEyNnZWb1799aJEydKjLNgwQK5u7ubjubNm1fsogAAAAAAAIpBUR8AYDMMBoPZa6PRWKStODExMZozZ45iY2PVtGlTU3uPHj00evRo3XLLLQoKCtKGDRvUpk0bvfnmmyXGmj59ujIyMkzHmTNnKn5BAAAAAAAAV2FPfQBArefh4SF7e/siq/LT0tKKrN6/WmxsrMaOHauNGzfq7rvvLrWvnZ2dbr311lJX6js5OcnJyansyQMAAAAAAJQDK/UBALWeo6OjAgMDFRcXZ9YeFxenXr16lTguJiZGoaGhWrdunf7xj39ccx6j0ajExER5e3tXOmcAAAAAAICKoKgPALCKN954Q19++aVZW1pamr799tti+3/wwQcaM2ZMmeOHh4fr//7v//TOO+/o2LFjmjp1qpKSkhQWFiapYFucRx55xNQ/JiZGjzzyiF577TX16NFDqampSk1NVUZGhqnP3LlztXPnTv3yyy9KTEzU2LFjlZiYaIoJAAAAAABgbRT1AQBWMWXKFH388cdmbcuWLVPnzp2L7Z+YmKjVq1eXOf7w4cMVGRmpiIgIderUSXv37tX27dvVokULSVJKSoqSkpJM/VesWKHc3FxNnDhR3t7epmPy5MmmPufPn9fjjz+udu3aqV+/fjp79qz27t2rbt26lefSAQAAAAAALIY99QEANmPChAmaMGFCseeio6PNXu/Zs+ea8RYvXqzFixdbIDMAAAAAAADLYKU+AAAAAAAAAAC1BEV9AAAAAAAAAABqCYr6AAAAAAAAAADUEhT1AQAAAAAAAACoJXhQLgDAar7//ntt2LDB7LUkbdy4UUajsUhfAAAAAAAAmKOoDwCwmk2bNmnTpk2m14WF/IcffrhIX6PRKIPBYLXcAAAAAAAAagOK+gAAq3j++eerOwUAAAAAAIBaj6I+AMAqKOoDAAAAAABUHg/KBQAAAAAAAACglmClPgCgRkhMTNRnn30mSbrtttt06623VnNGAAAAAAAANQ8r9QEAVrF371498sgj+uKLL4qcmzlzpgIDA/X000/r6aefVo8ePTRp0qRqyBIAAAAAAKBmo6gPALCK2NhYbdy4Ue3btzdr/+yzz/Tiiy/K3t5eISEhCgsLk4eHh5YuXaotW7ZUT7IAAAAAAAA1FEV9AIBVHDhwQN27d5ebm5tZ+4oVK2QwGLR8+XJFR0dryZIl2rdvn+rVq6fo6OjqSRYAAAAAAKCGoqgPALCK5ORktWnTpkj7Z599Jjc3N4WGhpra2rRpo4EDB+rQoUNWzBAAAAAAAKDmo6gPALCK//73v/Lw8DBr++233/THH3/otttuk52d+f+SWrVqpfT0dGumCAAAAAAAUONR1AcAWIWrq6uSk5PN2g4fPixJCgwMLNLfYDDI2dnZKrkBAAAAAADUFhT1AQBWcfPNN2vbtm26ePGiqe3999+XwWBQnz59ivQ/efKkfHx8rJkiAAAAAABAjUdRHwBgFWPGjNGff/6p22+/XW+88YaefPJJrV27Vs2bN9cdd9xh1jcvL0979+7VTTfdVD3JAgAAAAAA1FAO1Z0AAKBuGD16tD755BOtXr1aR44ckdFolKurq95+++0i++l/9NFHSk9PV3BwcDVlCwAAAAAAUDNR1AcAWM2qVas0duxYHThwQNdff72Cg4PVrFmzIv2cnJy0ePFiDRo0qBqyBAAAAAAAqLnYfgcAYFW33XabnnnmGY0dO7bYgr4kBQcHa/LkyWrcuHG5Yi9dulT+/v5ydnZWYGCg9u3bV2LfzZs365577lGTJk3k5uamnj17aufOnUX6bdq0Se3bt5eTk5Pat2+v999/v1w5AQAAAAAAWBJFfQCATYiNjdWUKVM0Y8YMHTlyREFBQRowYICSkpKK7b93717dc8892r59uw4fPqw777xT9913n44cOWLqc+DAAQ0fPlwhISH65ptvFBISomHDhungwYPWuiwAAAAAAAAzBqPRaKzuJAAAtm/Dhg0VGjds2LAy9evevbu6dOmiZcuWmdratWunwYMHa8GCBWWK0aFDBw0fPlyzZ8+WJA0fPlyZmZnasWOHqU///v113XXXKSYmpkwxMzMz5e7urtDQUPn5+ZVpTHGSk5MVFRWlw4cPq0uXLhWOAwAAgKpV+P4vIyNDbm5u1Z0OAMAGsac+AMAqHn74YRkMhjL3NxqNMhgMZSrq5+Tk6PDhw5o2bZpZe79+/ZSQkFCm+fLz85WVlaXrr7/e1HbgwAFNnTrVrF9wcLAiIyNLjJOdna3s7GzT68zMzDLNDwAAAAAAUBYU9QEAVuPg4KCBAweqU6dOFo2bnp6uvLw8eXp6mrV7enoqNTW1TDFee+01Xbx40exDhNTU1HLHXLBggebOnVuO7AEAAAAAAMqOoj4AwCoGDx6sjz76SFu3btWvv/6qMWPGaNSoUbruuussNsfV3wQoXO1/LTExMZozZ44++OADNW3atFIxp0+frvDwcNPrzMxMNW/evCzpAwAAAAAAXBMPygUAWMXmzZt19uxZvfLKK8rNzdWTTz4pHx8fjRgxQnFxcZWK7eHhIXt7+yIr6NPS0oqstL9abGysxo4dqw0bNujuu+82O+fl5VXumE5OTnJzczM7AAAAAAAALIWiPgDAajw8PBQeHq5vv/1WX3zxhR555BF9/PHH6t+/v3x9fTV79mz98ssv5Y7r6OiowMDAIh8OxMXFqVevXiWOi4mJUWhoqNatW6d//OMfRc737NmzSMxdu3aVGhMAAAAAAKAqUdQHAFSLbt26acWKFUpJSVF0dLRatWqlF154QW3atNHu3bvLHS88PFz/93//p3feeUfHjh3T1KlTlZSUpLCwMEkF2+I88sgjpv4xMTF65JFH9Nprr6lHjx5KTU1VamqqMjIyTH0mT56sXbt26eWXX9bx48f18ssva/fu3ZoyZUqlrx8AAAAAAKAiKOoDAKqVs7Oz+vXrp/79+8vb21v5+fm6dOlSueMMHz5ckZGRioiIUKdOnbR3715t375dLVq0kCSlpKQoKSnJ1H/FihXKzc3VxIkT5e3tbTomT55s6tOrVy+tX79eq1at0s0336zo6GjFxsaqe/fulb9wAAAAAACACjAYjUZjdScBAKh78vLytG3bNr3zzjvasWOH8vLy1KlTJ40ZM0ahoaFq0KBBdadoEZmZmXJ3d1doaKj8/PwqHCc5OVlRUVE6fPiwunTpYrkEAQAAYFGF7/8yMjJ4vhIAoEo4VHcCAIC65ejRo3rnnXe0du1apaWlqXHjxpowYYLGjBmjm2++ubrTq/GOHTtW6RgeHh7y9fW1QDYAAAAAAMDaKOoDAKwiKipK77zzjr766isZDAb169dPY8aM0aBBg1SvXr3qTq/Gu3DhggwGg0aPHl3pWC4uLjp+/DiFfQAAAAAAaiGK+gAAqwgLC1O9evV033336dFHH9UNN9wgSTpy5Eip47p162aN9Gq8y5cvy2g0asiQIfLw8KhwnPT0dG3evFnp6ekU9QEAAAAAqIUo6gMArObKlSv68MMP9eGHH5Z5TF5eXhVmVPt4eHjIx8enutMAAAAAAADVhKI+AMAqHn300epOAQAAAAAAoNajqA8AsIpVq1ZVdwoAAAAAAAC1nl11JwAAAAAAAAAAAMqGlfoAAKuYMGFChcYtXbrUwpkAAAAAAADUXhT1AQBWsXz58jL3NRgMpp8p6gMAAAAAAPwPRX0AgFV89tlnZeqXlJSkiIgInTx50qy4DwAAAAAAAIr6AAAruf3220s9/9///lcvvviilixZosuXL6tnz556+eWXrZQdAAAAAABA7UBRHwBQrS5fvqzIyEgtXLhQ58+fV0BAgF588UUNHjy4ulMDAAAAAACoceyqOwEAQN1kNBr1f//3f2rdurWee+451a9fX1FRUfr+++8p6AMAAAAAAJSAlfoAAKvbsmWLnnvuOf34449yc3PTiy++qClTpsjZ2bm6UwMAAAAAAKjRKOoDAKwmPj5ezz77rL744gs5Ojpq6tSpmjFjhq677rrqTg0AAAAAAKBWoKgPALCK+++/Xx999JHs7Oz06KOPKiIiQs2aNavutAAAAAAAAGoVivoAAKvYtm2bDAaDfH19lZqaqscff/yaYwwGgz766CMrZAcAAAAAAFA7UNQHAFiN0WjUqVOndOrUqTL1NxgMVZwRAAAAAABA7UJRHwBgFWUt5AMAAAAAAKBkFPUBAFbRokWL6k4BAAAAAACg1rOr7gQAALCUpUuXyt/fX87OzgoMDNS+fftK7JuSkqKRI0eqbdu2srOz05QpU4r0iY6OlsFgKHJcvny5Cq8CAAAAAACgZBT1AQA2ITY2VlOmTNGMGTN05MgRBQUFacCAAUpKSiq2f3Z2tpo0aaIZM2bolltuKTGum5ubUlJSzA5nZ+equgwAAAAAAIBSUdQHANiERYsWaezYsXrsscfUrl07RUZGqnnz5lq2bFmx/f38/PT666/rkUcekbu7e4lxDQaDvLy8zA4AAAAAAIDqQlEfAFDr5eTk6PDhw+rXr59Ze79+/ZSQkFCp2BcuXFCLFi3UrFkz3XvvvTpy5Eip/bOzs5WZmWl2AAAAAAAAWApFfQBArZeenq68vDx5enqatXt6eio1NbXCcQMCAhQdHa2tW7cqJiZGzs7O6t27t06cOFHimAULFsjd3d10NG/evMLzAwAAAAAAXI2iPgDAZhgMBrPXRqOxSFt59OjRQ6NHj9Ytt9yioKAgbdiwQW3atNGbb75Z4pjp06crIyPDdJw5c6bC8wMAAAAAAFzNoboTAACgsjw8PGRvb19kVX5aWlqR1fuVYWdnp1tvvbXUlfpOTk5ycnKy2JwAAAAAAAB/x0p9AECt5+joqMDAQMXFxZm1x8XFqVevXhabx2g0KjExUd7e3haLCQAAAAAAUB6s1AcA2ITw8HCFhISoa9eu6tmzp6KiopSUlKSwsDBJBdvinD17VmvWrDGNSUxMlFTwMNw//vhDiYmJcnR0VPv27SVJc+fOVY8ePdS6dWtlZmbqjTfeUGJiopYsWWL16wMAAAAAAJAo6gMAbMTw4cN17tw5RUREKCUlRR07dtT27dvVokULSVJKSoqSkpLMxnTu3Nn08+HDh7Vu3Tq1aNFCp0+fliSdP39ejz/+uFJTU+Xu7q7OnTtr79696tatm9WuCwAAAAAA4O8o6gMAbMaECRM0YcKEYs9FR0cXaTMajaXGW7x4sRYvXmyJ1AAAAAAAACyCPfUBAAAAAAAAAKglKOoDAAAAAAAAAFBLUNQHAAAAAAAAAKCWoKgPAAAAAAAAAEAtQVEfAAAAAAAAAIBagqI+AAAAAAAAAAC1BEV9AAAAAAAAAABqCYr6AAAAAAAAAADUEg7VnQAAALC+Y8eOVTpGdna2nJycKhXDw8NDvr6+lc4FAAAAAIC6gqI+AAB1yIULF2QwGDR69OhKxzIYDDIajZWK4eLiouPHj1PYBwAAAACgjCjqAwBQh1y+fFlGo1FDhgyRh4dHheOcOHFCn332WaXipKena/PmzUpPT6eoDwAAAABAGVHUBwCgDvLw8JCPj0+Fx6enp1skDgAAAAAAKB8elAsAAAAAAAAAQC3BSn0AAFCtLPHQXh64CwAAAACoKyjqAwCAamHJh/bywF0AAAAAQF1BUR8AAFQLSz20lwfuAgAAAADqEor6AACgWvGwXQAAAAAAyo4H5QIAAAAAAAAAUEtQ1AcAAAAAAAAAoJagqA8AAAAAAAAAQC1BUR8AYDOWLl0qf39/OTs7KzAwUPv27Suxb0pKikaOHKm2bdvKzs5OU6ZMKbbfpk2b1L59ezk5Oal9+/Z6//33qyh7AAAAAACAa6OoDwCwCbGxsZoyZYpmzJihI0eOKCgoSAMGDFBSUlKx/bOzs9WkSRPNmDFDt9xyS7F9Dhw4oOHDhyskJETffPONQkJCNGzYMB08eLAqLwUAAAAAAKBEFPUBADZh0aJFGjt2rB577DG1a9dOkZGRat68uZYtW1Zsfz8/P73++ut65JFH5O7uXmyfyMhI3XPPPZo+fboCAgI0ffp09e3bV5GRkVV4JQAAAAAAACVzqO4EAACorJycHB0+fFjTpk0za+/Xr58SEhIqHPfAgQOaOnWqWVtwcHCpRf3s7GxlZ2ebXmdmZlZ4fpTPsWPHKh3Dw8NDvr6+FsgGAAAAAICqQVEfAFDrpaenKy8vT56enmbtnp6eSk1NrXDc1NTUcsdcsGCB5s6dW+E5UX4XLlyQwWDQ6NGjKx3LyclJmzZtkre3d6Xi8OEAAAAAAKCqUNQHANgMg8Fg9tpoNBZpq+qY06dPV3h4uOl1ZmammjdvXqkcULrLly/LaDRqyJAh8vDwqHCcpKQk7dy5U/fee2+lc3JxcdHx48cp7AMAAAAALI6iPgCg1vPw8JC9vX2RFfRpaWlFVtqXh5eXV7ljOjk5ycnJqcJzouI8PDzk4+NT4fHp6ekW+XAgPT1dmzdvVnp6OkV9AAAAAIDFUdQHANR6jo6OCgwMVFxcnB544AFTe1xcnAYNGlThuD179lRcXJzZvvq7du1Sr169KpUvarbKfjgAAAAAAEBVoqgPALAJ4eHhCgkJUdeuXdWzZ09FRUUpKSlJYWFhkgq2xTl79qzWrFljGpOYmCipYE/2P/74Q4mJiXJ0dFT79u0lSZMnT1afPn308ssva9CgQfrggw+0e/duxcfHW/36AAAAAAAAJIr6AAAbMXz4cJ07d04RERFKSUlRx44dtX37drVo0UKSlJKSoqSkJLMxnTt3Nv18+PBhrVu3Ti1atNDp06clSb169dL69es1c+ZMzZo1Sy1btlRsbKy6d+9utetC7XXs2LFKx+CBuwAAAACAq1HUBwDYjAkTJmjChAnFnouOji7SZjQarxnzwQcf1IMPPljZ1FCHXLhwQQaDQaNHj650LB64CwAAAAC4GkV9AAAAC7p8+TIP3AUAAAAAVBmK+gAAAFWAB+4CAAAAAKoCRX0AAIAarLJ787MvPwAAAADYFor6AAAANZCl9uZnX34AAAAAsC0U9QEAAGogS+zNz778AAAAAGB7KOoDAADUYOzNDwAAAAD4O7vqTgAAAAAAAAAAAJQNK/UBALACVzuDGii/wuMbOdjLq2EDudlQnJqUi63GcbMzyKthA5367ls5XP6rwrlI0vXXX68bbrihUjEAAKgLjFmZ1Z0CAMDGGYxGo7G6kwAAwFZlZmbK3d1dOyaPV5Pr3Csc579/ntevSb+qTZs2ql/fxSbi1KRcbDVOZkaWfjn1S4Vz+Dt7e3s9MPgBNWjYwCLxAACwVZmXLqnxqMeUkZEhNze36k4HAGCDWKkPAIAVXDFKl2So8PisvDydu/SXLuYbJRuJU5NysdU453NydO7SX2rdurVcXCr+AcNff/2lEydO6Ex6uq6v5HoQFxcXubpS4AAA2LCcK9WdAQDAxlHUBwDACnKMRl2pRIH3cr5RF3KuKNsoOdpInJqUi63GKYxh5+wix4YNK5xLVnaOLuRc0YYPtlY4RiF7e3sNHzZMDV1dKxUnLzdX9g6Veytbv359ubtX/Bs0AAAUy8GxujMAANg4ivoAAAAoVW5uriSpXbt2ql+/foXjZGRk6Oeff9a6mBhLpVYplvqAgQ8HAAAAAFgTRX0AAACUSf369eXqWvEV/5cuXZJU+Q8Hzp07p9OnT1cqjiU/YKhJ3z6Q+JABAAAAsHUU9QEAAGBVlvpwoDJxLPUBQ0379oHENxAAAAAAW0dRHwAAAHWWLX37QLLshwwODg564oknKOwDAAAANQxFfQAAAKCSasK3D/4ep7IfDly6dEnHjh1T0q+/yqNJkwrHYbU/AAAAYHkU9QEAsAJHg0H1ZKzweGc7gxo61pOTQTYTpyblYqtxalIuNS1OTcqlKuJc16C+GjRsUOE4hitX1NCxnnZ9tK3CMSTJ3t5BY8b8U66ubpWKAwC1Sm5OdWcAALBxFPUBALCCegapfiUKda729mpc30UN7Aw2E6cm5WKrcWpSLjUtTk3KpSbGyZZRjeu7qIVvCzk5O1UsxuVs/Zr0q65knJcc7CucCwDUOrlXqjsDAICNo6gPAIAVbM/Kke91zhUefyz1v9q+O16jvfzkWf86m4hTk3Kx1Tg1KZeaFqcm5VKj44z2k+f1FYvze+bvWrs7Xo0GP6zWTX0rnIskXX/99brhhhsqFQMArMU+M7O6UwAA2DiK+gAAWEFWvlEXZVfh8edz85R64aIy841qaCNxalIuthqnJuVS0+LUpFxsNU5yZpZ+v3hJD4b+s8J5FHJyctKmTZvk7e1dqTjZ2dlycqrYNw/+zsPDQ76+lfugAoDtMlT8i1IAAJQJRX0AgM1YunSpXnnlFaWkpKhDhw6KjIxUUFBQif0///xzhYeH64cffpCPj4/+/e9/KywszHQ+Ojpa//xn0WLUX3/9JWfniq+6B4C64PLlyzIajRoyZIg8PDwqHCcpKUk7d+7UvffeW+mcDAaDjMbKV9tcXFx0/PhxCvsAAACoFhT1AQA2ITY2VlOmTNHSpUvVu3dvrVixQgMGDNDRo0eLLbqcOnVKAwcO1Lhx47R27Vrt379fEyZMUJMmTTR06FBTPzc3N/34449mYynoA0DZeXh4yMfHp8Lj09PTLfLhwIkTJ/TZZ59VOk56ero2b96sffv2qV27dhWOw2p/AAAAVBRFfQCATVi0aJHGjh2rxx57TJIUGRmpnTt3atmyZVqwYEGR/suXL5evr68iIyMlSe3atdOhQ4f06quvmhX1DQaDvLy8rHINAICSWeLDAUvEuXDhggwGg0aPHl3hGBJbCgEAAKDiKOoDAGq9nJwcHT58WNOmTTNr79evnxISEoodc+DAAfXr18+sLTg4WCtXrtSVK1dUr149SQXFmxYtWigvL0+dOnXSvHnz1Llz5xJzyc7OVnZ2tul1Jg9KAwCbYolthWrilkKW+pCBDwcAAACqHkV9AECtl56erry8PHl6epq1e3p6KjU1tdgxqampxfbPzc1Venq6vL29FRAQoOjoaN10003KzMzU66+/rt69e+ubb75R69ati427YMECzZ071zIXBgCosSqz4r+mbSlkyQ8Z+HAAAACg6lHUBwDYDIPBYPbaaDQWabtW/7+39+jRQz169DCd7927t7p06aI333xTb7zxRrExp0+frvDwcNPrzMxMNW/evHwXAgCoE2rKlkKW+pDBkh8O8DBiAACAklHUBwDUeh4eHrK3ty+yKj8tLa3IavxCXl5exfZ3cHBQ48aNix1jZ2enW2+9VSdOnCgxFycnJ4vsbQwAgLXVlA8HCh9GnJ6eTlEfAACgGBT1AQC1nqOjowIDAxUXF6cHHnjA1B4XF6dBgwYVO6Znz5768MMPzdp27dqlrl27mvbTv5rRaFRiYqJuuukmyyUPAICNqeyHAwAAACgdRX0AgE0IDw9XSEiIunbtqp49eyoqKkpJSUkKCwuTVLAtztmzZ7VmzRpJUlhYmN566y2Fh4dr3LhxOnDggFauXKmYmBhTzLlz56pHjx5q3bq1MjMz9cYbbygxMVFLliyplmsEAKAuOXbsWKXGsy8/AACwVRT1AQA2Yfjw4Tp37pwiIiKUkpKijh07avv27WrRooUkKSUlRUlJSab+/v7+2r59u6ZOnaolS5bIx8dHb7zxhoYOHWrqc/78eT3++ONKTU2Vu7u7OnfurL1796pbt25Wvz4AAOqKCxcuyGAwaPTo0ZWKw778AADAVlHUBwDYjAkTJmjChAnFnouOji7Sdvvtt+vrr78uMd7ixYu1ePFiS6UHAADK4PLly5Xem79wX/59+/apXbt2lcqHFf8AAKCmoagPAAAAAKhxKrM3v6VW+0us+AcAADUPRX0AAAAAgE2xxGp/iRX/AACgZqKoDwAAAACwSZVZ7S+x4h8AANRMFPUBAAAAACgGK/4BAEBNRFEfAAAAAIBSsOK/jpszR7K3l2bNKnpu3jwpL6+gDwAAVkJRHwAAAACAKlTTVvxnZ2fLycmpwuML1ZlvDdjbS7NnKz9f2nv7LKWkSN7eUp/P58luzmwpIqK6MwQA1DEU9QEAAAAAsIKasuLfYDDIaDRWKoZUh741MGuWjh6V2s+ZrU8kzdcszdQ83aHZOvpwhNoXt4IfAIAqRFEfAAAAAIBawBIr/k+cOKHPPvvMYt8aSE9Pt/mi/ubN0oOxszRD0jzN1kzNl5NyNFsRmh87S+89JA0ZUt1ZAgDqEor6AAAAAADUIpVZ8Z+enl7pGHVJXp40ebJkNBau0C8o6GfLUfM0SwZJU6ZIgwYV7NIDAIA12FV3AgAAAAAAADXRvn3Sb78V/DxT80wFfSflaKbmyWiUzpwp6AcAgLVQ1AcAAAAAAChGSkrBvzM1T/M0W7MUIWdla5Yi/v9WPPPM+gEAYA1svwMAAAAAAFAMb2/zgv58FTwUt/DfeZr9//vxsFwAgPVQ1AcAAAAAAChGUJD0tWueZmf9r6BfaP7/31P/erc8BQVVT34AgLqJoj4AAAAAAKiQY8eOVTqGh4eHfH19LZCN5dnbS37Rc/Tgg5JBBQ/MLWQwFBT231vFQ3IBANZFUR8AAAAAAJTLhQsXZDAYNHr06ErHcnJy0qZNm+Tt7V2pOFX14cCQIdJ770mTJ//vobmS1KyZFBlZcB4AAGuiqA8AAAAAAMrl8uXLMhqNGjJkiDw8PCocJykpSTt37tS9995b6ZxcXFx0/PjxKivsDxok7dtX8FBcb++CrXlYoQ8AqA4U9QEAAAAAQIV4eHjIx8enwuPT09Mt8uFAenq6Nm/erPT09CrbysfeXrrjjioJDQBAuVDUBwAAAAAA1aqyHw4AAFCX2FV3AgAAAAAAAAAAoGwo6gMAAAAAAAAAUEtQ1AcAAAAAAAAAoJagqA8AsBlLly6Vv7+/nJ2dFRgYqH379pXa//PPP1dgYKCcnZ114403avny5UX6bNq0Se3bt5eTk5Pat2+v999/v6rSBwAAAAAAuCaK+gAAmxAbG6spU6ZoxowZOnLkiIKCgjRgwAAlJSUV2//UqVMaOHCggoKCdOTIET333HN68skntWnTJlOfAwcOaPjw4QoJCdE333yjkJAQDRs2TAcPHrTWZQEAAAAAAJihqA8AsAmLFi3S2LFj9dhjj6ldu3aKjIxU8+bNtWzZsmL7L1++XL6+voqMjFS7du302GOPacyYMXr11VdNfSIjI3XPPfdo+vTpCggI0PTp09W3b19FRkZa6aoAAAAAAADMOVR3AgAAVFZOTo4OHz6sadOmmbX369dPCQkJxY45cOCA+vXrZ9YWHByslStX6sqVK6pXr54OHDigqVOnFulTWlE/Oztb2dnZptcZGRmSpNTU1PJcUhF//PGHJCklJUU5OTk2Eacm5WKrcWpSLjUtTk3KxVbj1KRcalqcmpSLrcapSbnUtDg1KRdLxjl37pwk6cKFC8rMzKxwHEsonN9oNFZrHgAA22Uw8n8ZAEAtl5ycrBtuuEH79+9Xr169TO0vvviiVq9erR9//LHImDZt2ig0NFTPPfecqS0hIUG9e/dWcnKyvL295ejoqOjoaI0cOdLUZ926dfrnP/9pVrj/uzlz5mju3LkWvDoAAADURmfOnFGzZs2qOw0AgA1ipT4AwGYYDAaz10ajsUjbtfpf3V7emNOnT1d4eLjpdX5+vv788081bty41HEAAACwDUajUVlZWfLx8anuVAAANoqiPgCg1vPw8JC9vX2RLW7S0tLk6elZ7BgvL69i+zs4OKhx48al9ikppiQ5OTnJycnJrK1Ro0ZlvRQAAADYAHd39+pOAQBgw3hQLgCg1nN0dFRgYKDi4uLM2uPi4sy24/m7nj17Fum/a9cude3aVfXq1Su1T0kxAQAAAAAAqhor9QEANiE8PFwhISHq2rWrevbsqaioKCUlJSksLExSwbY4Z8+e1Zo1ayRJYWFheuuttxQeHq5x48bpwIEDWrlypWJiYkwxJ0+erD59+ujll1/WoEGD9MEHH2j37t2Kj4+vlmsEAAAAAACgqA8AsAnDhw/XuXPnFBERoZSUFHXs2FHbt29XixYtJEkpKSlKSkoy9ff399f27ds1depULVmyRD4+PnrjjTc0dOhQU59evXpp/fr1mjlzpmbNmqWWLVsqNjZW3bt3t/r1AQAAAAAASJLBWPhUQAAAAAAAAAAAUKOxpz4AAAAAAAAAALUERX0AAAAAAAAAAGoJivoAAAAAAAAAANQSFPUBAAAAAAAAAKglKOoDAAAAAAAAAFBLUNQHAAAAAAAAAKCWoKgPAAAAAAAAAEAtQVEfAAAAAAAAAIBagqI+AAAAAAAAAAC1BEV9AAAAAAAAAABqCYr6AAAAAAAAAADUEhT1AQAAAAAAAACoJSjqAwAAAAAAAABQS1DUBwAAAAAAAACglqCoDwAAAAAAAABALUFRHwAAAAAAAACAWoKiPgAAAAAAAAAAtQRFfQAAAAAAAAAAagmK+gAAAAAAAAAA1BIU9QEAAAAAAAAAqCUo6gMAAAAAAAAAUEtQ1AcAAAAAAAAAoJagqA8AAAAAAAAAQC1BUR8AAAAAAAAAgFqCoj4Am+bn5yeDwSCDwaAtW7aU2O/uu++WwWBQdHS0WXt0dLRpvKOjo86dO1dijNzcXDVt2tTUf86cOcX227lzp4YMGaIbbrhBjo6OatSokdq2bav77rtPr732mk6ePGnW//Tp06aY1zpOnz5dxt/MtR09elTjx49XmzZt5OLiogYNGsjf31933HGHZs2apYSEhCJjCn/fV/8eSxIaGlrkGurVqydvb2/df//92rFjh8WuZ8+ePcXO5eHhoYCAAI0YMUIrVqxQZmZmiTH+/re4+ndd3LVcfQwePNhi1wMAAADr4/6i4mz9/uLbb78ttX/nzp1NfUNDQ0vt+/vvv6tevXoyGAzq3bv3NXP5+3+XTz31VKl9X3/9dbO8AdRODtWdAABYy5w5czRo0KAKv3G5cuWKYmNjNWHChGLP79y5U3/88UepMZ544gktWbJEktSgQQO1bt1a9evX16+//qpt27Zp27ZtSklJ0auvvlrs+K5du8rJyanE+M7OzmW8mtK9++67GjNmjHJyclSvXj35+vrq+uuvV1pamj7//HN9/vnn2rFjhw4dOmSR+Zo2barWrVtLki5fvqyffvpJH374oT788ENNnz5dL774okXmKVT4xthoNCorK0u//fab1q9fr/Xr1+vpp5/Wyy+/XOLf+Vr+fi1Xa9++fYVzBgAAQM3C/UXZ2fr9hSStXbtWCxcuLPbcDz/8oMTExDLHiomJUW5uriQpISFBJ0+eVMuWLcs0dt26dVq4cKHs7e1LzBNA7UdRH0CdYG9vr2+++UabNm3Sgw8+WO7xrVu31s8//6z//Oc/Jb7p/s9//iNJatu2rX788cci52NiYrRkyRLZ2dlp8eLFGj9+vNkb6KNHj2rdunVyc3MrMY+NGzfKz8+v3PmXx+nTpzV27Fjl5ORozJgxWrBggZo2bWo6n5qaqk2bNungwYMWm3PAgAFmq29ycnI0Y8YMvfrqq1qwYIHuu+8+9ezZ02LzxcfHm702Go367rvvtHjxYkVHR2vixIk6c+aMFixYUO7YV18LAAAAbA/3F2Vn6/cXPj4+ysrK0rp16/TSSy/Jzq7ophjX+luW1L9Ro0Y6f/681q5dq+eff/6a4wrj7969W8HBwUXO//jjjzp06FCZ8wBQc7H9DoA6YcSIEZKkuXPnymg0lnu8r6+v+vTpoy+++EI///xzkfNZWVnaunWr/P39S/x65OrVqyVJY8aM0ZNPPllkRUz79u01f/58/fvf/y53fpa0fv16ZWdnq23btnr77bfN3nBLkpeXlyZOnKg1a9ZUWQ6Ojo5auHChOnXqZMqpKhkMBt18881atWqVoqKiJEkvvfSS9uzZU6XzAgAAoHbi/qLsbP3+wsXFRUOGDNHZs2f12WefFTlvNBq1bt06NWjQQA888MA14x09elRff/21XFxc9Nprr0n6X5H/WkaPHi2p5NX4hXFCQkLKFA9AzUVRH0CdMGbMGPn5+en777/Xhg0bKhSjtDdI7733nv766y+NGjWqxK/f/vLLL5JkeiNZUxXmedNNNxW7ysRaDAaDbrvtNknSiRMnrDbvuHHjNGjQIEkFhX0AAADgatxflF1duL8o/FsWV3zfs2ePzpw5owceeEANGjS4ZqzCGPfee69GjhwpNzc3nTx5UgcOHLjm2Ntvv13NmzfX+++/r4sXL5qdMxqNevfdd00fQgCo3SjqA6gT6tWrpxkzZkgqWE2Tn59f7hgPPfSQnJ2d9e677xY5V/hGvPDNXHEKv/b65ZdflntuayrMMzExUVeuXKnWXCqy6skSwsLCJEmfffaZ/vrrr2rJAQAAADUX9xdlVxfuL+666y7dcMMN2rx5sy5dumR2rvBvWZbV8fn5+ab/HkaOHClnZ2dTAb4sq/UNBoNGjRqlixcv6v333zc7Fx8fr9OnT2vw4MFydXUt03UBqLko6gOoM0JDQ3XjjTfq2LFjFfq6pbu7u+677z79/PPPZqskfvvtN+3Zs0fdunVT27ZtSxzfv39/SQVvxv71r3/pq6++Ul5eXvkvpIoV5vnzzz9rwIAB2rFjR5E3ptZgNBq1f/9+SVKrVq2sOnevXr1kMBiUk5Ojb775xqpzAwAAoHbg/qJs6sL9hZ2dnUaOHKmsrCx98MEHpvbLly/rvffek7e3t/r27XvNOIWr+q+77joNHDhQkjRq1ChJUmxsrHJycq4Zo/DDg6s/BGDrHcC2UNQHUGc4ODho1qxZkqSIiIgKveEt7muV7777rvLz80tdRSNJzz77rAIDA2U0GrV8+XJ169ZNbm5uuu222zRt2jQdOnTomvP7+/vLYDAUe1jqa7d33323Hn/8cUnSJ598ooEDB8rd3V233HKLwsLCtG3btiq/WcjJydG///1vJSYmSpKGDRtWpfNdzc3NTe7u7pKktLS0co1dvXp1iX8jAAAA2A7uL8qmrtxfFFdM/+CDD5SZmakRI0bI3t7+mjEKxw4dOlSOjo6SCr4F4OXlpT///FPbt2+/Zoz27durc+fO+uSTT5SSkiJJys7O1saNG9W0aVPdc8895b42ADUPRX0AdUpISIhat26tH3/8sdivuV7LgAED5OHhoQ0bNpi+Orp27Vo5ODjo4YcfLnWsq6ur4uPj9dprr6ldu3aSpEuXLmn//v16+eWXdeutt2rw4ME6f/58iTG6du2q3r17F3t07ty53NdTkhUrVmjTpk26/fbbZW9vr9zcXH377bdasWKF7rvvPt1yyy367rvvLDbfjh07dNttt+m2225T165d5eHhoVdffVWSNHXqVNPel9ZUuN9lVlZWucY1bdq0xL8RAAAAbAv3F2VTF+4vbrrpJt18882Ki4szLQwqz9Y7f/31lzZt2iSpYOudQnZ2dqb/Fsr6wNyQkBDl5eUpJiZGkrRt2zadP39eI0aMkIODQ9kvCkCNRVEfQJ1ib29vWk0zb9485ebmlmt8vXr1NGzYMJ07d07bt29XYmKivv/+ewUHB6tJkybXHO/s7Kzw8HAdPXpUZ8+e1ebNmzV16lT5+/tLKljJUdpDizZu3Kj4+Phij1WrVpXrWq5lyJAh2rNnj/7880/FxcVp3rx56tatmyTphx9+0N13360//vjDInOlpaVp//792r9/vxITE+Xs7KwBAwbo/fff16JFiywyR3lduHBB0v/2AC2rAQMGlPg3AgAAgG3h/qLs6sL9xejRo5Wbm6uYmBilp6fr448/VocOHcr0rYctW7YoKytLPj4+uv32283OFW7Bs23bNv33v/+9ZqzCbwYUfghQ+O+1vv0BoPagqA+gzhk5cqTatm2rn3/+ucwrHf6ucJXF2rVry7Xy4mo+Pj564IEHtGjRIv3000966qmnJBU8nLVwr8eawM3NTXfffbdmzpypgwcPauPGjbKzs1NaWpqioqIsMsejjz4qo9Eoo9Go3NxcpaWlafv27Ro8eLBF4pdXRkaGMjMzJRWsvAcAAABKwv1F+djy/cWoUaNkZ2entWvXav369crNzS3z37Lwv52HH35Ydnbm5bquXbuqTZs2ysnJ0YYNG64Zy8vLS3fffbcSExO1d+9e7dixQwEBAeratWv5LwpAjURRH0CdY29vr9mzZ0uq2GqaHj16qHXr1vrwww+1du1aubm56f77769UTg4ODlq4cKG8vLwkSV9++WWl4lWlBx98UEOHDpVUs/OsjP3798toNMrR0VG33HJLdacDAACAGoz7i8qxpfsLHx8f3XXXXTp06JBeeeUV2dnZmVbZl+b333/Xrl27JEmLFi0q9hkHP/30k6TybcFT+G9OTg4PyAVsDEV9AHXSww8/rPbt2+vUqVOKjo4u9/hRo0YpOztbv//+u4YOHSoXF5dK52RnZ6cWLVpIKniQU0124403Sqr5eVbU8uXLJUl9+/aVs7NzNWcDAACAmo77i8qxpfuLwi1ukpKSdPvtt6tZs2bXHLNu3Trl5eXJyclJnp6eJR5SwQKkX3755ZoxH3jgATVs2FBJSUkyGAxl+nABQO1BUR9AnWRnZ6fnn39ekjR//nzTQ6nKKiQkRH379lXfvn01bty4Mo0pfFhSSc6fP6+jR49Kklq3bl2ufCzpWnlKUkJCgqTqzbOqvP322/rwww8lSdOnT6/mbAAAAFAbcH9Rsrp2fzF06FD169dPffv21ZNPPlmmMYWr76dNm6bU1NQSj549e0r63wN4S1O/fn099dRT6tu3r8aPH2/6gAeAbaCoD6DOeuihh3TTTTfp119/LfcekzfeeKN2796t3bt3m95YXcvAgQM1atQoffrpp0Xe5CcmJmrQoEHKysqSt7e3goODy5VPSUJDQ2UwGBQaGlrmMS+++KKCgoIUExOjrKwss3MpKSkKCwvTvn37ZDAY9Oijj1okz/Ly8/OTwWCo0Cqo4hiNRn377bcaM2aMHn/8cUnSzJkzFRQUZJH4AAAAsH3cXxSvrt1fNGzYUDt37tTu3bvLtIf/Dz/8oCNHjki69oNsC8+XpagvSXPmzNHu3bu1bNmyMvUHUHs4VHcCAFBdDAaDnn/+eT344IPKy8ur8vny8vK0bt06rVu3Ts7OzmrVqpWcnZ2VnJys5ORkSVKjRo20YcMGNWjQoNgYDz30kJycnEqcY8GCBZUuRBsMBsXHxys+Pl52dnZq2bKlrrvuOv3xxx86c+aMcnNzZW9vr0WLFikwMLDYGJMmTdLTTz9d4hx79uxRx44dK5VnZdx2222mn7OysnTmzBn997//lSS5urrq5Zdf1r/+9a/qSg8AAAC1EPcXxasL9xeVUbhKv2fPnmrVqlWpfYcPH64pU6boxIkT+uKLL9SjRw9rpAigBqKoD6BOGzJkiDp16qTExMQqn2vXrl3auXOnduzYoe+//17Jyck6f/68GjZsqO7duys4OFgTJ05U06ZNS4xx6NChUuc4d+6c2evU1FRJUqdOncqc54svvqh77rlHO3bs0MGDB3X27FmdPn1aTk5OatOmjfr06aN//etfuvnmm0uMceHCBV24cKHE8+V9eNjf5eXlKT09XZIq/BDbwpVTDg4OcnNzU9OmTdWvXz/deeedGjlypFxdXUucu5Cjo2OF5gYAAIDt4v6iqLpwf1FR+fn5evfddyVde5W+JDVu3Fj9+/fXhx9+qP/85z8U9YE6zGA0Go3VnQQAwPLy8/N1/fXXy2g06rfffiuxUF3bfP311woMDNSdd96pTz/9tFrmlqSLFy+qfv36Vp0fAAAAqC7cXwBAzcGe+gBgo3744QdlZGTo8ccft5k33NL/Vtk/9dRTVp/722+/lST5+vpS0AcAAECdwv0FANQcFPUBwEYlJCTIwcFBTz75ZHWnYlEJCQkKCAjQwIEDrTpvcnKyXnnlFUnSfffdZ9W5AQAAgOrG/QUA1BxsvwMAQCk2btyo+fPn68cff1R2draaNGmiI0eO6IYbbqju1AAAAAAAQB3ESn0AAEpx9uxZ/fDDD7r++usVEhKiL774goI+ANRBS5culb+/v5ydnRUYGKh9+/aVadz+/fvl4OBQrodKAgAAAKVhpT4AAAAAlCI2NlYhISFaunSpevfurRUrVuj//u//dPToUfn6+pY4LiMjQ126dFGrVq30+++/KzEx0XpJAwAAwGZR1AcAAACAUnTv3l1dunTRsmXLTG3t2rXT4MGDtWDBghLHPfzww2rdurXs7e21ZcsWivoAAACwCIfqTqC2yM/PV3JyslxdXWUwGKo7HQAAAFQxo9GorKws+fj4yM6OXSvrqpycHB0+fFjTpk0za+/Xr58SEhJKHLdq1SqdPHlSa9eu1fz58685T3Z2trKzs02v8/Pz9eeff6px48bcfwAAANQB5bn/oKhfRsnJyWrevHl1pwEAAAArO3PmjJo1a1bdaaCapKenKy8vT56enmbtnp6eSk1NLXbMiRMnNG3aNO3bt08ODmW75VqwYIHmzp1b6XwBAABQu5Xl/oOifhm5urpKKvilurm5VXM2AAAAqGqZmZlq3ry56X0g6rarV8sbjcZiV9Dn5eVp5MiRmjt3rtq0aVPm+NOnT1d4eLjpdUZGhnx9fbn/AAAAqCPKc/9BUb+MCt+wu7m58aYaAACgDmHrk7rNw8ND9vb2RVblp6WlFVm9L0lZWVk6dOiQjhw5oieeeEJSwVY6RqNRDg4O2rVrl+66664i45ycnOTk5FSknfsPAACAuqUs9x9sDgoAAAAAJXB0dFRgYKDi4uLM2uPi4tSrV68i/d3c3PTdd98pMTHRdISFhalt27ZKTExU9+7drZU6AAAAbBQr9QEAAACgFOHh4QoJCVHXrl3Vs2dPRUVFKSkpSWFhYZIKts45e/as1qxZIzs7O3Xs2NFsfNOmTeXs7FykHQAAAKgIivoAAAAVkJeXpytXrlR3GqgkR0dH2dnx5VWUbvjw4Tp37pwiIiKUkpKijh07avv27WrRooUkKSUlRUlJSdWcJQAAsGXcf9gGS91/GIxGo9EC+di8zMxMubu7KyMjgz0tAQCow4xGo1JTU3X+/PnqTgUWYGdnJ39/fzk6OhY5x/s/VCf++wMAABL3H7bGUvcfrNQHAAAoh8I31E2bNlX9+vV5iGotlp+fr+TkZKWkpMjX15e/JQAAAGoc7j9shyXvPyjqAwAAlFFeXp7pDXXjxo2rOx1YQJMmTZScnKzc3FzVq1evutMBAAAATLj/sD2Wuv9gA1EAAIAyKtzDsn79+tWcCSyl8GuveXl51ZwJAAAAYI77D9tjqfsPVuqXU2Jioho2bFipGB4eHvL19bVQRgAAwNr4yqvt4G+Jmo77DwAAwHtW22GpvyVF/XK6/fbbKx3DxcVFx48f5401AAAAgFJx/wEAAICrUdQvp/vuu0/e3t4VHp+enq7NmzcrPT2dN9UAAAAASsX9BwAAAK5GUb+cGjduLB8fn+pOAwAA1GJ5edK+fVJKiuTtLQUFSfb21Z0VgJqI+w8AAFBZ3H/YHh6UCwAAYEWbN0t+ftKdd0ojRxb86+dX0F4VDAZDqUdoaKip35YtW4qMDw0N1eDBg0t8nZaWpvHjx8vX11dOTk7y8vJScHCwDhw4UGJOc+bMMc1vZ2cnHx8fjRo1SmfOnDHr5+fnp8jIyCLjIyMj5efnVyReWFiYWb/ExEQZDAadPn26xFwAAAAAW8b9h23ef9TIov7SpUvl7+8vZ2dnBQYGat++fSX2jY+PV+/evdW4cWO5uLgoICBAixcvNusTHR1d7H9Ely9frupLAQAAMNm8WXrwQem338zbz54taK+KN9YpKSmmIzIyUm5ubmZtr7/+eqXiDx06VN98841Wr16tn376SVu3btUdd9yhP//8s9RxHTp0UEpKin777TfFxsbqu+++07Bhwyqch7Ozs1auXKmffvqpwjEAAAAAW8L9x//Y2v1Hjdt+JzY2VlOmTNHSpUvVu3dvrVixQgMGDNDRo0eL3QOyQYMGeuKJJ3TzzTerQYMGio+P1/jx49WgQQM9/vjjpn5ubm768ccfzcY6OztX+fUAAABIBV95nTxZMhqLnjMaJYNBmjJFGjTIsl+F9fLyMv3s7u4ug8Fg1lYZ58+fV3x8vPbs2WN6mGeLFi3UrVu3a451cHAw5eHj46Nx48bpySefVGZmptzc3MqdS9u2bdW0aVPNnDlTGzZsKPd4AAAAwJZw/2HO1u4/atxK/UWLFmns2LF67LHH1K5dO0VGRqp58+ZatmxZsf07d+6sESNGqEOHDvLz89Po0aMVHB7/cZgAAK9dSURBVBxcZHV/4X9Afz8AAACsZd++oitk/s5olM6cKehXWzRs2FANGzbUli1blJ2dXeE4qamp2rx5s+zt7WVfiTuKl156SZs2bdJXX31V4RgAAACALeD+o2S2cP9Ro4r6OTk5Onz4sPr162fW3q9fPyUkJJQpxpEjR5SQkGD6tKbQhQsX1KJFCzVr1kz33nuvjhw5Umqc7OxsZWZmmh0AAAAVlZJi2X5VYcSIEaY3yoXHu+++W2J/BwcHRUdHa/Xq1WrUqJF69+6t5557Tt9+++015/ruu+/UsGFD1a9fX97e3tqzZ48mTpyoBg0aVDj/Ll26aNiwYZo2bVqFYwAAAAC2gPsPc7Z2/1Gjivrp6enKy8uTp6enWbunp6dSU1NLHdusWTM5OTmpa9eumjhxoh577DHTuYCAAEVHR2vr1q2KiYmRs7OzevfurRMnTpQYb8GCBXJ3dzcdzZs3r9zFAQCAOs3b27L9qsLixYuVmJhodtx///2ljhk6dKiSk5O1detWBQcHa8+ePerSpYuio6NLHde2bVslJibqq6++0gsvvKBOnTrphRdeqPQ1zJ8/X/v27dOuXbsqHQsAAACorbj/MGdr9x81qqhfyGAwmL02Go1F2q62b98+HTp0SMuXL1dkZKRiYmJM53r06KHRo0frlltuUVBQkDZs2KA2bdrozTffLDHe9OnTlZGRYTqufhoyAABAeQQFSc2aFexdWRyDQWrevKBfdfHy8lKrVq3MDldX12uOc3Z21j333KPZs2crISFBoaGhev7550sd4+joqFatWqlDhw567rnn1KlTJ/3rX/8y6+Pm5qaMjIwiY8+fPy93d/di47Zs2VLjxo3TtGnTZCxuA1EAAACgDuD+w5yt3X/UqKK+h4eH7O3ti6zKT0tLK7J6/2r+/v666aabNG7cOE2dOlVz5swpsa+dnZ1uvfXWUlfqOzk5yc3NzewAAACoKHt76fXXC36++o114evISMs+pKq6tG/fXhcvXizXmFmzZikmJkZff/21qS0gIKDY/Sm/+uortW3btsRYs2fP1k8//aT169eXKwcAAADAVnD/Ubrafv9Ro4r6jo6OCgwMVFxcnFl7XFycevXqVeY4RqOx1IclGI1GJSYmyrs6v18CAADqnCFDpPfek264wby9WbOC9iFDqievijp37pzuuusurV27Vt9++61OnTqljRs3auHChRo0aFC5Yt14440aNGiQZs+ebWoLDw/Xjh07FBERoaNHj+ro0aOaN2+ePv74Yz311FMlxvL09FR4eLjeeOONCl8bAAAAUNtx/1Gy2n7/4WC1mcooPDxcISEh6tq1q3r27KmoqCglJSUpLCxMUsG2OGfPntWaNWskSUuWLJGvr68CAgIkSfHx8Xr11Vc1adIkU8y5c+eqR48eat26tTIzM/XGG28oMTFRS5Yssf4FAgCAOm3IEGnQIGnfvoKHUnl7F3zltTaukGnYsKG6d++uxYsX6+TJk7py5YqaN2+ucePG6bnnnit3vKeeekq9e/fWwYMH1b17d/Xo0UM7d+5URESEIiMjJUkdOnTQzp071b1791JjPfPMM1q2bJkuX75ckUsDAAAAbAL3HyWrzfcfBmMN3Gx06dKlWrhwoVJSUtSxY0ctXrxYffr0kSSFhobq9OnT2rNnjyTpzTff1IoVK3Tq1Ck5ODiY9jEaP3687OwKvogwdepUbd68WampqXJ3d1fnzp01Z84c9ezZs8w5ZWZmyt3dXaGhofLz86vwtSUnJysqKkqHDx9Wly5dKhwHAABY3+XLl3Xq1Cn5+/vL2dm5utOBBZT2Ny18/5eRkcFWjLA67j8AAAD3H7bHUvcfNW6lviRNmDBBEyZMKPbc1U8ynjRpktmq/OIsXrxYixcvtlR6AAAAAAAAAABUixq1pz4AAAAAAAAAACgZRX0AAAAAAAAAAGoJivoAAAAAAAAAANQSFPUBAAAAAAAAAKglKOoDAAAAAAAAAFBLUNQHAAAAAAAAAKCWoKgPAAAAAAAAAEAtQVEfAAAAAAAAAIBagqI+AABAHRAaGiqDwWA6GjdurP79++vbb78t0vfxxx+Xvb291q9fX+TcxYsX9eyzz+rGG2+Us7OzmjRpojvuuEPbtm0z9bnjjjvM5io8wsLCTH0MBoO2bNlSbK579uyRwWDQ+fPnzV537NhReXl5Zn0bNWqk6Oho02s/P79i537ppZfK8dsCAAAAUBncf1Tt/QdFfQAAAGuZM0eaN6/4c/PmFZyvQv3791dKSopSUlL0ySefyMHBQffee69Zn0uXLik2NlbPPPOMVq5cWSRGWFiYtmzZorfeekvHjx/Xxx9/rKFDh+rcuXNm/caNG2eaq/BYuHBhpfI/efKk1qxZc81+ERERReaeNGlSpeYGAAAAah3uPyqVf02+/3Co0ugAAAD4H3t7afbsgp9nzfpf+7x5Be0REVU6vZOTk7y8vCRJXl5eevbZZ9WnTx/98ccfatKkiSRp48aNat++vaZPny5vb2+dPn1afn5+phgffvihXn/9dQ0cOFBSwcqUwMDAInPVr1/fNJelTJo0Sc8//7xGjBghZ2fnEvu5urpafG4AAACg1uH+o1Jq8v0HK/UBAACsZdasgjfOs2f/b8XM399Q//2NdhW7cOGC3n33XbVq1UqNGzc2ta9cuVKjR4+Wu7u7Bg4cqFWrVpmN8/Ly0vbt25WVlWW1XAtNmTJFubm5euutt6w+NwAAAFDrcP9RKTX5/oOiPgAAgDX9/Y21k5NV31Bv27ZNDRs2VMOGDeXq6qqtW7cqNjZWdnYFbwlPnDihL774QsOHD5ckjR49WqtWrVJ+fr4pRlRUlBISEtS4cWPdeuutmjp1qvbv319krqVLl5rmKjxWr15dqfzr16+v559/XgsWLFBGRkaJ/Z599tkic+/Zs6dScwMAAAC1EvcfFVaT7z8o6gMAAFjbrFmSo6OUk1Pwr5VWyNx5551KTExUYmKiDh48qH79+mnAgAH69ddfJRWskgkODpaHh4ckaeDAgbp48aJ2795titGnTx/98ssv+uSTTzR06FD98MMPCgoK0ryr9uocNWqUaa7C44EHHqj0NYwdO1YeHh56+eWXS+zzzDPPFJm7e/fulZ4bAAAAqJW4/6iwmnr/QVEfAADA2ubN+98b6pyckh9eZWENGjRQq1at1KpVK3Xr1k0rV67UxYsX9fbbbysvL09r1qzRRx99JAcHBzk4OKh+/fr6888/izywql69egoKCtK0adO0a9cuRUREaN68ecrJyTH1cXd3N81VeLi5uVX6GhwcHDR//ny9/vrrSk5OLraPh4dHkbldXFwqPTcAAABQK3H/UWE19f6Doj4AAIA1/X0Py+zsontcWpHBYJCdnZ3++usv0z6VR44cMVthsnHjRm3ZskXnzp0rMU779u2Vm5ury5cvWyXvhx56SB06dNDcuXOtMh8AAABQa3H/UWk18f7DoboTAAAAqDOKeyhV4b+zZ5u/rgLZ2dlKTU2VJP33v//VW2+9pQsXLui+++5TZGSk/vGPf+iWW24xG9OhQwdNmTJFa9eu1eTJk3XHHXdoxIgR6tq1qxo3bqyjR4/queee05133mm2EubSpUumuQo5OTnpuuuuM70+deqUEhMTzfq0atWqTNfy0ksvKTg4uNhzWVlZReauX7++RVbqAAAAALUG9x82e/9BUR8AAMBa8vKKfyhV4eu8vCqd/uOPP5a3t7ckydXVVQEBAdq4caPatWunjz76SOvWrSsyxmAwaMiQIVq5cqUmT56s4OBgrV69Ws8995wuXbokHx8f3XvvvZpdeFPw/7399tt6++23zdqCg4P18ccfm16Hh4cXme+zzz4r07Xcdddduuuuu7Rr164i52bPnl0kn/Hjx2v58uVlig0AAADYBO4/bPb+w2A0Go1VFt2GZGZmyt3dXaGhofLz86twnOTkZEVFRenw4cPq0qWL5RIEAABV7vLlyzp16pT8/f3l7Oxc3enAAkr7mxa+/8vIyGCVP6yO+w8AAMD9h+2x1P0He+oDAAAAAAAAAFBL1Mii/tKlS02fVgQGBmrfvn0l9o2Pj1fv3r3VuHFjubi4KCAgQIsXLy7Sb9OmTWrfvr2cnJzUvn17vf/++1V5CQAAAAAAAAAAWFyNK+rHxsZqypQpmjFjho4cOaKgoCANGDBASUlJxfZv0KCBnnjiCe3du1fHjh3TzJkzNXPmTEVFRZn6HDhwQMOHD1dISIi++eYbhYSEaNiwYTp48KC1LgsAAAAAAAAAgEqrcUX9RYsWaezYsXrsscfUrl07RUZGqnnz5lq2bFmx/Tt37qwRI0aoQ4cO8vPz0+jRoxUcHGy2uj8yMlL33HOPpk+froCAAE2fPl19+/ZVZGSkla4KAAAAAAAAAIDKq1FF/ZycHB0+fFj9+vUza+/Xr58SEhLKFOPIkSNKSEjQ7bffbmo7cOBAkZjBwcGlxszOzlZmZqbZAQAAAAAAAABAdapRRf309HTl5eXJ09PTrN3T01Opqamljm3WrJmcnJzUtWtXTZw4UY899pjpXGpqarljLliwQO7u7qajefPmFbgiAAAAAAAAAAAsp0YV9QsZDAaz10ajsUjb1fbt26dDhw5p+fLlioyMVExMTKViTp8+XRkZGabjzJkz5bwKAAAAAAAAAAAsy6G6E/g7Dw8P2dvbF1lBn5aWVmSl/dX8/f0lSTfddJN+//13zZkzRyNGjJAkeXl5lTumk5OTnJycKnIZAAAAAAAAAABUiRq1Ut/R0VGBgYGKi4sza4+Li1OvXr3KHMdoNCo7O9v0umfPnkVi7tq1q1wxAQAAAAAAAACobjVqpb4khYeHKyQkRF27dlXPnj0VFRWlpKQkhYWFSSrYFufs2bNas2aNJGnJkiXy9fVVQECAJCk+Pl6vvvqqJk2aZIo5efJk9enTRy+//LIGDRqkDz74QLt371Z8fLz1LxAAANgc4+W/pCtXrDdhvXoyOLtYbz4AAAAANQb3H6hxRf3hw4fr3LlzioiIUEpKijp27Kjt27erRYsWkqSUlBQlJSWZ+ufn52v69Ok6deqUHBwc1LJlS7300ksaP368qU+vXr20fv16zZw5U7NmzVLLli0VGxur7t27W/36AACAbTFe/kv5e+NkvHTRanMa6jeQXZ97yvXGOjQ0VOfPn9eWLVuKnPPz89Ovv/5apH3BggWaNm2aTp8+LX9/fzVp0kQnT56Uq6urqU+nTp00ePBgzZkzR5L0yy+/aMaMGfr888/1559/ysPDQ4GBgXrllVfUpk0bnT59WvPmzdOnn36q1NRU+fj4aPTo0ZoxY4YcHR3L/bsAAAAA6hLuP7j/kGpgUV+SJkyYoAkTJhR7Ljo62uz1pEmTzFbll+TBBx/Ugw8+aIn0AAAA/ufKlYI31A71pHpWeFN4JadgvitXJAuulomIiND/Y+/e46Ks0/+Pv4czHsB0FI+ApaZipmEqImVrQtq2lpV2kHI9pF9cC9kOsqYpZnYwJTcx3VJyLUMTK8syajMxrS2TTmqZJ0xgEUsQDyAwvz/4MTUCCswMzAyv5+NxP7a553Nf93VT38f3vq753Pdn0qRJFvv+ePMsSadOndLChQs1d+7cKmMUFxdr2LBh6t69u1JTU9WuXTv98ssv2rx5s/Lz8yVJ+/btU1lZmZYvX64uXbro+++/16RJk3T69GktXLjQZtcD2FpSUpKee+45ZWdnKyQkRImJiYqIiKhy7Pbt2/XYY49p3759OnPmjIKCgjR58mRNnz69nrMGAAAuh/rDrDHXHw7Z1AcAAHA6nl4yeHvb/TQmSSqx/aO2zZs3V9u2bS86Ztq0aVq0aJGmTp2qNm3aVPp+z549OnjwoP7zn/+Yn7IMCgpSeHi4ecxNN92km266yfz58ssv148//qhly5Y59U01XFtKSopiY2OVlJSk8PBwLV++XMOHD9eePXsUGBhYaXzTpk31t7/9Tb1791bTpk21fft2TZ48WU2bNtUDDzzQAFcAAABcDvVHo64/HGqhXAAAADiuu+++W126dFFCQkKV37du3Vpubm568803VVpaWuO4+fn5atmypa3SBGxu0aJFmjBhgiZOnKgePXooMTFRnTp10rJly6oc37dvX919990KCQlRcHCwxo4dq6ioKKWnp9dz5gAAAM6L+qN6NPUBAACgxx57TM2aNbPYtm7dajHGYDDo6aef1ooVK3TgwIFKMTp06KAlS5Zo9uzZuuyyy/SnP/1J8+bN08GDB6s974EDB/TPf/5TU6ZMsfUlATZRXFysXbt2KTIy0mJ/ZGSkduzYUaMYu3fv1o4dO3T99ddXO6aoqEgFBQUWGwAAgKui/rAOTX0AAADokUceUUZGhsU2YMCASuOioqI0ePBgzZo1q8o4U6dOVU5OjtasWaOwsDCtX79eISEhSktLqzQ2KytLN910k+68805NnDjR5tcE2EJeXp5KS0sVEBBgsT8gIEA5OTkXPbZjx47y9vZWv379NHXq1Iv+d75gwQL5+/ubt06dOtkkfwAAAEdE/WEdmvoAAACQ0WhUly5dLDZf36oXwnr66aeVkpKi3bt3V/l98+bN9Ze//EXz58/XN998o4iICD355JMWY7KysnTDDTcoLCxMK1assPn1ALZmMBgsPptMpkr7LpSenq6vvvpKL730khITE7V27dpqx8bHxys/P9+8HT161CZ5AwAAOCLqD+uwUC4AAABqpX///ho1apRmzJhxybEGg0Hdu3e3eE3JsWPHdMMNNyg0NFSrVq2SmxvzTOC4jEaj3N3dK83Kz83NrTR7/0KdO3eWJF111VX63//+pzlz5ujuu++ucqy3t7e862GxOwAAAGdD/VEZTX0AAIBGIj8/XxkZGRb7KhaIOnXqVKWmZZMmTeTn51dlrPnz5yskJEQeHr/fTmZkZOiJJ55QdHS0evbsKS8vL3366adauXKlHnvsMUnlM2SGDBmiwMBALVy4UMePHzcf37ZtW1tcJmBTXl5eCg0NVVpamm677Tbz/rS0NI0cObLGcUwmk4qKiuyRIgAAgEOi/rAfmvoAAAC2cL5Ypno6T11t3bpVffv2tdh3//33S5Jmz56t2bNnW3w3efJkvfTSS1XG6tatm8aPH2/x6GrHjh0VHBysuXPn6vDhwzIYDObP06dPlyR9+OGH+vnnn/Xzzz+rY8eOFjFNpnr5CwK1FhcXp+joaPXr18/8yHZmZqZ5gbX4+HgdO3ZMq1evliQtXbpUgYGB6t69uyRp+/btWrhwoaZNm9Zg1wAAAFwM9Uejrj9o6gMAAFjD01OGJk1lOnNaKjlfL6c0NGkqeXrW6pjk5GQlJyfX6XzBwcFV3vAuX75cy5cvN382Go164YUXLhpr3LhxGjduXJ3yABrKmDFjdOLECSUkJCg7O1u9evXS5s2bFRQUJEnKzs5WZmameXxZWZni4+N16NAheXh46IorrtDTTz+tyZMnN9QlAAAAV0H9Yf7cmOsPmvoAAABWMPj4yu26YdL5+rmhllR+I+9T9SJSAOwjJiZGMTExVX53YcE6bdo0ZuUDAAC7oP6ARFMfAADAagYfX4mbXAAAAAD1gPoDzr/ULwAAAAAAAAAAjQRNfQAAAAAAAAAAnARNfQAAAAAAAAAAnARNfQAAAAAAAAAAnARNfQAAAAAAAAAAnARNfQAAAAAAAAAAnARNfQAAAAAAAAAAnIRHQycAAADg7DIzM5WXl1dv5zMajQoMDKy38wEAAABwHNQfoKkPAABghczMTHXv3l1nz56tt3P6+vpq3759tb6xzsnJ0fz58/Xee+/p2LFjatOmjfr06aPY2FgNHTpUwcHBOnLkiNauXau77rrL4tiQkBDt2bNHq1at0rhx4yRJwcHBio2NVWxsrPnzkSNHzDlefvnlmjZtmiZPnmyOU1RUpISEBK1Zs0Y5OTnq2LGjZs6cqfHjx9f9DwIAAAA0EtQf1B8STX0AAACr5OXl6ezZsxo1apSMRmO9nC81NVV5eXm1uqk+fPiwwsPD1aJFCz377LPq3bu3zp8/ry1btmjq1Knat2+fJKlTp05atWqVxU31559/rpycHDVt2vSS50lISNCkSZNUWFio5ORkTZkyRS1atNCYMWMkSaNHj9b//vc/vfLKK+rSpYtyc3NVUlJSy78CAAAA0DhRf1hqrPWHQzb1k5KS9Nxzzyk7O1shISFKTExURERElWNTU1O1bNkyZWRkqKioSCEhIZozZ46ioqLMY5KTk/XXv/610rFnz56Vj4+P3a4DAAA0HkajUe3bt2/oNKoVExMjg8Gg//73vxY3xyEhIRazVO69914tXrxYR48eVadOnSRJK1eu1L333qvVq1df8jzNmzdX27ZtJUlPPvmk1q1bp7feektjxozRBx98oE8//VQHDx5Uy5YtJZXPrgEAAABQO9Qf5Rpr/eFwC+WmpKQoNjZWM2fO1O7duxUREaHhw4crMzOzyvHbtm3TsGHDtHnzZu3atUs33HCDbrnlFu3evdtinJ+fn7Kzsy02GvoAAKAx+PXXX/XBBx9o6tSpVc52adGihfmfAwICFBUVpVdffVWSdObMGaWkpNT58VQfHx+dP39ekvTOO++oX79+evbZZ9WhQwd169ZNDz/8cL0+OgwAAADAvqg/7M/hmvqLFi3ShAkTNHHiRPXo0UOJiYnq1KmTli1bVuX4xMREPfroo7r22mvVtWtXPfXUU+ratas2bdpkMc5gMKht27YWGwAAQGPw888/y2QyqXv37jUaP378eCUnJ8tkMunNN9/UFVdcoT59+tTqnCUlJUpOTtZ3332noUOHSpIOHjyo7du36/vvv9fGjRuVmJioN998U1OnTq3tJQEAAABwUNQf9udQTf3i4mLt2rVLkZGRFvsjIyO1Y8eOGsUoKyvTqVOnzI9UVCgsLFRQUJA6duyoP//5z5Vm8l+oqKhIBQUFFhsAAIAzMplMksonOdTEzTffrMLCQm3btk0rV66s1SyZxx57TM2aNZOvr6+mTp2qRx55xLxQVVlZmQwGg1577TX1799fI0aM0KJFi5ScnOwSs2UAAAAAUH/UB4dq6ufl5am0tFQBAQEW+wMCApSTk1OjGM8//7xOnz6t0aNHm/d1795dycnJeuedd7R27Vr5+PgoPDxc+/fvrzbOggUL5O/vb94q3ukEAADgbLp27SqDwaC9e/fWaLyHh4eio6P1xBNP6IsvvtC9995b43M98sgjysjI0JEjR1RYWKhnn31Wbm7lt5zt2rVThw4d5O/vbx7fo0cPmUwm/fLLL7W7KAAAAAAOifrD/hyqqV/hwl9xTCZTjX7ZWbt2rebMmaOUlBS1adPGvH/gwIEaO3asrr76akVERGjdunXq1q2b/vnPf1YbKz4+Xvn5+ebt6NGjdb8gAACABtSyZUtFRUVp6dKlOn36dKXvT548WWnf+PHj9emnn2rkyJG67LLLanwuo9GoLl26qH379pXu38LDw5WVlaXCwkLzvp9++klubm7q2LFjzS8IAAAAgMOi/rA/h2rqG41Gubu7V5qVn5ubW2n2/oVSUlI0YcIErVu3TjfeeONFx7q5uenaa6+96Ex9b29v+fn5WWwAAADOKikpSaWlperfv782bNig/fv3a+/evVqyZInCwsIqje/Ro4fy8vK0atUqm+Vwzz33qFWrVvrrX/+qPXv2aNu2bXrkkUc0fvx4+fr62uw8AAAAABoW9Yd9eTR0An/k5eWl0NBQpaWl6bbbbjPvT0tL08iRI6s9bu3atRo/frzWrl2rm2+++ZLnMZlMysjI0FVXXWWTvAEAAPLy8hz6PJ07d9bXX3+t+fPn6+9//7uys7PVunVrhYaGatmyZVUe06pVK2tSraRZs2ZKS0vTtGnT1K9fP7Vq1UqjR4/Wk08+adPzAAAAAK6O+uPSXLn+cKimviTFxcUpOjpa/fr1U1hYmFasWKHMzExNmTJFUvlrcY4dO6bVq1dLKm/o33fffXrhhRc0cOBA8yx/X19f8/uS5s6dq4EDB6pr164qKCjQkiVLlJGRoaVLlzbMRQIAAJdhNBrl6+ur1NTUejunr6+vjEZjrY9r166dXnzxRb344otVfn/48OGLHn/hY7IXjr/U8VL5WkdpaWmXHAcAAACgMuqPmh8vuW794XBN/TFjxujEiRNKSEhQdna2evXqpc2bNysoKEiSlJ2drczMTPP45cuXq6SkRFOnTtXUqVPN+++//34lJydLKv8P4IEHHlBOTo78/f3Vt29fbdu2Tf3796/XawMAAK4nMDBQ+/btq7eZMlL5jXxgYGC9nQ8AAACAY6D+gOSATX1JiomJUUxMTJXfVTTqK2zduvWS8RYvXqzFixfbIDMAAIDKAgMDuckFAAAAUC+oP+BQC+UCAAAAAAAAAIDq0dQHAAAAAAAAAMBJ0NQHAAAAAAAAAMBJ0NQHAACopbKysoZOATZiMpkaOgUAAADgoqg/XIet6g+HXCgXAADAEXl5ecnNzU1ZWVlq3bq1vLy8ZDAYGjot1JHJZNLx48dlMBjk6enZ0OkAAAAAFqg/XIst6w+a+gAAADXk5uamzp07Kzs7W1lZWQ2dDmzAYDCoY8eOcnd3b+hUAAAAAAvUH67HVvUHTX0AAIBa8PLyUmBgoEpKSlRaWtrQ6cBKnp6eNPQBAADgsKg/XIut6o9aN/WXLFmigQMHqn///uZ9ubm5ysnJUe/evSuNf/vtt/X2229r5cqV1mUKAADgICoel+SVLYBjoEYBAACujPoDF6r1QrmxsbH64IMPLPYtW7ZMffv2rXJ8RkaGXn311bplBwAAAACXQI0CAACAxqTWTX0AAAAAAAAAANAwaOoDAAAAAAAAAOAkaOoDAAAAAAAAAOAkaOoDAAAAAAAAAOAkaOoDAAAAAAAAAOAkPOpy0Pfff69169ZZfJak9evXy2QyVRoLAAAAAPZEjQIAAIDGok5N/Q0bNmjDhg3mzxU3yXfddVelsSaTSQaDoY7pAQAAAMClUaMAAACgsah1U/+JJ56wRx4AAAAAUCfUKAAAAGhMaOoDAAAAcGrUKAAAAGhMWCgXAAAAAAAAAAAnUad36l9MRkaGPvnkE0nS4MGDde2119r6FAAAAABQY9QoAAAAcCW1nqm/bds23Xffffr8888rfff4448rNDRUDz/8sB5++GENHDhQ06ZNq3VSSUlJ6ty5s3x8fBQaGqr09PRqx6ampmrYsGFq3bq1/Pz8FBYWpi1btlQat2HDBvXs2VPe3t7q2bOnNm7cWOu8AAAAADie+qhRAAAAAEdR66Z+SkqK1q9fr549e1rs/+STT/TUU0/J3d1d0dHRmjJlioxGo5KSkvTWW2/VKn5sbKxmzpyp3bt3KyIiQsOHD1dmZmaV47dt26Zhw4Zp8+bN2rVrl2644Qbdcsst2r17t3nMzp07NWbMGEVHR+ubb75RdHS0Ro8erS+++KK2lw8AAADAwdi7RgEAAAAcSa2b+jt37tSAAQPk5+dnsX/58uUyGAx66aWXlJycrKVLlyo9PV2enp5KTk6ucfxFixZpwoQJmjhxonr06KHExER16tRJy5Ytq3J8YmKiHn30UV177bXq2rWrnnrqKXXt2lWbNm2yGDNs2DDFx8ere/fuio+P19ChQ5WYmFjbywcAAADgYOxdowAAAACOpNZN/aysLHXr1q3S/k8++UR+fn4aN26ceV+3bt00YsQIffXVVzWKXVxcrF27dikyMtJif2RkpHbs2FGjGGVlZTp16pRatmxp3rdz585KMaOioi4as6ioSAUFBRYbAAAAAMdjzxoFAAAAcDS1bur/9ttvMhqNFvt++eUXHT9+XIMHD5abm2XILl26KC8vr0ax8/LyVFpaqoCAAIv9AQEBysnJqVGM559/XqdPn9bo0aPN+3Jycmodc8GCBfL39zdvnTp1qtH5AQAAANQve9YoAAAAgKOpdVO/efPmysrKsti3a9cuSVJoaGil8QaDQT4+PrU6h8FgsPhsMpkq7avK2rVrNWfOHKWkpKhNmzZWxYyPj1d+fr55O3r0aC2uAAAAAEB9qY8aBQAAAHAUHrU9oHfv3nr33Xd1+vRpNW3aVJK0ceNGGQwGXXfddZXGHzhwQO3bt69RbKPRKHd390oz6HNzcyvNtL9QSkqKJkyYoPXr1+vGG2+0+K5t27a1junt7S1vb+8a5Q0AAACg4dizRgEAAAAcTa1n6o8fP16//vqrrr/+ei1ZskQPPvig1qxZo06dOmnIkCEWY0tLS7Vt2zZdddVVNYrt5eWl0NBQpaWlWexPS0vToEGDqj1u7dq1GjdunF5//XXdfPPNlb4PCwurFPPDDz+8aEwAAAAAzsGeNUqFpKQkde7cWT4+PgoNDVV6enq1Y1NTUzVs2DC1bt1afn5+CgsL05YtW+pyaQAAAEAltZ6pP3bsWH388cd69dVXtXv3bplMJjVv3lz/+te/Kr2r8r333lNeXp6ioqJqHD8uLk7R0dHq16+fwsLCtGLFCmVmZmrKlCmSyl+Lc+zYMa1evVpSeUP/vvvu0wsvvKCBAweaZ+T7+vrK399fkvTQQw/puuuu0zPPPKORI0fq7bff1kcffaTt27fX9vIBAAAAOBh71ygpKSmKjY1VUlKSwsPDtXz5cg0fPlx79uxRYGBgpfHbtm3TsGHD9NRTT6lFixZatWqVbrnlFn3xxRfq27ev1dcLAACAxq3WTX1JWrVqlSZMmKCdO3eqZcuWioqKUseOHSuN8/b21uLFizVy5Mgaxx4zZoxOnDihhIQEZWdnq1evXtq8ebOCgoIkSdnZ2crMzDSPX758uUpKSjR16lRNnTrVvP/+++9XcnKyJGnQoEF644039Pjjj2vWrFm64oorlJKSogEDBtTl8gEAAAA4GHvWKIsWLdKECRM0ceJESVJiYqK2bNmiZcuWacGCBZXGJyYmWnx+6qmn9Pbbb2vTpk009QEAAGC1OjX1JWnw4MEaPHjwRcdERUXVagZMhZiYGMXExFT5XUWjvsLWrVtrFPOOO+7QHXfcUetcAAAAADgHe9QoxcXF2rVrl2bMmGGxPzIyUjt27KhRjLKyMp06dUotW7asdkxRUZGKiorMnwsKCmqcIwAAABqXWr9THwAAAAAai7y8PJWWliogIMBif0BAgPnVn5fy/PPP6/Tp0xo9enS1YxYsWCB/f3/z1qlTJ6vyBgAAgOuq9Uz9devW1elEF7uBBQAAAIC6qo8axWAwWHw2mUyV9lVl7dq1mjNnjt5++221adOm2nHx8fGKi4szfy4oKLBpY3/v3r1WxzAajVWuIQAAAID6Veum/l133VWjm9cKFTe7NPUBAAAA2IM9axSj0Sh3d/dKs/Jzc3Mrzd6/UEpKiiZMmKD169frxhtvvOhYb29veXt7Xzr5WiosLJTBYNDYsWOtjuXr66t9+/bR2AcAAGhgdXqnvoeHh0aMGKE+ffrYOB0AAAAAqD171SheXl4KDQ1VWlqabrvtNvP+tLS0iy62u3btWo0fP15r167VzTffbNOcauPcuXMymUwaNWqUjEZjnePk5eUpNTVVeXl5NPUBAAAaWK2b+rfeeqvee+89vfPOOzpy5IjGjx+ve++9V5dddpk98nNZPP4KAAAA2Ia9a5S4uDhFR0erX79+CgsL04oVK5SZmakpU6ZIKn91zrFjx7R69WpJ5Q39++67Ty+88IIGDhxonuXv6+srf39/m+RUW0ajUe3bt2+QcwMAAMC2at3Ur5idsXr1aiUnJ+vBBx/UI488oltvvVXjx4/XsGHD7JGny+DxVwAAAMC27F2jjBkzRidOnFBCQoKys7PVq1cvbd68WUFBQZKk7OxsZWZmmscvX75cJSUlmjp1qqZOnWref//99ys5OdmqXAAAAIA6vX7HaDQqLi5OcXFx+u9//6tXXnlF69at07p169ShQweNGzdO48aN0+WXX27rfJ0ej78CAAAAtmfvGiUmJkYxMTFVfndho37r1q11OgcAAABQE27WBujfv7+WL1+u7OxsJScnq0uXLpo/f766deumjz76yBY5uqSKx1/rulnzgwAAAADgyqhRAAAA4MrqNFO/Kj4+PoqMjFR2drZ++uknZWVl6cyZM7YKj2rwbn4AAACgatQoAAAAcEVWN/VLS0v17rvvauXKlXr//fdVWlqqPn36KD4+XkOHDrVFjqgC7+YHAAAAqkaNAgAAAFdW56b+nj17tHLlSq1Zs0a5ublq1aqVYmJiNH78ePXu3duWOaIKvJsfAAAAsESNAgAAgMag1k39FStWaOXKlfryyy9lMBgUGRmp8ePHa+TIkfL09LRHjriIinfzAwAAAI0VNQoAAAAak1o39adMmSJPT0/dcsstuv/++9WhQwdJ0u7duy96XP/+/euWIQAAAABcBDVK/WFNLwAAgIZXp9fvnD9/Xps2bdKmTZtqfExpaWldTgUAAAAAl0SNYl+s6QUAAOA4at3Uv//+++2RBwAAAADUCTWK/bGmFwAAgOOodVN/1apV9sgDAAAAAOqEGqX+sKYXAABAw3Nr6AQAAAAAAAAAAEDN1HqmfkxMTJ1OlJSUVKfjAAAAAOBiqFEAAADQmNS6qf/SSy/VeKzBYDD/MzfMAAAAAOyBGgUAAACNSa2b+p988kmNxmVmZiohIUEHDhywuHEGAAAAAFuiRgEAAEBjUuum/vXXX3/R73/77Tc99dRTWrp0qc6dO6ewsDA988wzdU4QAAAAAC6GGgUAAACNic0Wyj137pyefvppXXHFFXr++ecVHBys1NRUffbZZxo8eHCtYiUlJalz587y8fFRaGio0tPTqx2bnZ2te+65R1deeaXc3NwUGxtbaUxycrIMBkOl7dy5c7W9TAAAAABOwpY1CgAAAOAorG7qm0wmvfzyy+ratav+8Y9/qEmTJlqxYoW+//573XrrrbWOl5KSotjYWM2cOVO7d+9WRESEhg8frszMzCrHFxUVqXXr1po5c6auvvrqauP6+fkpOzvbYvPx8al1fgAAAAAcm61rFAAAAMCRWNXUf+uttxQSEqLJkyersLBQTz31lH7++WdNnDhRbm51C71o0SJNmDBBEydOVI8ePZSYmKhOnTpp2bJlVY4PDg7WCy+8oPvuu0/+/v7VxjUYDGrbtq3FBgAAAMC12KNGAQAAABxJne5qt2/frvDwcN1+++06dOiQpk+froMHD2rGjBlWzX4vLi7Wrl27FBkZabE/MjJSO3bsqHNcSSosLFRQUJA6duyoP//5z9q9e/dFxxcVFamgoMBiAwAAAOCY7FWjAAAAAI6m1gvl/uUvf9F7770nNzc33X///UpISFDHjh1tkkxeXp5KS0sVEBBgsT8gIEA5OTl1jtu9e3clJyfrqquuUkFBgV544QWFh4frm2++UdeuXas8ZsGCBZo7d26dzwkAAACgftizRgEAAAAcTa2b+u+++64MBoMCAwOVk5OjBx544JLHGAwGvffeezU+h8FgsPhsMpkq7auNgQMHauDAgebP4eHhuuaaa/TPf/5TS5YsqfKY+Ph4xcXFmT8XFBSoU6dOdc7B0e3du9eq441GowIDA22UDQAAAFBz9VGjAAAAAI6i1k19qbzJfujQIR06dKhG42vakDcajXJ3d680Kz83N7fS7H1ruLm56dprr9X+/furHePt7S1vb2+bndNRFRYWymAwaOzYsVbF8fX11b59+2jsAwAAoEHYq0YBAAAAHE2tm/o1vUmuCy8vL4WGhiotLU233XabeX9aWppGjhxps/OYTCZlZGToqquusllMZ3Xu3DmZTCaNGjVKRqOxTjHy8vKUmpqqvLw8mvoAAACod/asUQAAAABHU+umflBQkD3yMIuLi1N0dLT69eunsLAwrVixQpmZmZoyZYqk8tfiHDt2TKtXrzYfk5GRIal81vnx48eVkZEhLy8v9ezZU5I0d+5cDRw4UF27dlVBQYGWLFmijIwMLV261K7X4kyMRqPat2/f0GkAAAAAtWbvGgUAAABwJHV6/Y49jRkzRidOnFBCQoKys7PVq1cvbd682Xyjnp2drczMTItj+vbta/7nXbt26fXXX1dQUJAOHz4sSTp58qQeeOAB5eTkyN/fX3379tW2bdvUv3//ersuAAAAAEA51vQCAACoO4dr6ktSTEyMYmJiqvwuOTm50j6TyXTReIsXL9bixYttkRoAAAAAoI5Y0wsAAMB6DtnUBwAAAAC4Hluu6ZWenq4ePXpYlQ8z/gEAgDOiqQ8AAAAAqFfWrOllq9n+EjP+AQCAc6KpDwAAAABwGraY7S/9PuM/Ly+Ppj4AAHAqNPUBAAAAAE7Hmtn+AAAAzsytoRMAAAAAAAAAAAA1Q1MfAAAAAAAAAAAnQVMfAAAAAAAAAAAnQVMfAAAAAAAAAAAnQVMfAAAAAAAAAAAnQVMfAAAAAAAAAAAnQVMfAAAAAAAAAAAn4dHQCQAAAAAA0FD27t1rdQyj0ajAwEAbZAMAAHBpNPUBAAAAAI1OYWGhDAaDxo4da3UsX19f7du3j8Y+AACoFzT1YTPMcAEAAADgLM6dOyeTyaRRo0bJaDTWOU5eXp5SU1OVnp6uHj16WJVTUVGRvL29rYohUVcBAODqaOrDasxwAQAAAOCsjEaj2rdvX+fjbVkPGQwGmUwmq+NQVwEA4Npo6sNqtp7hkpeXx80nAAAAAKdgq3po//79+uSTT6irAADAJdHUh81YO8MFAAAAAJyVtfVQXl6eTeIAAADXR1MfDod38wMAAAAAAABA1Wjqw2Hwbn4AAAAAAAAAuDia+nAYvJsfAAAAAAAAAC7OraETqEpSUpI6d+4sHx8fhYaGKj09vdqx2dnZuueee3TllVfKzc1NsbGxVY7bsGGDevbsKW9vb/Xs2VMbN260U/awVsU7JOu6WfODAAAAAAAAAAA4Modr6qekpCg2NlYzZ87U7t27FRERoeHDhyszM7PK8UVFRWrdurVmzpypq6++usoxO3fu1JgxYxQdHa1vvvlG0dHRGj16tL744gt7XgoAAAAAAAAAADblcK/fWbRokSZMmKCJEydKkhITE7VlyxYtW7ZMCxYsqDQ+ODhYL7zwgiRp5cqVVcZMTEzUsGHDFB8fL0mKj4/Xp59+qsTERK1du9ZOVwIAAAAAQMPYu3evVccbjUZeZwoAgINyqKZ+cXGxdu3apRkzZljsj4yM1I4dO+ocd+fOnZo+fbrFvqioKCUmJlZ7TFFRkYqKisyfCwoK6nx+NAxrb2IlbmQBAAAAOJfCwkIZDAaNHTvWqji+vr7at28f9RAAAA7IoZr6eXl5Ki0tVUBAgMX+gIAA5eTk1DluTk5OrWMuWLBAc+fOrfM50XBsdRMrcSMLAACAcklJSXruueeUnZ2tkJAQJSYmKiIiosqx2dnZ+vvf/65du3Zp//79evDBBy86oQiwpXPnzslkMmnUqFF1Xm8sLy9PqampSk9PV48ePazKh4lSAADYnkM19SsYDAaLzyaTqdI+e8eMj49XXFyc+XNBQYE6depkVQ6oH7a4iZW4kQUAAEC5inW/kpKSFB4eruXLl2v48OHas2dPlfd4f1z3a/HixQ2QMVBeg7Rv375OxzJRCgAAx+ZQTX2j0Sh3d/dKM+hzc3MrzbSvjbZt29Y6pre3t7y9vet8TjQ8a25iJW5kAQAAUM4e634BjszWE6Xy8vKohQAAsCGHaup7eXkpNDRUaWlpuu2228z709LSNHLkyDrHDQsLU1pamsV79T/88EMNGjTIqnzh2riRBQAAgL3W/boQa3rBEVk7UQoAANiHQzX1JSkuLk7R0dHq16+fwsLCtGLFCmVmZmrKlCmSyl+Lc+zYMa1evdp8TEZGhqTymdXHjx9XRkaGvLy81LNnT0nSQw89pOuuu07PPPOMRo4cqbffflsfffSRtm/fXu/XB+fDjSwAAEDjZa91vy7Eml4AAACoKYdr6o8ZM0YnTpxQQkKCsrOz1atXL23evFlBQUGSyhedyszMtDimb9++5n/etWuXXn/9dQUFBenw4cOSpEGDBumNN97Q448/rlmzZumKK65QSkqKBgwYUG/XBQAAAMB52WPdrz9iTS8AAADUlMM19SUpJiZGMTExVX6XnJxcaZ/JZLpkzDvuuEN33HGHtakBAAAAaETste7XhVjTC65s7969VscwGo28zhQAgP/PIZv6AAAAAOAI7LXuF9AYFBYWymAwaOzYsVbH8vX11b59+2jsAwAgmvpAvbF2dgozUwAAABqGPdb9AhqDc+fOyWQyadSoUTIajXWOk5eXp9TUVKWnp6tHjx5W5VRUVGT1UzHUZgCAhkZTH7AzW81OYWYKAABAw7DHul811dzNoKYqq3PuLTzc1bZZU/m5UBxHysVV49g6l8vbtFZA27q/rsr97Bm1a95MD0+ZXOcYFQwGQ41e4XsxXl5eevnll61+BVdxcZG8vKx/7VbLli3VoUMHq+MAABqW6VRBjcfS1AfszBazU2w5M4VZJQAAALVnj3W/amJEcy+11rk6H9+n7WUadONgdfPzUhMXieNIubhqHEfKRZL6XNZEoUPDFRQYJG+fujfBCwoKlJOTY1Wc06dP69ixY8pcvUKZlx5eL9zc3HTDkBvUpImvVXG8vX3UtFlTG2UFAKit0jNnajyWpj5QT4xGo9q3b1+nY3kXJQAAQON03iSdkaHOx58qLdWJM2d1uswkuUgcR8rFVeM4Ui5/jNPBy0veTZrUOU7x6TNWxzn7/2N07dpVvr51b6L/9ttvOnr0qNVxCgpO6fDhQ1r37rt1jlHB3d1D48f/Vc2b+1kdCwBQB8XnazyUpj7gBBzxXZTM+AcAALC/YpNJ561ohp4rM6mw+LyKTJKXi8RxpFxcNY4j5eJocSpiuPn4yqtZszrnotNnbBKn9P/H6dGjh5pY8YPHmTNntHfvXp0+XyI/K9ccAADUkYdXzYfaMQ0ANmbNbH/JtjP+vb29tWHDBrVr186qOCxUBQAAAADWadKkiZo3t+JHhv8v7/hxm+Ti7+9vdRwAQPVo6gONiK1m/GdmZmrLli3685//bHVOtlioylY/MPDjAAAAAIDGqLi4WJKUunGj1bE8PDz0t7/9jcY+ANgRTX2gEbJ2xn9eXp5NfhzYv3+/PvnkE6vi2PIHBtYbAAAAANAYlZSUSJLNXuNz5swZmvoAYEc09QHUmS1+HLA2jq1+YGC9AQAAAACNna1e4wMAsC+a+gBcgiOtN8CMfwAAAAAAANgLTX0AkO3WG6iY8Z+Xl0dTHwAAAAAAADZHUx8A/sDaGf8AAAAA0NjlHT9u1fFNmjThnfwAcBE09QEAAAAAAGC14uJiSVLqxo1WxXF3d9eY0aPVrHlzq+KUlpTI3cP61hc/MgBwNDT1a6m5m0FNVVbn41t4uKtts6byc6E4jpSLq8ZxpFwcLY4j5SJJfm4GtW3WVIe++1Ye587WOY4kFRcXycvL26oYtopjq1xatmypDh06WB0HAOqD6VRBQ6cAAIBTKSkpkST16NFDTZo0qVOM/Px8/fzzz3p97VpbpmYVW/3IwI8DAGyFpn4tjWjupdY6V+fj+7S9TINuHKxufl5q4iJxHCkXV43jSLk4WhxHykWSCnzd1P3GwTr51hv6ss5RXJe7u7tuu/U2NW3WtKFTAYBLKj1zpqFTAADAKTVp0kTNmzer07Fn/v///7XmhwFJOnHihA4fPmx1HFv+yGCLHwd4+gCARFO/1s6bpDMy1Pn4U6WlOnHmrE6XmSQXieNIubhqHEfKxdHiOFIuknSyuFgnzpxV165d5evrW+c4v/32m44ePeoQcWyVy9mzZ7V//36dNpnU1JemPgAnUHy+oTMAAKDRsuaHAen3HwdsFceRfhywBZ4+AJwbTf1aKjaZdN6Kht+5MpMKi8+ryCR5uUgcR8rFVeM4Ui6OFseRcvljHDcfX3k1q/uNo06fcZw4NsqlyCQVFp9X7m8nVebhWec4ErNTANQTD6+GzgAAADgIR/hxwFWfPpCozYDaoqkPAKgXtlo0y5Y8PDz0t7/9jZtHAAAAAPXCFq8mcoQfGCTb/jhAbQbUDk19AEC9sMWiWZLtZqecOXNGe/fu1ZkzZ7hxBAA4LC+DQZ4y1fl4HzeDmnl5ytsgl4njSLm4ahxHysXR4jhSLq4ax5FycbQ4ts7lsqZNrFrvrOzcWTXz8rTZq1rPFeTLz8enznEAp1dSXOOhNPUBAPXKUd6NWSHv+HGrjucxUQCAPXkapCZWNG6au7urVRNfNXUzuEwcR8rFVeM4Ui6OFseRcnHVOI6Ui6PFcaRc/hjH2LSJmjSpe1P/jJtBvzbxVWFurjyKi+ocR5K8vX2s+qECaFAlNV/TyyGb+klJSXruueeUnZ2tkJAQJSYmKiIiotrxn376qeLi4vTDDz+offv2evTRRzVlyhTz98nJyfrrX/9a6bizZ8/Kh18AAaBRstXrgGz1DknWCQAAVGXzqWIFXlb3mmVvzm/a/NF2jW0brIAml7lEHEfKxVXjOFIujhbHkXJx1TiOlIujxXGkXGwZ52B2lt76+DOZPtpe5xgVfHx8lJ6erg4dOlgdC6hv7gUFNR7rcE39lJQUxcbGKikpSeHh4Vq+fLmGDx+uPXv2KDAwsNL4Q4cOacSIEZo0aZLWrFmjzz77TDExMWrdurVuv/128zg/Pz/9+OOPFsfS0AeAxssWrwOy5TskbYUfGQDAtZwqM+m03Op8/MmSUuUUnlZBmUnNXCSOI+XiqnEcKRdHi+NIubhqHEfKxdHiOFIutozzv9NnlH2qUKNGjZLRaKxznLy8PKWmpir3zFl1bO5X5zhAQzHU4sEZh2vqL1q0SBMmTNDEiRMlSYmJidqyZYuWLVumBQsWVBr/0ksvKTAwUImJiZLKmzNfffWVFi5caNHUNxgMatu2bb1cAwDAedhioSpHWSfAEX9kYMErAAAAADVhNBrVvn17q+Ps3bvX6jyqmlgMOBKHauoXFxdr165dmjFjhsX+yMhI7dixo8pjdu7cqcjISIt9UVFReuWVV3T+/Hl5enpKkgoLCxUUFKTS0lL16dNH8+bNU9++favNpaioSEVFv7/Hq6AWjz8AABoXR1knwNF+ZGAxYgAAAAD1pbCwUAaDQWPHjrUqjre3tzZs2KB27dpZFYcfB2BPDtXUz8vLU2lpqQICAiz2BwQEKCcnp8pjcnJyqhxfUlKivLw8tWvXTt27d1dycrKuuuoqFRQU6IUXXlB4eLi++eYbde3atcq4CxYs0Ny5c21zYQAA1CNH+ZEBAAAAAOrLuXPnZDKZrHqNT2ZmprZs2aI///nPVufj6+urffv20diHXThUU7+CwWCw+GwymSrtu9T4P+4fOHCgBg4caP4+PDxc11xzjf75z39qyZIlVcaMj49XXFyc+XNBQYE6depUuwsBAADKO37cquN5vz8AAACAmrLmNT55eXlW/zBQESc1NVXp6enq0aNHneNIzPhH1RyqqW80GuXu7l5pVn5ubm6l2fgV2rZtW+V4Dw8PtWrVqspj3NzcdO2112r//v3V5uLt7S1vb+9aXgEAAKhQXFwsSUrduLGBMynH+/1hSP635OYm0333Vv5u9WtSWZlM46IbIDMAAAA4Emvf72+rVwFJvA4IVXOopr6Xl5dCQ0OVlpam2267zbw/LS1NI0eOrPKYsLAwbdq0yWLfhx9+qH79+pnfp38hk8mkjIwMXXXVVbXP0WCQp2qxFPEFfNwMaublKW+DXCaOI+XiqnEcKRdHi+NIubhqHEfKxdHiOFIujhjHo6xUzbw81bVrV/n6+tYpxm+//aajR49aFUOSzp49q/379+tcQb78fHzqHAdOrswk91f/rZLzpfr0qhhl/+qjdi3P6frvkuS+5nWVRt8j0x/WVFJJccPlCgAAAKdli1cBSbwOCNVzqKa+JMXFxSk6Olr9+vVTWFiYVqxYoczMTE2ZMkVS+Wtxjh07ptWrV0uSpkyZohdffFFxcXGaNGmSdu7cqVdeeUVr1641x5w7d64GDhyorl27qqCgQEuWLFFGRoaWLl1a6/w8DVITKxoczd3d1aqJr5q6GVwmjiPl4qpxHCkXR4vjSLm4ahxHysXR4jhSLo4cx9i0iZo0qVtD3qO4WGesjCFJZ9wM+rWJrzyKi6Szp+scB87NNOrP+v6Qr3qteUVb1V1PapYe1zwN1ev6fvAEdR811PK/j5LzDZcsAAAAnJ61M/5t/TqgvLw8mvouwuGa+mPGjNGJEyeUkJCg7Oxs9erVS5s3b1ZQUJAkKTs7W5mZmebxnTt31ubNmzV9+nQtXbpU7du315IlS3T77bebx5w8eVIPPPCAcnJy5O/vr759+2rbtm3q379/rfPbfKpYgZfVfYbf3pzftPmj7RrbNlgBTS5ziTiOlIurxnGkXBwtjiPl4qpxHCkXR4vjSLm4ahxb5fK/gnyt+Wi7Wtx6l7q2se4mtmXLlurQoYNVMdAwUt/x0J2f3aWZCtQ8zdbjelLeKtZszdWTn83S+ilnNeovJebx7gUFDZgtAAAAUM7aHwcq7N271+o8+FHAMThcU1+SYmJiFBMTU+V3ycnJlfZdf/31+vrrr6uNt3jxYi1evNgmuZ0qM+m03Op8/MmSUuUUnlZBmUnNXCSOI+XiqnEcKRdHi+NIubhqHEfKxdHiOFIurhrHVrlkFZzS/06f0R3j/lrnGBVs9U7LoqIiq9fv4aa65kpLpdgZkskkPanZelzz5a1iFclL8zRbBknT45vo1rskd/fyYwx1f1AFAAAAcBi2esc/r/BxHA7Z1AcAALAlR3ynpcFgkMlkXdeYm+qaS0+Xfvml/J8f1zxzQ99bxXpc8/SkaZaOHi0fN2RIg6YKAAAA2JQt6iFe4eNYaOoDAIBGw1Heabl//3598skn3FTXo+zs8v99XPM0T7M1Swnmd+rP02xJ0pOaZR4HAAAAuBpbvcYHDY+mPgAAQC3Z4scBW8SRrH8vZkUerv7DQLt2lRv6ksz/W9HYb9duVoPlCAAAAAA1QVMfAADACdnqvZiS7dYJcOQfByIipK+bl2r2qd8b+hWe1CwZJLX0K1VERMPkBwAAAMDFzJkjubur9B+zlJ5e/vRwu3bltYn7U/PKF/6aM6dOoWnqAwAAOCFHXCfAkX8ccHeXgpPn6I47JIPKF8ytYDCUN/bfXPX7IrkAAAAAYBV3d2n2bC1eKD1S8PvEouf85unhgtlSQkKdQ9PUBwAAcGKOsk6ALX8csNcCwKNGSW++KT300O+L5kpSx45SYmL59wAAAABgC6khs5QhKaFgtvIl85peDxfM1mwlqE/ILNW1BKGpDwAAAIf5ccDeCwCPGiWNHKnKj78yQx8AAAC4JNb0qpnS0v8/mUizZFL5Gl6P60l5q1izlKD5hlnqGFtem9SlFqGpDwAAAJuxxeK/9ubuLg0Z0tBZAAAAAM7Dlmt62evJXEeSnv7708HlM/TLG/pF8ipf48skHT1aPq4utQlNfQAAAAAAAABAtWy1ppe9n8x1FNnZv//z45pnbuh7q1iPa155Y/+CcbVBUx8AAAAAAAAAcEnO8GSuI2jXrvx/H9c8zdNszVKC+Z368zRbUvkM/opxtUVTHwAAAAAAAAAAG4mIkJ7zK18Ut6KhL8n8v/M0W/5+UkTErDrFp6kPAAAAAAAAAKg3tlhwt6ioSN7e3lbHscfCve7u0s03lWr2uvJFcWX6/bv5hlkymKS7byqt0yK5Ek19AAAAAAAAAEA9sOWCuwaDQSaT6dIDL8FeC/f2SJmjPmOkDg/9vmiuJHXsKPVJnKUeo+oem6Y+AAAAAAAAAMDubLXg7v79+/XJJ584/MK9o0ZJI0dK6enli+K2a1f+ap66ztCvQFMfAAAAAAAAAFBvrF1wNy8vzyZx6oO7uzRkiG1jutk2HAAAAAAAAAAAsBea+gAAAAAAAAAAOAma+gAAAAAAAAAAOAma+gAAAAAAAAAAOAma+gAAAAAAAAAAOAma+gAAAAAAAAAAOAmHbOonJSWpc+fO8vHxUWhoqNLT0y86/tNPP1VoaKh8fHx0+eWX66WXXqo0ZsOGDerZs6e8vb3Vs2dPbdy40V7pAwAAAHAx9qhRAAAAgLpwuKZ+SkqKYmNjNXPmTO3evVsREREaPny4MjMzqxx/6NAhjRgxQhEREdq9e7f+8Y9/6MEHH9SGDRvMY3bu3KkxY8YoOjpa33zzjaKjozV69Gh98cUX9XVZAAAAAJyUPWoUAAAAoK4crqm/aNEiTZgwQRMnTlSPHj2UmJioTp06admyZVWOf+mllxQYGKjExET16NFDEydO1Pjx47Vw4ULzmMTERA0bNkzx8fHq3r274uPjNXToUCUmJtbTVQEAAABwVvaoUQAAAIC68mjoBP6ouLhYu3bt0owZMyz2R0ZGaseOHVUes3PnTkVGRlrsi4qK0iuvvKLz58/L09NTO3fu1PTp0yuNuVhTv6ioSEVFRebP+fn5kqScnJzaXFIlx48flyRlZ2eruLjYJeI4Ui6uGseRcnG0OI6Ui6vGcaRcHC2OI+XiqnEcKRdHi+NIudgyzokTJyRJhYWFKigoqHMcW6g4v8lkatA80LDsVaNciPrDOXNx1TiOlIujxXGkXFw1jiPl4mhxHCkXV43jSLk4WhxHysWWcZy2/jA5kGPHjpkkmT777DOL/fPnzzd169atymO6du1qmj9/vsW+zz77zCTJlJWVZTKZTCZPT0/Ta6+9ZjHmtddeM3l5eVWbyxNPPGGSxMbGxsbGxsbG1si3o0eP1uXWFi7CXjXKhag/2NjY2NjY2NjYpJrVHw41U7+CwWCw+GwymSrtu9T4C/fXNmZ8fLzi4uLMn8vKyvTrr7+qVatWFz0OAAAArsFkMunUqVNq3759Q6cCB2CPGuWPqD8AAAAat9rUHw7V1DcajXJ3d6/0iGlubq4CAgKqPKZt27ZVjvfw8FCrVq0uOqa6mJLk7e0tb29vi30tWrSo6aUAAADABfj7+zd0Cmhg9qpRLkT9AQAAgJrWHw61UK6Xl5dCQ0OVlpZmsT8tLU2DBg2q8piwsLBK4z/88EP169fP/K7K6sZUFxMAAAAAJPvVKAAAAEBdOVRTX5Li4uL08ssva+XKldq7d6+mT5+uzMxMTZkyRVL5Y6n33XefefyUKVN05MgRxcXFae/evVq5cqVeeeUVPfzww+YxDz30kD788EM988wz2rdvn5555hl99NFHio2Nre/LAwAAAOBk7FGjAAAAAHXlUK/fkaQxY8boxIkTSkhIUHZ2tnr16qXNmzcrKChIUvmKxpmZmebxnTt31ubNmzV9+nQtXbpU7du315IlS3T77bebxwwaNEhvvPGGHn/8cc2aNUtXXHGFUlJSNGDAgHq/PgAAAADOxR41CgAAAFBXBlPFik0AAAAAAAAAAMChOdzrdwAAAAAAAAAAQNVo6gMAAAAAAAAA4CRo6gMAAAAAAAAA4CRo6gMAAAAAAAAA4CRo6gMAAAAAAAAA4CRo6gMAAAAAAAAA4CRo6gMAAAAAAAAA4CRo6gMAAAAAAAAA4CRo6gMAAAAAAAAA4CRo6gMAAAAAAAAA4CRo6gMAAAAAAAAA4CRo6gMAAAAAAAAA4CRo6gMAAAAAAAAA4CRo6gMAAAAAAAAA4CRo6gMAAAAAAAAA4CRo6gMAAAAAAAAA4CRo6gMAAAAAAAAA4CRo6gMAAAAAAAAA4CRo6gMAAAAAAAAA4CRo6gMAAAAAAAAA4CRo6gMAAAAAAAAA4CRo6gMAAAAAAAAA4CRo6gMAAAAAAAAA4CRo6gMAAAAAAAAA4CRo6gMAAAAAAAAA4CRo6gMAAAAAAAAA4CRo6gMAAAAAAAAA4CRo6gMAAAAAAAAA4CRo6gMAAAAAAAAA4CRo6gMAAAAAAAAA4CRo6gMAAAAAAAAA4CRo6gMAAAAAAAAA4CRo6gMAAAAAAAAA4CRo6gMAAAAAAAAA4CRo6gMAAAAAAAAA4CRo6gMAAAAAAAAA4CRo6gMAAAAAAAAA4CRo6gMAAAAAAAAA4CRo6gMAAAAAAAAA4CRo6gMAAAAAAAAA4CRo6gMAAAAAAAAA4CRo6gMAAAAAAAAA4CRo6gMAAAAAAAAA4CRo6gMAAAAAAAAA4CRo6gMAAAAAAAAA4CRo6gMAAAAAAAAA4CRo6gMAAAAAAAAA4CRo6gMAAAAAAAAA4CRo6gNodIKDg2UwGGQwGPTWW29VO+7GG2+UwWBQcnKyxf7k5GTz8V5eXjpx4kS1MUpKStSmTRvz+Dlz5lQ5bsuWLRo1apQ6dOggLy8vtWjRQldeeaVuueUWPf/88zpw4IDF+MOHD5tjXmo7fPhwDf8yl7Znzx5NnjxZ3bp1k6+vr5o2barOnTtryJAhmjVrlnbs2FHpmIq/94V/x+qMGzeu0jV4enqqXbt2+stf/qL333/fZtezdetW8zkuNGTIkIv+O6swbdo0c4y0tDSb5QYAAADHRU1Rd65WU1So7d//j4qLi7Vs2TLdeOONatu2rby8vBQQEKA//elPWrp0qYqKimp0rbGxsdWOe/LJJ2UwGDRu3DgrrhKAo/Bo6AQAoCHNmTNHI0eOrLKpWxPnz59XSkqKYmJiqvx+y5YtOn78+EVj/O1vf9PSpUslSU2bNlXXrl3VpEkTHTlyRO+++67effddZWdna+HChVUe369fP3l7e1cb38fHp4ZXc3Gvvfaaxo8fr+LiYnl6eiowMFAtW7ZUbm6uPv30U3366ad6//339dVXX9nkfG3atFHXrl0lSefOndNPP/2kTZs2adOmTYqPj9dTTz1lk/NY4/z583rjjTfMn//9739r2LBhDZgRAAAA6hs1Rc25ak1hzd//hx9+0MiRI81N/+DgYPXp00dZWVn65JNP9Mknn2jRokV65513FBISctE8li9frkcffVTt27e3yXUBcFzM1AfQaLm7u+ubb77Rhg0b6nR8165dZTAY9O9//7vaMRXfXXnllVV+v3btWi1dulRubm564YUXdOLECf3www/68ssvlZubqx9++EEzZ85UmzZtqj3H+vXrtX379mq3tm3b1un6/ujw4cOaMGGCiouLNX78eP3yyy/6+eef9d///leHDx9Wdna2XnzxRfXs2dPqc1UYPny4+Rq++uor5eXl6eGHH5YkLViwQDt37rTZuerqgw8+UF5enlq0aCFJSk1N1enTpxs2KQAAANQbaoqac9Wawpq//4EDBxQREaEDBw7ohhtu0Pfff69Dhw7pv//9r3755Rd98cUXuuaaa3Tw4EHzuOq4u7vr3LlzDjH5CYD90dQH0GjdfffdkqS5c+fKZDLV+vjAwEBdd911+vzzz/Xzzz9X+v7UqVN655131LlzZ4WHh1cZ49VXX5UkjR8/Xg8++GCl2TE9e/bUk08+qUcffbTW+dnSG2+8oaKiIl155ZX617/+VemGtG3btpo6dapWr15ttxy8vLz07LPPqk+fPuacGlpFgTV16lSFhITo9OnT2rhxYwNnBQAAgPpCTVFzrlpTWPP3Hzt2rH777TcNHTpUH3zwQaWZ+P3799fWrVvVu3dv/fbbb4qOjq42jzFjxsjNzU0vv/yyfvnlF6uvC4Bjo6kPoNEaP368goOD9f3332vdunV1ijF27FhJ0po1ayp99+abb+rs2bO69957q30U9+DBg5Jkvql0VBV5XnXVVXJza7j/12EwGDR48GBJ0v79+xssD0nKz8/Xpk2bJEn33HOP7rnnHkm66CwrAAAAuBZqippz1Zqirn//jz76SJ9//rk8PT31yiuvyMvLq8pxzZs310svvSRJ2rlzpz7++OMqx/Xo0UN33XWXioqKNH/+/FrlAsD50NQH0Gh5enpq5syZkspn1pSVldU6xp133ikfHx+99tprlb6ruCmvuEmvip+fnyTpv//9b63PXZ8q8szIyND58+cbNJe6zICyh3Xr1uncuXO6+uqr1bNnT91zzz0yGAz6+OOPlZ2d3dDpAQAAoB5QU9Scq9YUdf37V/wINGLECAUFBV10bFhYmK6++mqL46oye/Zsubu7a+XKlTpy5Eit8gHgXGjqA2jUxo0bp8svv1x79+6t06OX/v7+uuWWW/Tzzz9bvI/xl19+0datW9W/f/9q330pSTfddJOk8tnd//d//6cvv/xSpaWltb8QO6vI8+eff9bw4cP1/vvv68yZM/Weh8lk0meffSZJ6tKlS72f/48qZuTfe++9ksoXtBo0aJBKS0v1+uuvN2RqAAAAqEfUFDXjqjVFXf/+O3bskCRdf/31NTrPddddJ0kXXQfgyiuv1D333KPi4mJm6wMujqY+gEbNw8NDs2bNkiQlJCTU6ea3YtbMH1+78tprr6msrOyiM2ok6bHHHlNoaKhMJpNeeukl9e/fX35+fho8eLBmzJihr7766pLn79y5swwGQ5WbrR7BvfHGG/XAAw9Ikj7++GONGDFC/v7+uvrqqzVlyhS9++67di8ciouL9eijjyojI0OSNHr0aLue72IOHz6s7du3y2Aw6K677jLv5xU8AAAAjQ81Rc24ak1R17//sWPHJElXXHFFjc5TMe5S78uvmK2fnJysQ4cO1eJKADgTmvoAGr3o6Gh17dpVP/74Y5WPvF7K8OHDZTQatW7dOvNjpGvWrJGHh4dFw7cqzZs31/bt2/X888+rR48ekqQzZ87os88+0zPPPKNrr71Wt956q06ePFltjH79+ik8PLzKrW/fvrW+nuosX75cGzZs0PXXXy93d3eVlJTo22+/1fLly3XLLbfo6quv1nfffWez873//vsaPHiwBg8erH79+sloNGrhwoWSpOnTp5vfg9kQ1qxZI5PJpIiICHXq1Mm8f/To0fL09NQ333xj078FAAAAHBs1Rc24Yk1R17//qVOnJElNmzat0XkqxlUcV50uXbooOjpa58+f17x582p5NQCcBU19AI2eu7u7eWbNvHnzVFJSUqvjPT09NXr0aJ04cUKbN29WRkaGvv/+e0VFRal169aXPN7Hx0dxcXHas2ePjh07ptTUVE2fPl2dO3eWJL399tsaNWpUtcevX79e27dvr3JbtWpVra7lUkaNGqWtW7fq119/VVpamubNm6f+/ftLkn744QfdeOONOn78uE3OlZubq88++0yfffaZMjIy5OPjo+HDh2vjxo1atGiRTc5RVxXvNq2YmV/BaDQqMjJSErP1AQAAGhNqippzxZqiLn//5s2bS5JOnz5do3NUjKs47mJmz54tDw8P/fvf/9aBAwdqcykAnARNfQBQeXP2yiuv1M8//1ynZmx0dLSk8mZvRcO3Yl9ttG/fXrfddpsWLVqkn376SX//+98lSZ988on5vY+OwM/PTzfeeKMef/xxffHFF1q/fr3c3NyUm5urFStW2OQc999/v0wmk0wmk0pKSpSbm6vNmzfr1ltvtUn8uvrvf/+rH3/8UZ6enrrzzjsrfV/xjv3XX3+9TgulAQAAwDlRU9SOq9YUNf37d+jQQZJq3HSvGFdx3MV07txZ48aNU0lJiRISEmp7CQCcAE19AFD5zJrZs2dLqtvMmoEDB6pr167atGmT1qxZIz8/P/3lL3+xKicPDw89++yzatu2raTyZrKjuuOOO3T77bdLcuw8bWH16tWSpPPnz6tVq1aV3jlaMXv/2LFj+s9//tOQqQIAAKAeUVNYxxVriov9/QcNGiRJ+vTTT2sUa9u2bZKksLCwGo1//PHH5enpqddee00//fRTbdIG4ARo6gPA/3fXXXepZ8+eOnTokJKTk2t9/L333quioiL973//0+233y5fX1+rc3Jzc1NQUJCk8kWdHNnll18uyfHztMb58+eVkpIiSWrVqpUCAgKq3Jo1ayaJV/AAAAA0NtQU1nHFmqK6v3/FU7+bN2/WkSNHLhrj888/1zfffCNJGjNmTI3OGxQUpPHjx6u0tJTZ+oALoqkPAP+fm5ubnnjiCUnSk08+aV6gqqaio6M1dOhQDR06VJMmTarRMbm5uRf9/uTJk9qzZ48kqWvXrrXKx5Yulack7dixQ1LD5mlv77//vvLy8tS0aVMdPnxYOTk5VW4bNmyQJKWmpurMmTMNnDUAAADqCzVF9Vy1pqjr33/YsGEaMGCAzp8/rwkTJlT738qpU6c0efJkSdKAAQM0dOjQGuc2c+ZMeXl5ae3atdq7d2+NjwPg+GjqA8Af3Hnnnbrqqqt05MiRWr9v8vLLL9dHH32kjz76qMaPRI4YMUL33nuv/vOf/1S6icvIyNDIkSN16tQptWvXTlFRUbXKpzrjxo2TwWDQuHHjanzMU089pYiICK1du1anTp2y+C47O1tTpkxRenq6DAaD7r//fpvkWVvBwcEyGAx1mhFVUxUz72+77TbzbPyqDB06VO3atVNhYaE2btxot3wAAADgeKgpquaqNYU1f/9///vfatGihT7++GNFRUXphx9+sPj+yy+/1JAhQ/Ttt9+qRYsWtX4SuFOnTpo4caLKysrMTxwDcA0eDZ0AADgSg8GgJ554QnfccYdKS0vtfr7S0lK9/vrrev311+Xj46MuXbrIx8dHWVlZysrKkiS1aNFC69atU9OmTauMceedd8rb27vacyxYsEARERFW5WkwGLR9+3Zt375dbm5uuuKKK3TZZZfp+PHjOnr0qEpKSuTu7q5FixYpNDS0yhjTpk3Tww8/XO05tm7dql69elmVpz2dPHlSmzZtknTpBcvc3d111113afHixfr3v/9tXjwXAAAAro+aomquWlNY8/fv2rWrtm3bppEjR+qTTz5Rr169FBwcrNatWys7O1u//PKLpPIfG95+++06PcHwj3/8QytXrtS5c+esv1gADoOmPgBcYNSoUerTp48yMjLsfq4PP/xQW7Zs0fvvv6/vv/9eWVlZOnnypJo1a6YBAwYoKipKU6dOVZs2baqN8dVXX130HCdOnLD4nJOTI0nq06dPjfN86qmnNGzYML3//vv64osvdOzYMR0+fFje3t7q1q2brrvuOv3f//2fevfuXW2MwsJCFRYWVvt9bRcS+6PS0lLl5eVJkq6++upaHSdJnp6e1X7n5eUlSVq/fr2KiorUtm3bGj3yOnbsWC1evFgfffSRcnJyzItjAQAAwPVRU1TmqjWFtX//q666Snv37tXLL7+s1NRUfffddzp27JhatGihIUOGaNSoUZo0aZJ8fHzqdF0dOnTQAw88oCVLltTpeACOyWAymUwNnQQAoH6UlZWpZcuWMplM+uWXX9S8efOGTskmvv76a4WGhuqGG27Qf/7znxofl5qaqttvv12tW7eu9C7M3r1767vvvtPSpUsVExNj65QBAAAAp0RNAQANj3fqA0Aj8sMPPyg/P18PPPCAy9x8SzK/q/Tvf/97rY779ttvJUk9evSw2H/u3Dnt37+/yu8AAACAxoyaAgAaHk19AGhEduzYIQ8PDz344IMNnYpN7dixQ927d9eIESNqfMzevXu1YsUKSdItt9xi3m8ymfSPf/xD586dU8uWLRUeHm7zfAEAAABnRU0BAA2P1+8AABqVJUuWaPny5frpp59UUlKibt266euvv5bJZNKwYcO0f/9+8ztDV6xYoUmTJjVwxgAAAAAAAL9jpj4AoFE5ePCgfvrpJ7Vv314xMTFKT09X06ZNVVJSos8//1zFxcUaPHiw3nzzTRr6AAAAAADA4TBTHwAAAAAAAAAAJ8FMfQAAAAAAAAAAnIRHQydQV0lJSXruueeUnZ2tkJAQJSYmKiIiosqxW7du1Q033FBp/969e9W9e/cana+srExZWVlq3ry5DAaDVbkDAADA8ZlMJp06dUrt27eXmxtzYVC/qD8AAAAal9rUH07Z1E9JSVFsbKySkpIUHh6u5cuXa/jw4dqzZ48CAwOrPe7HH3+Un5+f+XPr1q1rfM6srCx16tTJqrwBAADgfI4ePaqOHTs2dBpoZKg/AAAAGqea1B9O+U79AQMG6JprrtGyZcvM+3r06KFbb71VCxYsqDS+Yqb+b7/9phYtWtTpnPn5+WrRooWOHj1q8cMAAAAAXFNBQYE6deqkkydPyt/fv6HTQSND/QEAANC41Kb+cLqZ+sXFxdq1a5dmzJhhsT8yMlI7duy46LF9+/bVuXPn1LNnTz3++ONVvpKnQlFRkYqKisyfT506JUny8/PjphoAAKAR4dUnaAgV/91RfwAAADQuNak/nO7loHl5eSotLVVAQIDF/oCAAOXk5FR5TLt27bRixQpt2LBBqampuvLKKzV06FBt27at2vMsWLBA/v7+5o1HXwEAAAAAAAAADc3pZupXuPAXC5PJVO2vGFdeeaWuvPJK8+ewsDAdPXpUCxcu1HXXXVflMfHx8YqLizN/rnj8AQAAAAAAAACAhuJ0TX2j0Sh3d/dKs/Jzc3Mrzd6/mIEDB2rNmjXVfu/t7S1vb+865wkAAFxbaWmpzp8/39BpwEpeXl5yc3O6h1cBAADQyFB/uAZb1R9O19T38vJSaGio0tLSdNttt5n3p6WlaeTIkTWOs3v3brVr184eKQIAABdmMpmUk5OjkydPNnQqsAE3Nzd17txZXl5eDZ0KAAAAUAn1h2uxVf3hdE19SYqLi1N0dLT69eunsLAwrVixQpmZmZoyZYqk8lfnHDt2TKtXr5YkJSYmKjg4WCEhISouLtaaNWu0YcMGbdiwoSEvAwAAOKGKG+o2bdqoSZMmLKLqxMrKypSVlaXs7GwFBgby7xIAAAAOh/rDddiy/nDKpv6YMWN04sQJJSQkKDs7W7169dLmzZsVFBQkScrOzlZmZqZ5fHFxsR5++GEdO3ZMvr6+CgkJ0XvvvacRI0Y01CUAAAAnVFpaar6hbtWqVUOnAxto3bq1srKyVFJSIk9Pz4ZOBwAAADCj/nA9tqo/DCaTyWTDvFxWQUGB/P39lZ+fLz8/v4ZOBwAANIBz587p0KFDCg4Olq+vb0OnAxs4e/asDh8+rM6dO8vHx8fiO+7/0JD47w8AAFB/uB5b1R9OOVO/IWVkZKhZs2ZWxTAajQoMDLRRRgAAoL7xyKvr4N8lHB31BwAA4J7Vddjq3yVN/Vq6/vrrrY7h6+urffv2cWMNAAAAOICkpCQ999xzys7OVkhIiBITExUREVHl2O3bt+uxxx7Tvn37dObMGQUFBWny5MmaPn26eUxycrL++te/Vjr27NmzlWZkXQr1BwAAAC5EU7+WbrnlFrVr167Ox+fl5Sk1NVV5eXncVAMAAAANLCUlRbGxsUpKSlJ4eLiWL1+u4cOHa8+ePVXerzdt2lR/+9vf1Lt3bzVt2lTbt2/X5MmT1bRpUz3wwAPmcX5+fvrxxx8tjq1tQ1+i/gAAAEBlNPVrqVWrVmrfvn1DpwEAAJxYaamUni5lZ0vt2kkREZK7e0NnBTROixYt0oQJEzRx4kRJUmJiorZs2aJly5ZpwYIFlcb37dtXffv2NX8ODg5Wamqq0tPTLZr6BoNBbdu2tTo/6g8AAGAt6g/X49bQCQAAADQmqalScLB0ww3SPfeU/29wcPl+ezAYDBfdxo0bZx731ltvVTp+3LhxuvXWW6v9nJubq8mTJyswMFDe3t5q27atoqKitHPnzmpzmjNnjvn8bm5uat++ve69914dPXrUYlxwcLASExMrHZ+YmKjg4OBK8aZMmWIxLiMjQwaDQYcPH642FzRuxcXF2rVrlyIjIy32R0ZGaseOHTWKsXv3bu3YsaPSa3IKCwsVFBSkjh076s9//rN279590ThFRUUqKCiw2AAAAKxF/eGa9QdNfQAAgHqSmirdcYf0yy+W+48dK99vjxvr7Oxs85aYmCg/Pz+LfS+88IJV8W+//XZ98803evXVV/XTTz/pnXfe0ZAhQ/Trr79e9LiQkBBlZ2frl19+UUpKir777juNHj26znn4+PjolVde0U8//VTnGGh88vLyVFpaqoCAAIv9AQEBysnJueixHTt2lLe3t/r166epU6eaZ/pLUvfu3ZWcnKx33nlHa9eulY+Pj8LDw7V///5q4y1YsED+/v7mrVOnTtZdHAAAaPSoP37navUHr98BAACoB6Wl0kMPSSZT5e9MJslgkGJjpZEjbfso7B9f/+Hv72+zV4JI0smTJ7V9+3Zt3brVPEs5KChI/fv3v+SxHh4e5jzat2+vSZMm6cEHH1RBQYH8/PxqncuVV16pNm3a6PHHH9e6detqfTwaN4PBYPHZZDJV2neh9PR0FRYW6vPPP9eMGTPUpUsX3X333ZKkgQMHauDAgeax4eHhuuaaa/TPf/5TS5YsqTJefHy84uLizJ8LCgpo7AMAgDqj/rDkavUHM/UBAADqQXp65Rkyf2QySUePlo9zFs2aNVOzZs301ltvqaioqM5xcnJylJqaKnd3d7lbUVE8/fTT2rBhg7788ss6x0DjYjQa5e7uXmlWfm5ubqXZ+xfq3LmzrrrqKk2aNEnTp0/XnDlzqh3r5uama6+99qIz9b29veXn52exAQAA1BX1R/Vcof6gqQ8AAFAPsrNtO84e7r77bvONcsX22muvVTvew8NDycnJevXVV9WiRQuFh4frH//4h7799ttLnuu7775Ts2bN1KRJE7Vr105bt27V1KlT1bRp0zrnf80112j06NGaMWNGnWOgcfHy8lJoaKjS0tIs9qelpWnQoEE1jmMymS5aWJpMJmVkZKhdu3Z1zhUAAKA2qD8suVr9QVMfAACgHtS0l9eQPb/FixcrIyPDYvvLX/5y0WNuv/12ZWVl6Z133lFUVJS2bt2qa665RsnJyRc97sorr1RGRoa+/PJLzZ8/X3369NH8+fOtvoYnn3xS6enp+vDDD62OhcYhLi5OL7/8slauXKm9e/dq+vTpyszMNC98Fh8fr/vuu888funSpdq0aZP279+v/fv3a9WqVVq4cKHGjh1rHjN37lxt2bJFBw8eVEZGhiZMmKCMjIxKi6kBAADYC/WHJVerP3inPgAAQD2IiJA6dixflKqq91oaDOXfR0TUf24V2rZtqy5duljsa968uU6ePHnR43x8fDRs2DANGzZMs2fP1sSJE/XEE09o3Lhx1R7j5eVlPldISIj279+v//u//9O///1v8xg/Pz/l5+dXOvbkyZPy9/evMu4VV1yhSZMmacaMGXrllVcumjcgSWPGjNGJEyeUkJCg7Oxs9erVS5s3b1ZQUJCk8sXeMjMzzePLysoUHx+vQ4cOycPDQ1dccYWefvppTZ482Tzm5MmTeuCBB5STkyN/f3/17dtX27Ztq9H7XgEAAGyB+sOSq9UfzNQHAACoB+7u0gsvlP/zhetvVnxOTLTtIlUNpWfPnjp9+nStjpk1a5bWrl2rr7/+2ryve/fuVb6f8ssvv9SVV15ZbazZs2frp59+0htvvFGrHNB4xcTE6PDhwyoqKtKuXbt03XXXmb9LTk7W1q1bzZ+nTZum77//XqdPn1Z+fr6+/vpr/d///Z/c3H4vrRYvXqwjR46oqKhIubm52rJli8LCwurzkgAAQCNH/XFxzl5/0NQHAACoJ6NGSW++KXXoYLm/Y8fy/aNGNUxedXXixAn96U9/0po1a/Ttt9/q0KFDWr9+vZ599lmNHDmyVrEuv/xyjRw5UrNnzzbvi4uL0/vvv6+EhATt2bNHe/bs0bx58/TBBx/o73//e7WxAgICFBcXpyVLltT52gAAAABnR/1RPWevP3j9DgAAQD0aNUoaOVJKTy9flKpdu/JHXp1xhkyzZs00YMAALV68WAcOHND58+fVqVMnTZo0Sf/4xz9qHe/vf/+7wsPD9cUXX2jAgAEaOHCgtmzZooSEBCUmJkoqf1R2y5YtGjBgwEVjPfLII1q2bJnOnTtXl0sDAAAAXAL1R/Wcuf4wmExVvVUJFyooKJC/v7/GjRun4ODgOsfJysrSihUrtGvXLl1zzTW2SxAAANjduXPndOjQIXXu3Fk+Pj4NnQ5s4GL/Tivu//Lz8+Xn59dAGaKxov4AAADUH67HVvUHr98BAAAAAAAAAMBJ0NQHAAAAAAAAAMBJ0NQHAAAAAAAAAMBJ0NQHAAAAAAAAAMBJ0NQHAAAAAAAAAMBJ0NQHAAAAAAAAAMBJ0NQHAAAAAAAAAMBJ0NQHAAAAAAAAAMBJ0NQHAAAAAAAAAMBJ0NQHAABoBMaNGyeDwWDeWrVqpZtuuknffvttpbEPPPCA3N3d9cYbb1T67vTp03rsscd0+eWXy8fHR61bt9aQIUP07rvvmscMGTLE4lwV25QpU8xjDAaD3nrrrSpz3bp1qwwGg06ePGnxuVevXiotLbUY26JFCyUnJ5s/BwcHV3nup59+uhZ/LQAAAADWoP6wb/1BUx8AAKC+zJkjzZtX9Xfz5pV/b0c33XSTsrOzlZ2drY8//lgeHh7685//bDHmzJkzSklJ0SOPPKJXXnmlUowpU6borbfe0osvvqh9+/bpgw8+0O23364TJ05YjJs0aZL5XBXbs88+a1X+Bw4c0OrVqy85LiEhodK5p02bZtW5AQAAAKdD/WFV/o5cf3jYNToAAAB+5+4uzZ5d/s+zZv2+f9688v0JCXY9vbe3t9q2bStJatu2rR577DFdd911On78uFq3bi1JWr9+vXr27Kn4+Hi1a9dOhw8fVnBwsDnGpk2b9MILL2jEiBGSymemhIaGVjpXkyZNzOeylWnTpumJJ57Q3XffLR8fn2rHNW/e3ObnBgAAAJwO9YdVHLn+YKY+AABAfZk1q/zGefbs32fM/PGG+o832nZWWFio1157TV26dFGrVq3M+1955RWNHTtW/v7+GjFihFatWmVxXNu2bbV582adOnWq3nKtEBsbq5KSEr344ov1fm4AAADA6VB/WMWR6w+a+gAAAPXpjzfW3t71ekP97rvvqlmzZmrWrJmaN2+ud955RykpKXJzK78l3L9/vz7//HONGTNGkjR27FitWrVKZWVl5hgrVqzQjh071KpVK1177bWaPn26Pvvss0rnSkpKMp+rYnv11Vetyr9JkyZ64okntGDBAuXn51c77rHHHqt07q1bt1p1bgAAAMApUX/UmSPXHzT1AQAA6tusWZKXl1RcXP6/9TRD5oYbblBGRoYyMjL0xRdfKDIyUsOHD9eRI0cklc+SiYqKktFolCSNGDFCp0+f1kcffWSOcd111+ngwYP6+OOPdfvtt+uHH35QRESE5l3wrs57773XfK6K7bbbbrP6GiZMmCCj0ahnnnmm2jGPPPJIpXMPGDDA6nMDAAAATon6o84ctf6gqQ8AAFDf5s37/Ya6uLj6xatsrGnTpurSpYu6dOmi/v3765VXXtHp06f1r3/9S6WlpVq9erXee+89eXh4yMPDQ02aNNGvv/5aacEqT09PRUREaMaMGfrwww+VkJCgefPmqbi42DzG39/ffK6Kzc/Pz+pr8PDw0JNPPqkXXnhBWVlZVY4xGo2Vzu3r62v1uQEAAACnRP1RZ45af9DUBwAAqE9/fIdlUVHld1zWI4PBIDc3N509e9b8nsrdu3dbzDBZv3693nrrLZ04caLaOD179lRJSYnOnTtXL3nfeeedCgkJ0dy5c+vlfAAAAIDTov6wmiPWHx4NnQAAAECjUdWiVBX/O3u25Wc7KCoqUk5OjiTpt99+04svvqjCwkLdcsstSkxM1M0336yrr77a4piQkBDFxsZqzZo1euihhzRkyBDdfffd6tevn1q1aqU9e/boH//4h2644QaLmTBnzpwxn6uCt7e3LrvsMvPnQ4cOKSMjw2JMly5danQtTz/9tKKioqr87tSpU5XO3aRJE5vM1AEAAACcBvWHy9YfzNQHAACoL6WlVS9KVbF4VWmpXU//wQcfqF27dmrXrp0GDBigL7/8UuvXr1ePHj303nvv6fbbb690jMFg0KhRo8yPwEZFRenVV19VZGSkevTooWnTpikqKkrr1q2zOO5f//qX+VwV2913320xJi4uTn379rXYvvrqqxpdy5/+9Cf96U9/UklJSaXvZs+eXencjz76aE3/TGiEkpKS1LlzZ/n4+Cg0NFTp6enVjt2+fbvCw8PVqlUr+fr6qnv37lq8eHGlcRs2bFDPnj3l7e2tnj17auPGjfa8BAAAgMqoPyzGuFL9YTCZTCa7nsFFFBQUyN/fX+PGjVNwcHCd42RlZWnFihXatWuXrrnmGtslCAAA7O7cuXM6dOiQufkH53exf6cV93/5+fnM8ndhKSkpio6OVlJSksLDw7V8+XK9/PLL2rNnjwIDAyuN3717t/bt26fevXuradOm2r59uyZPnqzFixfrgQcekCTt3LnTvIDbbbfdpo0bN2r27Nnavn17jRdNo/4AAADUH67HVvUHM/UBAAAANFqLFi3ShAkTNHHiRPXo0UOJiYnq1KmTli1bVuX4vn376u6771ZISIiCg4M1duxYRUVFWczuT0xM1LBhwxQfH6/u3bsrPj5eQ4cOVWJiYj1dFQAAAFyZ0zb1a/OI7B999tln8vDwUJ8+feybIAAAAACHVlxcrF27dikyMtJif2RkpHbs2FGjGLt379aOHTt0/fXXm/ft3LmzUsyoqKiLxiwqKlJBQYHFBgAAAFTFKZv6KSkpio2N1cyZM7V7925FRERo+PDhyszMvOhx+fn5uu+++zR06NB6yhQAAACAo8rLy1NpaakCAgIs9gcEBFRa7OxCHTt2lLe3t/r166epU6dq4sSJ5u9ycnJqHXPBggXy9/c3b506darDFQEAAKAxcMqmfm0fka0wefJk3XPPPQoLC6unTAEAAAA4OoPBYPHZZDJV2neh9PR0ffXVV3rppZeUmJiotWvXWhUzPj5e+fn55u3o0aO1vAoAAAA0Fh4NnUBtVTwiO2PGDIv9l3pEdtWqVTpw4IDWrFmjJ5988pLnKSoqUlFRkfkzj78CAAAArsVoNMrd3b3SDPrc3NxKM+0v1LlzZ0nSVVddpf/973+aM2eO7r77bklS27Ztax3T29tb3t7edbkMAAAANDJON1O/Lo/I7t+/XzNmzNBrr70mD4+a/Y7B468AAACAa/Py8lJoaKjS0tIs9qelpWnQoEE1jmMymSwmBIWFhVWK+eGHH9YqJgAAAFAdp5upX6Gmj7OWlpbqnnvu0dy5c9WtW7cax4+Pj1dcXJz5c0FBAY19AAAAwMXExcUpOjpa/fr1U1hYmFasWKHMzExNmTJFUnldcOzYMa1evVqStHTpUgUGBqp79+6SpO3bt2vhwoWaNm2aOeZDDz2k6667Ts8884xGjhypt99+Wx999JG2b99e/xcIAAAAl+N0Tf3aPiJ76tQpffXVV9q9e7f+9re/SZLKyspkMpnk4eGhDz/8UH/6058qHcfjrwAAAIDrGzNmjE6cOKGEhARlZ2erV69e2rx5s4KCgiRJ2dnZyszMNI8vKytTfHy8Dh06JA8PD11xxRV6+umnNXnyZPOYQYMG6Y033tDjjz+uWbNm6YorrlBKSooGDBhQ79cHAAAA1+N0Tf0/PiJ72223mfenpaVp5MiRlcb7+fnpu+++s9iXlJSk//znP3rzzTfN78IEAAAA0DjFxMQoJiamyu+Sk5MtPk+bNs1iVn517rjjDt1xxx22SA8AAACw4HRNfal2j8i6ubmpV69eFse3adNGPj4+lfYDAADUhencWen8+fo7oaenDD6+9Xc+AAAAAA6D+gNO2dSv7SOyAAAA9mI6d1Zl29JkOnO63s5paNJUbtcNq9WN9bhx43Ty5Em99dZblb4LDg7WkSNHKu1fsGCBZsyYocOHD6tz585q3bq1Dhw4oObNm5vH9OnTR7feeqvmzJkjSTp48KBmzpypTz/9VL/++quMRqNCQ0P13HPPqVu3bjp8+LDmzZun//znP8rJyVH79u01duxYzZw5U15eXrX+WwAAAACNCfUH9YfkpE19qXaPyF5ozpw55n/xAAAAVjl/vvyG2sNT8qyHm8LzxeXnO39esuFsmYSEBE2aNMli3x9vnqXytYoWLlyouXPnVhmjuLhYw4YNU/fu3ZWamqp27drpl19+0ebNm5Wfny9J2rdvn8rKyrR8+XJ16dJF33//vSZNmqTTp09r4cKFNrseAAAAwCVRf5g15vrDaZv6AAAADsXTSwZvb7ufxiRJJbZ/1LZ58+Zq27btRcdMmzZNixYt0tSpU9WmTZtK3+/Zs0cHDx7Uf/7zH/MTlEFBQQoPDzePuemmm3TTTTeZP19++eX68ccftWzZMqe+qQYAAADqFfVHo64/3Bo6AQAAADiHu+++W126dFFCQkKV37du3Vpubm568803VVpaWuO4+fn5atmypa3SBAAAAOACqD+qR1MfAAAAeuyxx9SsWTOLbevWrRZjDAaDnn76aa1YsUIHDhyoFKNDhw5asmSJZs+ercsuu0x/+tOfNG/ePB08eLDa8x44cED//Oc/NWXKFFtfEgAAAAAHRf1hHZr6AAAA0COPPKKMjAyLbcCAAZXGRUVFafDgwZo1a1aVcaZOnaqcnBytWbNGYWFhWr9+vUJCQpSWllZpbFZWlm666Sbdeeedmjhxos2vCQAAAIBjov6wDk19AAAAyGg0qkuXLhabr2/VC2E9/fTTSklJ0e7du6v8vnnz5vrLX/6i+fPn65tvvlFERISefPJJizFZWVm64YYbFBYWphUrVtj8egAAAAA4LuoP69DUBwAAQK30799fo0aN0owZMy451mAwqHv37jp9+rR537FjxzRkyBBdc801WrVqldzcuCUFAAAAUDXqj8o8GjoBAAAA1I/8/HxlZGRY7KtYIOrUqVPKycmx+K5Jkyby8/OrMtb8+fMVEhIiD4/fbyczMjL0xBNPKDo6Wj179pSXl5c+/fRTrVy5Uo899pik8hkyQ4YMUWBgoBYuXKjjx4+bj2/btq0tLhMAAACAA6D+sB+a+gAAALZwvlimejpPXW3dulV9+/a12Hf//fdLkmbPnq3Zs2dbfDd58mS99NJLVcbq1q2bxo8fb/HoaseOHRUcHKy5c+fq8OHDMhgM5s/Tp0+XJH344Yf6+eef9fPPP6tjx44WMU2mevkLAgAAAM6P+qNR1x8GkzNnX48KCgrk7++vcePGKTg4uM5xsrKytGLFCu3atUvXXHON7RIEAAB2d+7cOR06dEidO3eWj4+PJMl07qzKtqXJdOb0JY62HUOTpnK7bpgMPlW/cxI1V9W/0woV93/5+fnVzhgC7IX6AwAAUH+4HlvVH8zUBwAAsILBx1du1w2Tzp+vv5N6enJDDQAAADRC1B+QaOoDAABYzeDjK3GTCwAAAKAeUH/A+Zf6BQAAAAAAAACgkaCpDwAAAAAAAACAk6CpDwAAAAAAAACAk6CpDwAAAAAAAACAk6CpDwAAAAAAAACAk6CpDwAAAAAAAACAk6CpDwAAAAAAAACAk/Bo6AQAAACcXWZmpvLy8urtfEajUYGBgfV2PsDVJSUl6bnnnlN2drZCQkKUmJioiIiIKsempqZq2bJlysjIUFFRkUJCQjRnzhxFRUWZxyQnJ+uvf/1rpWPPnj0rHx8fu10HAABoHKg/QFMfAADACpmZmerevbvOnj1bb+f09fXVvn37an1jnZOTo/nz5+u9997TsWPH1KZNG/Xp00exsbEaOnSogoODdeTIEa1du1Z33XWXxbEhISHas2ePVq1apXHjxkmSgoODFRsbq9jYWPPnI0eOmHO8/PLLNW3aNE2ePNkcp6ioSAkJCVqzZo1ycnLUsWNHzZw5U+PHj6/7HwSwQkpKimJjY5WUlKTw8HAtX75cw4cP1549e6r8v7Ft27Zp2LBheuqpp9SiRQutWrVKt9xyi7744gv17dvXPM7Pz08//vijxbE09AEAgLWoP6g/JJr6AAAAVsnLy9PZs2c1atQoGY3Gejlfamqq8vLyanVTffjwYYWHh6tFixZ69tln1bt3b50/f15btmzR1KlTtW/fPklSp06dtGrVKoub6s8//1w5OTlq2rTpJc+TkJCgSZMmqbCwUMnJyZoyZYpatGihMWPGSJJGjx6t//3vf3rllVfUpUsX5ebmqqSkpJZ/BcB2Fi1apAkTJmjixImSpMTERG3ZskXLli3TggULKo1PTEy0+PzUU0/p7bff1qZNmyya+gaDQW3btrVr7gAAoPGh/rDUWOsPmvoAAAA2YDQa1b59+4ZOo1oxMTEyGAz673//a3FzHBISYjFL5d5779XixYt19OhRderUSZK0cuVK3XvvvVq9evUlz9O8eXNzI/PJJ5/UunXr9NZbb2nMmDH64IMP9Omnn+rgwYNq2bKlpPLZNUBDKS4u1q5duzRjxgyL/ZGRkdqxY0eNYpSVlenUqVPm/6YrFBYWKigoSKWlperTp4/mzZtn0fS/UFFRkYqKisyfCwoKanElAACgsaH+KNdY6w8WygUAAHBxv/76qz744ANNnTq1ytkuLVq0MP9zQECAoqKi9Oqrr0qSzpw5o5SUlDo/nurj46Pz589Lkt555x3169dPzz77rDp06KBu3brp4YcfrtdHh4E/ysvLU2lpqQICAiz2BwQEKCcnp0Yxnn/+eZ0+fVqjR4827+vevbuSk5P1zjvvaO3atfLx8VF4eLj2799fbZwFCxbI39/fvFUUtQAAAM6G+sP+aOoDAAC4uJ9//lkmk0ndu3ev0fjx48crOTlZJpNJb775pq644gr16dOnVucsKSlRcnKyvvvuOw0dOlSSdPDgQW3fvl3ff/+9Nm7cqMTERL355puaOnVqbS8JsCmDwWDx2WQyVdpXlbVr12rOnDlKSUlRmzZtzPsHDhyosWPH6uqrr1ZERITWrVunbt266Z///Ge1seLj45Wfn2/ejh49WvcLAgAAaEDUH/ZHUx8AAMDFmUwmSZUbl9W5+eabVVhYqG3btmnlypW1miXz2GOPqVmzZvL19dXUqVP1yCOPmBeqKisrk8Fg0Guvvab+/ftrxIgRWrRokZKTk11itgycj9FolLu7e6VZ+bm5uZVm718oJSVFEyZM0Lp163TjjTdedKybm5uuvfbai87U9/b2lp+fn8UGAADgjKg/7I+mPgAAgIvr2rWrDAaD9u7dW6PxHh4eio6O1hNPPKEvvvhC9957b43P9cgjjygjI0NHjhxRYWGhnn32Wbm5ld9ytmvXTh06dJC/v795fI8ePWQymfTLL7/U7qIAG/Dy8lJoaKjS0tIs9qelpWnQoEHVHrd27VqNGzdOr7/+um6++eZLnsdkMikjI0Pt2rWzOmcAAABHR/1hfzT1AQAAXFzLli0VFRWlpUuX6vTp05W+P3nyZKV948eP16effqqRI0fqsssuq/G5jEajunTpovbt21eamRMeHq6srCwVFhaa9/30009yc3NTx44da35BgA3FxcXp5Zdf1sqVK7V3715Nnz5dmZmZmjJliqTy1+Lcd9995vFr167Vfffdp+eff14DBw5UTk6OcnJylJ+fbx4zd+5cbdmyRQcPHlRGRoYmTJigjIwMc0wAAABXRv1hfzT1AQAAGoGkpCSVlpaqf//+2rBhg/bv36+9e/dqyZIlCgsLqzS+R48eysvL06pVq2yWwz333KNWrVrpr3/9q/bs2aNt27bpkUce0fjx4+Xr62uz8wC1MWbMGCUmJiohIUF9+vTRtm3btHnzZgUFBUmSsrOzlZmZaR6/fPlylZSUaOrUqWrXrp15e+ihh8xjTp48qQceeEA9evRQZGSkjh07pm3btql///71fn0AAAANgfrDvjwaOgEAAABXkJeX59Dn6dy5s77++mvNnz9ff//735Wdna3WrVsrNDRUy5Ytq/KYVq1aWZNqJc2aNVNaWpqmTZumfv36qVWrVho9erSefPJJm54HqK2YmBjFxMRU+V1ycrLF561bt14y3uLFi7V48WIbZAYAAFA16o9Lc+X6g6Y+AACAFYxGo3x9fZWamlpv5/T19ZXRaKz1ce3atdOLL76oF198scrvDx8+fNHjL3xM9sLxlzpekrp3717p/eUAAAAAaob6o+bHS65bf9DUBwAAsEJgYKD27dtXbzNlpPIb+cDAwHo7HwAAAADHQP0BiaY+AACA1QIDA7nJBQAAAFAvqD/AQrkAAAAAAAAAADgJmvoAAAAAAAAAADgJmvoAAAAAAAAAADgJmvoAAAC1VFZW1tApwEZMJlNDpwAAAABcFPWH67BV/cFCuQAAADXk5eUlNzc3ZWVlqXXr1vLy8pLBYGjotFBHJpNJx48fl8FgkKenZ0OnAwAAAFig/nAttqw/nLapn5SUpOeee07Z2dkKCQlRYmKiIiIiqhy7fft2PfbYY9q3b5/OnDmjoKAgTZ48WdOnT6/nrAEAgDNzc3NT586dlZ2draysrIZOBzZgMBjUsWNHubu7N3QqAAAAgAXqD9djq/rDKZv6KSkpio2NVVJSksLDw7V8+XINHz5ce/bsUWBgYKXxTZs21d/+9jf17t1bTZs21fbt2zV58mQ1bdpUDzzwQANcAQAAcFZeXl4KDAxUSUmJSktLGzodWMnT05OGPgAAABwW9YdrsVX9YZem/pIlSzRw4ED179/fvC83N1c5OTnq3bt3pfFvv/223n77ba1cubJG8RctWqQJEyZo4sSJkqTExERt2bJFy5Yt04IFCyqN79u3r/r27Wv+HBwcrNTUVKWnp9PUBwAAtVbxuCSvbAHsz961BQAAgKOj/sCF7LJQbmxsrD744AOLfcuWLbNorP9RRkaGXn311RrFLi4u1q5duxQZGWmxPzIyUjt27KhRjN27d2vHjh26/vrrqx1TVFSkgoICiw0AAABA/bJnbQEAAAA4I7s09e0pLy9PpaWlCggIsNgfEBCgnJycix7bsWNHeXt7q1+/fpo6dap5pn9VFixYIH9/f/PWqVMnm+QPAAAAAAAAAEBdOV1Tv8KFKz2bTKZLrv6cnp6ur776Si+99JISExO1du3aasfGx8crPz/fvB09etQmeQMAAAAAAAAAUFdOt1Cu0WiUu7t7pVn5ubm5lWbvX6hz586SpKuuukr/+9//NGfOHN19991VjvX29pa3t7dtkgYAAAAAAAAAwAacbqa+l5eXQkNDlZaWZrE/LS1NgwYNqnEck8mkoqIiW6cHAAAAAAAAAIDdON1MfUmKi4tTdHS0+vXrp7CwMK1YsUKZmZmaMmWKpPJX5xw7dkyrV6+WJC1dulSBgYHq3r27JGn79u1auHChpk2b1mDXAAAAAAAAAABAbdmtqf/9999r3bp1Fp8laf369TKZTJXG1saYMWN04sQJJSQkKDs7W7169dLmzZsVFBQkScrOzlZmZqZ5fFlZmeLj43Xo0CF5eHjoiiuu0NNPP63JkyfX9fIAAAAA1BN71hYAAACAszGYLrwLtgE3N7cqF7KVKi9wW/GdwWBQaWmprVOxmYKCAvn7+2vcuHEKDg6uc5ysrCytWLFCu3bt0jXXXGO7BAEAAGBTFfd/+fn58vPza+h0Gi1XrC1qgvoDAACgcalN/WGXmfpPPPGEPcICAAAAaGSoLQAAAABLNPUBAAAAOCxqCwAAAMCSW0MnAAAAAAANKSkpSZ07d5aPj49CQ0OVnp5e7djU1FQNGzZMrVu3lp+fn8LCwrRly5ZK4zZs2KCePXvK29tbPXv21MaNG+15CQAAAGhEGqSpn5GRocWLF2vx4sX68ssvGyIFAAAAAC7A2toiJSVFsbGxmjlzpnbv3q2IiAgNHz5cmZmZVY7ftm2bhg0bps2bN2vXrl264YYbdMstt2j37t3mMTt37tSYMWMUHR2tb775RtHR0Ro9erS++OKLOl8nAAAAUMEuTf1t27bpvvvu0+eff17pu8cff1yhoaF6+OGH9fDDD2vgwIGaNm2aPdIAAAAA4OTsXVssWrRIEyZM0MSJE9WjRw8lJiaqU6dOWrZsWZXjExMT9eijj+raa69V165d9dRTT6lr167atGmTxZhhw4YpPj5e3bt3V3x8vIYOHarExMRa5QYAAABUxS5N/ZSUFK1fv149e/a02P/JJ5/oqaeekru7u6KjozVlyhQZjUYlJSXprbfeskcqAAAAAJyYPWuL4uJi7dq1S5GRkRb7IyMjtWPHjhrFKCsr06lTp9SyZUvzvp07d1aKGRUVddGYRUVFKigosNgAAACAqtilqb9z504NGDBAfn5+FvuXL18ug8Ggl156ScnJyVq6dKnS09Pl6emp5ORke6QCAAAAwInZs7bIy8tTaWmpAgICLPYHBAQoJyenRjGef/55nT59WqNHjzbvy8nJqXXMBQsWyN/f37x16tSpRucHAABA42OXpn5WVpa6detWaf8nn3wiPz8/jRs3zryvW7duGjFihL766it7pAIAAADAidVHbWEwGCw+m0ymSvuqsnbtWs2ZM0cpKSlq06aNVTHj4+OVn59v3o4ePVqLKwAAAEBjYpem/m+//Saj0Wix75dfftHx48c1ePBgublZnrZLly7Ky8uzRyoAAAAAnJg9awuj0Sh3d/dKM+hzc3MrzbS/UEpKiiZMmKB169bpxhtvtPiubdu2tY7p7e0tPz8/iw0AAACoil2a+s2bN1dWVpbFvl27dkmSQkNDK403GAzy8fGxRyoAAAAAnJg9awsvLy+FhoYqLS3NYn9aWpoGDRpU7XFr167VuHHj9Prrr+vmm2+u9H1YWFilmB9++OFFYwIAAAA15WGPoL1799a7776r06dPq2nTppKkjRs3ymAw6Lrrrqs0/sCBA2rfvr09UgEAAADgxOxdW8TFxSk6Olr9+vVTWFiYVqxYoczMTE2ZMkVS+Wtxjh07ptWrV0sqb+jfd999euGFFzRw4EDzjHxfX1/5+/tLkh566CFdd911euaZZzRy5Ei9/fbb+uijj7R9+3ar/hYAAACAZKeZ+uPHj9evv/6q66+/XkuWLNGDDz6oNWvWqFOnThoyZIjF2NLSUm3btk1XXXWVPVIBAAAA4MTsXVuMGTNGiYmJSkhIUJ8+fbRt2zZt3rxZQUFBkqTs7GxlZmaaxy9fvlwlJSWaOnWq2rVrZ94eeugh85hBgwbpjTfe0KpVq9S7d28lJycrJSVFAwYMsO6PAQAAAMhOM/XHjh2rjz/+WK+++qp2794tk8mk5s2b61//+leld16+9957ysvLU1RUlD1SAQAAAODE6qO2iImJUUxMTJXfJScnW3zeunVrjWLecccduuOOO2qVBwAAAFATdmnqS9KqVas0YcIE7dy5Uy1btlRUVJQ6duxYaZy3t7cWL16skSNH2isVAAAAAE6M2gIAAAD4nd2a+pI0ePBgDR48+KJjoqKimKUPAAAA4KKoLQAAAIBydnmnPgAAAAAAAAAAsD27zNRft25dnY4bPXq0jTMBAAAA4MyoLQAAAABLdmnq33XXXTIYDDUebzKZZDAYuPEGAAAAYIHaAgAAALBkt3fqe3h4aMSIEerTp4+9TgEAAACgEaC2AAAAAH5nl6b+rbfeqvfee0/vvPOOjhw5ovHjx+vee+/VZZddZo/TAQAAAHBR1BYAAACAJbsslJuamqpjx47pueeeU0lJiR588EG1b99ed999t9LS0uxxSgAAAAAuiNoCAAAAsGSXpr4kGY1GxcXF6dtvv9Xnn3+u++67Tx988IFuuukmBQYGavbs2Tp48KC9Tg8AAADARVBbAAAAAL+zW1P/j/r376/ly5crOztbycnJ6tKli+bPn69u3brpo48+qo8UAAAAALgAagsAAAA0dnZbKLcqPj4+ioyMVHZ2tn766SdlZWXpzJkz9ZkCAAAAABdAbQEAAIDGql6a+qWlpXr33Xe1cuVKvf/++yotLVWfPn0UHx+voUOH1kcKAAAAAFwAtQUAAAAaO7s29ffs2aOVK1dqzZo1ys3NVatWrRQTE6Px48erd+/e9jw1AAAAABdCbQEAAACUs0tTf8WKFVq5cqW+/PJLGQwGRUZGavz48Ro5cqQ8PT3tcUoAAAAALojaAgAAALBkl6b+lClT5OnpqVtuuUX333+/OnToIEnavXv3RY/r37+/PdIBAAAA4KSoLWxj7969VscwGo0KDAy0QTYAAACwht1ev3P+/7V3/8FRleffxz+bwG4SICgsTYiQQBk68mtGDCohprZTiYO1pQQH/gk6CjqZ2Ach9mmJGCpJNWWwsGAJPwYww1PFfFtiHWrmC/E7qPxqZ5oSZ1oSJ7XgtnTzhU3VJUA2YTnPHzGpaRZMds8mZ3ffr5kzsGfvc+21/8C5r73OfXd16fDhwzp8+PCArwkEApFKBwAAAECUYm4Ruvb2dtlsNhUWFoYdKzk5Wc3NzRT2AQAAhllEivqPP/54JMICAAAAiDPMLcLT0dEhwzBUUFAgp9MZchyv16va2lp5vV6K+gAAAMMsIkX91157LRJhAQAAAMQZ5hbmcDqdysjIGO40AAAAYIKE4U4AAAAAAAAAAAAMTEQ69YuLi0O6rqqqyuRMrIuNqgAAAICvxtwCAAAA6CsiRf1du3YNeKzNZuv9ezzceLNRFQAAADBwzC0AAACAviJS1D927NiAxrndbpWXl+vjjz/ucwMey9ioCgAAABi4oZhbVFVVafPmzfJ4PJo1a5ZcLpfy8vKCjvV4PHruuefU0NCglpYWrV69Wi6Xq8+Y6upqPfHEE/2uvXbtmpKSkgaVGwAAAPCfIlLUf+CBB275/qeffqqXX35ZO3bsUEdHh3JycrRp06ZIpGJZbFQFAAAAfLVIzy1qamq0Zs0aVVVVKTc3V7t379aiRYt09uzZoM0zfr9fEyZM0Pr167V169abxk1NTdVHH33U5xwFfQAAAJhhSDfK7ejo0M9//nNNmzZNv/jFLzRlyhTV1tbq5MmTuv/++wcVq6qqSlOnTlVSUpKys7N1/Pjxm46tra3VwoULNWHCBKWmpionJ0dHjhwJ9+sAAAAAGCZmzS22bNmilStXatWqVZoxY4ZcLpcmT56snTt3Bh0/ZcoUbdu2TY899pjGjh1707g2m03p6el9DgAAAMAMQ1LUNwxDe/fu1fTp0/X8888rJSVFe/bs0Z///Gf94Ac/GHS8nm6a9evX68yZM8rLy9OiRYvkdruDjv/ggw+0cOFC1dXVqaGhQd/+9rf1ve99T2fOnAnzmwEAAAAYSmbOLTo7O9XQ0KD8/Pw+5/Pz83Xq1Kmw8mxvb1dWVpYmTZqkRx555CvnHn6/Xz6fr88BAAAABBOR5Xe+7Le//a2ef/55ffTRR0pNTdXLL7+sNWvWhPXo6Ze7aSTJ5XLpyJEj2rlzpyorK/uN/881Ll9++WW9/fbbOnz4sObOnRtyHlbQ1NQUdgyn08m6/AAAALA8s+cWXq9XgUBAaWlpfc6npaWptbU15DzvvPNOVVdXa86cOfL5fNq2bZtyc3P14Ycfavr06UGvqays1MaNG0P+TAAAAMSPiBX1T5w4oZ/85Cf6/e9/L7vdrrVr12r9+vW6/fbbw4rb002zbt26PucH001z48YNXb58WePGjbvpGL/fL7/f3/vaap0y7e3tstlsKiwsDDtWcnKympubKewDAADAkiI1t+jxnxvrGoYx6M12v2z+/PmaP39+7+vc3FzdfffdevXVV7V9+/ag15SWlqqkpKT3tc/n0+TJk0POAQAAALErIkX973//+3rnnXeUkJCgxx9/XOXl5Zo0aZIpsc3opvnFL36hK1euaNmyZTcdY/VOmY6ODhmGoYKCAjmdzpDjeL1e1dbWyuv1UtQHAACA5URybuF0OpWYmNhvHnHx4sV+841wJCQk6J577lFLS8tNxzgcDjkcDtM+EwAAALErIkX93/3ud7LZbMrMzFRra6uefvrpr7zGZrPpnXfeGfBnhNpNc/DgQb344ot6++239bWvfe2m46KlU8bpdCojI2O40wAAAAAiIpJzC7vdruzsbNXX12vJkiW95+vr67V48eKw8v4ywzDU2NioOXPmmBYTAAAA8Stiy+8YhqFz587p3LlzAxo/0Mdbw+mmqamp0cqVK/XrX/9aDz744C3H0ikDAAAAWEOk5haSVFJSohUrVmjevHnKycnRnj175Ha7VVRUJKm72efChQs6cOBA7zWNjY2SupfEvHTpkhobG2W32zVz5kxJ0saNGzV//nxNnz5dPp9P27dvV2Njo3bs2DHgvAAAAICbiUhRf6A326EItZvm4MGDevLJJ3Xw4EF997vfjVh+AAAAAMwTybmFJC1fvlxtbW0qLy+Xx+PR7NmzVVdXp6ysLEmSx+OR2+3uc83cuXN7/97Q0KA33nhDWVlZOn/+vCTps88+09NPP63W1laNHTtWc+fO1QcffKB77703ot8FAAAA8SEiRf2eG+BIGWw3zcGDB/XYY49p27Ztmj9/fm+Xf3JyssaOHRvRXAEAAACELtJzC0kqLi5WcXFx0Peqq6v7nTMM45bxtm7dqq1bt5qRGgAAANBPxJbfiaTBdtPs3r1b169f1zPPPKNnnnmm9/zjjz8e9CYdAAAAANBfU1NT2DGcTqcyMzNNyAYAACA+RWVRXxpcN817770X+YQAAAAAIEa1t7fLZrOpsLAw7FjJyclqbm6msA8AABCiqC3qAwAAAACGRkdHhwzDUEFBgZxOZ8hxvF6vamtr5fV6KeoDAACEiKI+AAAAAGBAnE6nMjIyhjsNAACAuJYw3AkAAAAAAAAAAICBoagPAAAAAAAAAECUoKgPAAAAAAAAAECUYE19SJKamprCut7pdLLRFQAAAAAAAABEGEX9ONfe3i6bzabCwsKw4iQnJ6u5uZnCPgAAAAAAAABEEEX9ONfR0SHDMFRQUCCn0xlSDK/Xq9raWnm9Xor6AAAAAAAAABBBFPUhqXv5nIyMjOFOAwAAAAAAAABwC2yUCwAAAAAAAABAlKCoDwAAAAAAAABAlKCoDwAAAAAAAABAlKCoDwAAAAAAAABAlGCjXJimqakp7BhOp1OZmZkmZAMAAAAAAAAAsYeiPsLW3t4um82mwsLCsGMlJyerubmZwj4AAAAQw8JtCKIZCAAAxDOK+ghbR0eHDMNQQUGBnE5nyHG8Xq9qa2vl9Xq5QQcAAABikFkNQTQDAQCAeEZRH6ZxOp3KyMgY7jQAAAAAWJQZDUE0AwEAgHhHUR8AAAAAMKRoCAIAAAgdRX1YDhvuAgAAAPgqzBsAAEC8oqgPy2DDXQAAAAyHqqoqbd68WR6PR7NmzZLL5VJeXl7QsR6PR88995waGhrU0tKi1atXy+Vy9Rt36NAhlZWV6eOPP9a0adP00ksvacmSJRH+JvHBzHmDw+HQoUOHNHHixLDi8OMAAAAYShT1YRlsuAsAAIChVlNTozVr1qiqqkq5ubnavXu3Fi1apLNnzwa9l/T7/ZowYYLWr1+vrVu3Bo15+vRpLV++XBUVFVqyZIneeustLVu2TCdOnNB9990X6a8U88yaN7jdbh05ckSPPPJI2DnRVAQAAIYSRX1YDutrAgAAYKhs2bJFK1eu1KpVqyRJLpdLR44c0c6dO1VZWdlv/JQpU7Rt2zZJ0v79+4PGdLlcWrhwoUpLSyVJpaWlev/99+VyuXTw4MEIfZP4E+68wev10lQEAACiEkV9AAAAAHGps7NTDQ0NWrduXZ/z+fn5OnXqVMhxT58+rbVr1/Y599BDDwVdpqeH3++X3+/vfe3z+UL+fAwOTUUAACDaUNRHzGLjLAAAANyK1+tVIBBQWlpan/NpaWlqbW0NOW5ra+ugY1ZWVmrjxo0hfyYAAADiB0V9xBw23AUAAMBg2Gy2Pq8Nw+h3LtIxS0tLVVJS0vva5/Np8uTJGpNg0yjdCDmP20YkKn30KKXGUBwr5SJJqQk2pY8epREd12Rc5gkLAAAQmsHcR1DUR8wxe8Pd48ePa8aMGWHl5Pf75XA4hj2GxNMHAAAAPZxOpxITE/t10F+8eLFfp/1gpKenDzqmw+EIeq/38Bi7Jqgj5FzuSr9dCx68X99ItSslRuJYKRdJuppq150P3q/0pjMKXHSHHAcAAMS3wNWrAx5LUR8xK9y1Mc3s+LfZbDIMY9hjSDx9AAAA0MNutys7O1v19fVasmRJ7/n6+notXrw45Lg5OTmqr6/vs67+0aNHtWDBgkHH6jKkqwr9qYHLgYDarl7TlRuGFCNxrJSLJF25Yajt6jVdtzuk5FEhxwEAAHGus2vAQynqAzdhVsd/S0uLjh07FlYcM2JI/376wOv1UtQHAACQVFJSohUrVmjevHnKycnRnj175Ha7VVRUJKl7WZwLFy7owIEDvdc0NjZK6m4CuXTpkhobG2W32zVz5kxJ0rPPPqtvfvOb2rRpkxYvXqy3335b7777rk6cODHo/DoNQ11hFJw7bhhq7+yS35DsMRLHSrlIkt+Q2ju7dPHTz3RjxMiQ40hS4Pp1JY4If5puRpyUlBSNHTs27FwAAMAAjbAPfGgE0wBiQrgd/16vN+w4ZsQAAABAf8uXL1dbW5vKy8vl8Xg0e/Zs1dXVKSsrS5Lk8XjkdvddUmXu3Lm9f29oaNAbb7yhrKwsnT9/XpK0YMECvfnmm3rhhRdUVlamadOmqaamRvfdd9+QfS8Mnc7OTklS7VtvDXMm5hoxYoR++MMfUtgHAMCCKOoDcaipqSnsGKzNDwAAYkVxcbGKi4uDvlddXd3v3ECWRHz00Uf16KOPhpsaosD169clSTNmzFBKSkrIcdra2nT+/HlLxLl69aqampp09epVivoAAFgQRX0gjpi5TwBr8wMAAAD/lpKSojFjRod8/dUvNsezShwAAGBdFPWBOGLWPgGszQ8AAAAAAAAMD4r6gzQmwaZRuhHy9beNSFT66FFKjaE4VsolVuOYncvXvzZBaelpIcdJTbApffQojei4JuOyL+Q4AABYGf/HAYh33kuXwo7BhrsAAJiPov4gPTzGrgnqCPn6u9Jv14IH79c3Uu1KiZE4VsolVuNYKRdJuppq150P3q+k0+/pUtOZkONIksORpFGjR4UVAwCASAh8sYQFAMQbMzf/ZcNdAADMR1F/kLoM6apsIV9/ORBQ29VrunLDkGIkjpVyidU4VspFkj7t6FTb1Wv67dGjIcfokZCQqMXf/55GjQ59vc/k5GSNGZMadi4AAPTR2TXcGQDAsDBr81823AUAIDIo6g9Sp2GoK4xiaMcNQ+2dXfIbkj1G4lgpl1iNY6VcJOlKV5faO7vCvsn//PPP9de//lX/779+HXIMie4fAECEjLAPdwYAMKzM2mzXjGV8AtevK3FE+CUMlgMCAMSCqC3qV1VVafPmzfJ4PJo1a5ZcLpfy8vKCjvV4PHruuefU0NCglpYWrV69Wi6Xa2gTBmJQuDf5V79Y1iCcHwfo/gEAAACsycxlfMxCQxAAIBZEZVG/pqZGa9asUVVVlXJzc7V7924tWrRIZ8+eVWZmZr/xfr9fEyZM0Pr167V169ZhyBjArZjVAQQAAADAOsxaxqetrU3nz59nOSAAAL4QlUX9LVu2aOXKlVq1apUkyeVy6ciRI9q5c6cqKyv7jZ8yZYq2bdsmSdq/f/+Q5gpgaPBILwAAAGBNZj3ha5XlgLjfBwAMt6gr6nd2dqqhoUHr1q3rcz4/P1+nTp0y7XP8fr/8fn/va5/PZ1psAOax4iO9iYmJWr5smUaPGRNWHCYLAAAAgHnMmjuwhA8AYLhFXVHf6/UqEAgoLS2tz/m0tDS1traa9jmVlZXauHGjafEARIbVHunt2fz3jYMHQ47Rg8kCAAAAYB4z5g4s4QMAsIKoK+r3sNlsfV4bhtHvXDhKS0tVUlLS+9rn82ny5MmmxQdgLqs80mvG5r89cZgsAAAAAOYzYxkfM5b/5MlcAECooq6o73Q6lZiY2K8r/+LFi/2698PhcDjkcDhMiwcgvlhlvc+eXJgsAAAQnew2m0bKCPn6pASbRttHymFTzMSxUi6xGsdKuVgtjq2rS6PtI3X0nd+FnEePxMQRevLJJzRmTGrYsQAAMeB654CHRl1R3263Kzs7W/X19VqyZEnv+fr6ei1evHgYMwMA85i5V4AZa/ybtYkwmxEDADA4I21SShhFzDGJiRqfkqxRCbaYiWOlXGI1jpVysVocvwyNT0lWVmaWHEmhNwL6O/z6xP2JLn3yibpuC+++1uFI0qjRo8KKAQCwgOtdAx4adUV9SSopKdGKFSs0b9485eTkaM+ePXK73SoqKpLUvXTOhQsXdODAgd5rGhsbJUnt7e26dOmSGhsbZbfbNXPmzOH4CgBwS2btFWDmGv9Wwn4DAIB4UXe5U5m3J4V8fVPrp6p794QK06coLeX2mIhjpVxiNY6VcrFanN4YhVOUNi70XP7m+Zt++z8nZbx7IuQYPex2u/bu3Rv26gXjxo3THXfcEXY+AIDQJPp8Ax4blUX95cuXq62tTeXl5fJ4PJo9e7bq6uqUlZUlSfJ4PHK73X2umTt3bu/fGxoa9MYbbygrK0vnz58fytQBYFCssMa/WZsImxWnZ78B9yefyDlhQshxJDr+AQDWd/mGoStKCPn6z64H1Np+Rb4bhkbHSBwr5RKrcayUi9XimJXL/165Ks/ldhUUFMjpdIYcx+1268iRI8ovWBpyjB4Oh0OHDh3SxIkTw4rjdDqVmZkZdj4AEG9sg3iILCqL+pJUXFys4uLioO9VV1f3O2cYoT+iBwDRLpwfB8zeRDjcOFZbmogfBgAAABAqp9OpjIyMkK/3er0yDMO0HwceeeSRkGP0SE5OVnNzM4V9AIigqC3qAwDik9WWJmIpIAAAAAw3q/w44PV6VVtbq+PHj2vGjBkhx/H7/XI4Qt+zoAdPDQCIVRT1AQBRyQpLE/UsBXT16lWK+gAAAIh64f440N7eLpvNpsLCwrDysNlspqy4wJJCAGIVRf1BsttsGqnQ/2NJSrBptH2kHDbFTBwr5RKrcayUi9XiWCmXWI1jpVwiEef2USkaNXpUSDEcNmm0faQ++99WJQxil/pgAtevK3FE+P8tJycna8yY1LDjAJB0vXO4MwAAIKp0dHSE3fHf0tKiY8eOsaQQANwCRf1BGmmTUsIoIo1JTNT4lGSNSrDFTBwr5RKrcayUi9XiWCmXWI1jpVysFud6IKDxKcn6w/vvhZyH2RISEvTtb31bKSnJYcVxOJJC/rEDiBlh/lgHAEC8Cqfj3+v1hh2jJ46VlhSS6PgHYB6K+oNUd7lTmbcnhXx9U+unqnv3hArTpygt5faYiGOlXGI1jpVysVocK+USq3GslIvV4jRdOKe6d0/o4Ycf1rhx40LO5dy5v+nkyVNhx7lw4YLe+5/3ZBz9IOQYPex2u/bu3au0tLSw4nR2+mW3h7ce6rhx43THHXeEFQMIRaLPN9wpYIhUVVVp8+bN8ng8mjVrllwul/Ly8m46/v3331dJSYn+8pe/KCMjQz/+8Y9VVFTU+351dbWeeOKJftddu3ZNSUmhzyUAAINnlSWFJHOWA2K/AQASRf1Bu3zD0BUlhHz9Z9cDam2/It8NQ6NjJI6VconVOFbKxWpxrJRLrMaxUi5Wi9MTY8Rtt2t0eug35sbFS6bE8V+8JM/ldtMeVc4vWBpyjB5mrIfKWqgYLrbwl/JFFKipqdGaNWtUVVWl3Nxc7d69W4sWLdLZs2eD/ptx7tw5Pfzww3rqqaf0q1/9SidPnlRxcbEmTJigpUv//e9mamqqPvrooz7XUtAHgOhjxpJCknnLAbHfAACJoj4AADHHKo8qm7EeqplroTJxARDMli1btHLlSq1atUqS5HK5dOTIEe3cuVOVlZX9xu/atUuZmZlyuVySujdc/+Mf/6hXXnmlT1HfZrMpPT19SL4DACDyrHCPzX4DAHpQ1AcAAEGZMXEJN45ZPzAwcQEQTGdnpxoaGrRu3bo+5/Pz83Xq1Kmg15w+fVr5+fl9zj300EPat2+furq6NHLkSEndyzVkZWUpEAjorrvuUkVFhebOnXvTXPx+v/x+f+9rH8s/AUBMisX9BrxeL/fGwBCjqA8AACzPahMXNkoDYoPX61UgEOi3f0haWppaW1uDXtPa2hp0/PXr1+X1ejVx4kTdeeedqq6u1pw5c+Tz+bRt2zbl5ubqww8/1PTp04PGrays1MaNG835YgAADEC499g9mpqaTMmFe2Ng4CjqAwCAuGGljdLo+Aesw2az9XltGEa/c181/svn58+fr/nz5/e+n5ubq7vvvluvvvqqtm/fHjRmaWmpSkpKel/7fD5Nnjx5cF8EAIAhZLVNhCV+HED8oKgPAAAwQGZtlMajyoA1OJ1OJSYm9uvKv3jxYr9u/B7p6elBx48YMULjx48Pek1CQoLuuecetbS03DQXh8Mhh8MxyG8AAMDwsdomwpI5Pw7wwwCiAUV9AACAQTLrUWUAw8tutys7O1v19fVasmRJ7/n6+notXrw46DU5OTk6fPhwn3NHjx7VvHnzetfT/0+GYaixsVFz5swxL3kAACzCKktlmvXjAE8NIBpQ1AcAAAAQt0pKSrRixQrNmzdPOTk52rNnj9xut4qKiiR1L4tz4cIFHThwQJJUVFSkX/7ylyopKdFTTz2l06dPa9++fTp48GBvzI0bN2r+/PmaPn26fD6ftm/frsbGRu3YsWNYviMAANHACj8OmPnUAMttIpIo6gMAAACIW8uXL1dbW5vKy8vl8Xg0e/Zs1dXVKSsrS5Lk8Xjkdrt7x0+dOlV1dXVau3atduzYoYyMDG3fvl1Lly7tHfPZZ5/p6aefVmtrq8aOHau5c+fqgw8+0L333jvk3w8AgHgTzo8DZj010LPc5vHjxzVjxoyQ40h0/CM4ivoAAADDpKmpKazr/X6/KWtwM1FAvCsuLlZxcXHQ96qrq/ude+CBB/SnP/3ppvG2bt2qrVu3mpUeAAAYYuE+NWDmJsJ0/CMYivoAAABDzKybfJvNJsMwws4nbiYKL74oJSZKZWX936uokAKB7jEAAABAGMzaRNjMjn8zGoJoBrIOivoAAABDzIyb/JaWFh07dsy0iYLX6439G/TERGnDhu6/f7mwX1HRfb68fHjyAgAAQEyyUse/GQ1BcdMMFAUo6gMAAAyTcNf7DDdG3Okp5G/YoHPnpN8vLNP8+gpNfe2Lgn6wDn4AAABgmJjV8W9GQxD7BFgLRX0AAADEjdpZZfpbqvSj1zYo47WfyaFOvZJarq/PKlPBcCcHAAAABBFuI48ZDUHsExC6QEA6flzyeKSJE6W8vO6HiMNBUR8AAABxobZWevRRyTDK9H/UXdD3y64fXy6THpV+8xupgMo+AAAA0I/Z+wTExfKf6p6DPPus9I9//PvcpEnStm3hzT0o6gMAACDmBQLdN9OGIb2git6CvkOdWm9U6CVbmdaskRYvDr9rBgAAAIhVLP85cE3LX1TjfyXqH+q7zOeFC1Lj0grNWBbQjJoXQ4qdYEJ+AAAAgKUdP97dHfOCKlShDSpTuZLkV5nKVaENWm9U6O9/7x4HAAAAAOEIBKR3/jtR5dqgF1TR5731RoXKtUHv/HeiAoHQ4tOpDwAAgJjn8fQt6P/si26Znj8rtOGLcWyWCwAAACA8x49L/9dXps/177nGz1TWd07iK9O849K3vjX4+BT1AQAAEPMmTpQ+UqBPQb9Hz+tEBTRx4nBkBwAAACCWeDzdf365ieiFL/b1+vKcpGfcYFHUBwAAgJqamsKO4XQ6LbvZVV6etGLSi7pwQZLR//2XbGWaNEkqyxvy1AAAAADEmC83C3V36P+sd1+vLzcZhdpURFEfAAAgjrW3t8tms6mwsDDsWMnJyWpubrZkYT8xUdq2TXr0Uclm694wt4fN1v2ny8UmuQAAAMBQMKOpyO/3y+FwhB0nEs1JeXnSpEndm+KuNyp6C/oOdeoFVfQ2FeWF2FREUR8AACCOdXR0yDAMFRQUyOl0hhzH6/WqtrZWXq/XkkV9SSookH7zG+nZZ7s3ze0xaVJ3Qb+gYNhSAwAAAOKCmU1FNptNhhHkMdxBikRzUk9TUePS7k1xe5bc6VlT32ZId7nKQm4qoqgPAAAAOZ1OZWRkhB3H6sv4FBRIixd3b1zl8XQ/7pqXR4c+AAAAMBTMaipqaWnRsWPHLN2cVPCXChVog15J7d4UV+peimdsqlTu2yD9RVJB2a2D3ARFfQAAAIQtmpbxSUyUvvWtiIQGAAAAMADhNhV5vV5T4kRUICCVl2vt82Wa16epqEx6+Yv3Q0RRHwAAAGGLp2V8AAAAAOArvfiiJClRQZqKykLr0O9BUR8AAACmsXSnDAAAAADEgIThTgAAAAAAAAAAAAwMRX0AAAAAAAAAAKIERX0AAAAAAAAAAKIERX0AAAAAAAAAAKIERX0AAAAAAAAAAKIERX0AAAAAAAAAAKJE1Bb1q6qqNHXqVCUlJSk7O1vHjx+/5fj3339f2dnZSkpK0te//nXt2rVriDIFAAAAYGWRmFscOnRIM2fOlMPh0MyZM/XWW29FKn0AAADEmags6tfU1GjNmjVav369zpw5o7y8PC1atEhutzvo+HPnzunhhx9WXl6ezpw5o+eff16rV6/WoUOHhjhzAAAAAFYSibnF6dOntXz5cq1YsUIffvihVqxYoWXLlukPf/jDUH0tAAAAxLCoLOpv2bJFK1eu1KpVqzRjxgy5XC5NnjxZO3fuDDp+165dyszMlMvl0owZM7Rq1So9+eSTeuWVV4Y4cwAAAABWEom5hcvl0sKFC1VaWqo777xTpaWl+s53viOXyzVE3woAAACxbMRwJzBYnZ2damho0Lp16/qcz8/P16lTp4Jec/r0aeXn5/c599BDD2nfvn3q6urSyJEj+13j9/vl9/t7X3/++eeSpNbW1rDyv3TpkiTJ4/Gos7MzJuJYKZdYjWOlXKwWx0q5xGocK+VitThWyiVW41gpF6vFsVIuZsZpa2uTJLW3t8vn84Ucxww9n28YxrDmgciJ1Nzi9OnTWrt2bb8xtyrqM/+IzlxiNY6VcrFaHCvlEqtxrJSL1eJYKZdYjWOlXKwWx0q5mBknaucfRpS5cOGCIck4efJkn/MvvfSS8Y1vfCPoNdOnTzdeeumlPudOnjxpSDL++c9/Br3mpz/9qSGJg4ODg4ODg4Mjzo+///3v5tzIwnIiNbcYOXKk8frrr/cZ8/rrrxt2u/2muTD/4ODg4ODg4ODgkAY2/4i6Tv0eNputz2vDMPqd+6rxwc73KC0tVUlJSe/rGzdu6F//+pfGjx9/y88BAABAbDAMQ5cvX1ZGRsZwp4IIi8TcYrAxmX8AAADEt8HMP6KuqO90OpWYmNjvMdSLFy8qLS0t6DXp6elBx48YMULjx48Peo3D4ZDD4ehz7rbbbgs9cQAAAESdsWPHDncKiKBIzS1uNuZmMSXmHwAAABj4/CPqNsq12+3Kzs5WfX19n/P19fVasGBB0GtycnL6jT969KjmzZsXdD19AAAAALEvUnOLm425WUwAAABgMKKuqC9JJSUl2rt3r/bv36+mpiatXbtWbrdbRUVFkrofXX3sscd6xxcVFemTTz5RSUmJmpqatH//fu3bt08/+tGPhusrAAAAALCASMwtnn32WR09elSbNm1Sc3OzNm3apHfffVdr1qwZ6q8HAACAGBR1y+9I0vLly9XW1qby8nJ5PB7Nnj1bdXV1ysrKktS967Hb7e4dP3XqVNXV1Wnt2rXasWOHMjIytH37di1dunS4vgIAAAAAC4jE3GLBggV688039cILL6isrEzTpk1TTU2N7rvvviH/fgAAAIg9NqNnVycAAAAAAAAAAGBpUbn8DgAAAAAAAAAA8YiiPgAAAAAAAAAAUYKiPgAAAAAAAAAAUYKiPgAAAAAAAAAAUYKiPgAAAAAAAAAAUYKiPgAAAAAAAAAAUYKiPgAAAAAAAAAAUYKiPgAAAAAAAAAAUYKiPgAAAAAAAAAAUYKiPgAAAAAAAAAAUYKiPgAAAAAAAAAAUeL/A4kQINgNa7X9AAAAAElFTkSuQmCC", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "fig = plt.figure(figsize=(16, 16))\n", "\n", "vert_coord = 0.99\n", "fig.text(\n", " 0.5,\n", " vert_coord,\n", " \"THIS RUN = \" + case_name + \" \" + start_date + \" to \" + end_date,\n", " ha=\"center\",\n", " va=\"center\",\n", " fontsize=14,\n", " color=\"royalblue\",\n", ")\n", "vert_coord = vert_coord - 0.015\n", "if base_case_name is not None:\n", " fig.text(\n", " 0.5,\n", " vert_coord,\n", " \"BASELINE RUN = \"\n", " + base_case_name\n", " + \" \"\n", " + base_start_date\n", " + \" to \"\n", " + base_end_date,\n", " ha=\"center\",\n", " va=\"center\",\n", " fontsize=14,\n", " color=\"red\",\n", " )\n", " vert_coord = vert_coord - 0.015\n", "\n", "fig.text(\n", " 0.5,\n", " vert_coord,\n", " \"Other runs = 1979-01-01 to 2023-12-31\",\n", " ha=\"center\",\n", " va=\"center\",\n", " fontsize=14,\n", ")\n", "vert_coord = vert_coord - 0.015\n", "\n", "fig.text(\n", " 0.5,\n", " vert_coord,\n", " \"Validation data = ERA5 1979-01-01 to 2023-12-31\",\n", " ha=\"center\",\n", " va=\"center\",\n", " fontsize=14,\n", ")\n", "vert_coord = vert_coord - 0.03\n", "\n", "ax = plotnmse(\n", " fig,\n", " nmse_cmip6[\"AM\"],\n", " nmse_cesm2[\"AM\"],\n", " nmse_dat[\"AM\"],\n", " nmse_base_dat[\"AM\"],\n", " 0.3,\n", " 0.7,\n", " vert_coord - 0.16,\n", " vert_coord,\n", " \"NMSE, SLP, AM\",\n", ")\n", "ax = plotnmse(\n", " fig,\n", " nmse_cmip6[\"DJF\"],\n", " nmse_cesm2[\"DJF\"],\n", " nmse_dat[\"DJF\"],\n", " nmse_base_dat[\"DJF\"],\n", " 0.05,\n", " 0.45,\n", " 0.57,\n", " 0.72,\n", " \"NMSE, SLP, DJF\",\n", ")\n", "ax = plotnmse(\n", " fig,\n", " nmse_cmip6[\"MAM\"],\n", " nmse_cesm2[\"MAM\"],\n", " nmse_dat[\"MAM\"],\n", " nmse_base_dat[\"MAM\"],\n", " 0.55,\n", " 0.95,\n", " 0.57,\n", " 0.72,\n", " \"NMSE, SLP, MAM\",\n", ")\n", "ax = plotnmse(\n", " fig,\n", " nmse_cmip6[\"JJA\"],\n", " nmse_cesm2[\"JJA\"],\n", " nmse_dat[\"JJA\"],\n", " nmse_base_dat[\"JJA\"],\n", " 0.05,\n", " 0.45,\n", " 0.37,\n", " 0.52,\n", " \"NMSE, SLP, JJA\",\n", ")\n", "ax = plotnmse(\n", " fig,\n", " nmse_cmip6[\"SON\"],\n", " nmse_cesm2[\"SON\"],\n", " nmse_dat[\"SON\"],\n", " nmse_base_dat[\"SON\"],\n", " 0.55,\n", " 0.95,\n", " 0.37,\n", " 0.52,\n", " \"NMSE, SLP, SON\",\n", ")" ] } ], "metadata": { "kernelspec": { "display_name": "cupid-analysis", "language": "python", "name": "cupid-analysis" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.11.4" }, "papermill": { "duration": 16.180359, "end_time": "2025-10-28T23:29:19.855799", "exception": null, "input_path": "/glade/derecho/scratch/richling/tmp/tmpd50sy73v.ipynb", "output_path": "/glade/work/richling/CUPid_pr_test/CUPiD/examples/key_metrics/computed_notebooks/atm/Global_PSL_NMSE_compare_obs_lens.ipynb", "parameters": { "CESM_output_dir": "/glade/campaign/cesm/development/cross-wg/diagnostic_framework/CESM_output_for_testing", "base_case_name": "b.e30_alpha07c_cesm.B1850C_LTso.ne30_t232_wgx3.228", "base_end_date": "0045-01-01", "base_regridded_output": false, "base_start_date": "0001-01-01", "case_name": "b.e30_alpha07c_cesm.B1850C_LTso.ne30_t232_wgx3.232", "end_date": "0021-01-01", "lc_kwargs": { "threads_per_worker": 1 }, "obs_data_dir": "/glade/campaign/cesm/development/cross-wg/diagnostic_framework/CUPiD_obs_data", "product": "/glade/work/richling/CUPid_pr_test/CUPiD/examples/key_metrics/computed_notebooks//atm/Global_PSL_NMSE_compare_obs_lens.ipynb", "regridded_output": false, "serial": false, "start_date": "0001-01-01", "subset_kwargs": {}, "ts_dir": null, "validation_path": "atm/analysis_datasets/fv0.9x1.25/seasonal_climatology/nmse_validation/PSL/" }, "start_time": "2025-10-28T23:29:03.675440" } }, "nbformat": 4, "nbformat_minor": 5 }