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Abstract 14 

Extreme sea-level events, such as those caused by tropical cyclones (TCs), pose significant risks 15 

to coastal areas. However, the current generation of climate models struggles to simulate these 16 

events due to coarse resolution. By comparing high-resolution (HR) and low-resolution (LR) 17 

Community Earth System Model (CESM) simulations with tide gauge and altimeter data along 18 

the U.S. Gulf of Mexico (GoM) coast, we find that HR better represents both mean dynamic sea 19 

level (DSL) and daily mean extreme DSL (EDSL) statistics. In contrast, LR significantly 20 

underestimates the strength of EDSL mainly due to its deficiency in simulating strong TCs. Both 21 

observations and HR show larger daily mean EDSL on the western Gulf coast than the eastern 22 

side, highlighting the need for HR climate simulations to improve coastal resilience planning. 23 

Keywords: extreme sea levels, tropical cyclones, high-resolution climate models 24 

1. Introduction  25 

Coastal extreme sea level (ESL) is primarily driven by a combination of storm surge and high 26 

tide, with contributions from mean sea level and wave runup. It has caused tens of billions of  27 

dollars in economic losses due to flood-induced infrastructure [1,2] and ecosystem [3,4] damage 28 

in coastal regions. For example, Hurricane Katrina in 2005 produced storm surges ranging from 29 

2.4 m to 8.5 m along the coasts of Alabama, Louisiana, and Mississippi, and these surges 30 

penetrated 9 to 20 kilometers inland in many areas. Katrina caused 1,833 fatalities and resulted 31 

in $186.3 billion in damages (adjusted for inflation to 2022 dollars) [5,6]. Without any protection 32 

strategies, the global-sea-level-rise-induced flooding is projected to cause worldwide annual 33 

economic losses ranging from US$21 trillion to US$210 trillion by 2100 [7,8]. As such, 34 

evaluating ESL is listed as one of the major objectives of the Intergovernmental Panel on 35 

Climate Change (IPCC) Sixth Assessment Report [9]. Therefore, realistically simulating ESL is 36 
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crucial to make informed decisions and improve adaptation strategies for the coastal 37 

communities.  38 

The Gulf of Mexico (GoM) is one of the hot spots for sea level rise [9–12]. The U.S. coast of 39 

GoM has experienced a remarkable 26.1% population growth over the past two decades, the 40 

fastest among the U.S. coastal regions. Along the northern GoM coast, weather and sub-seasonal 41 

variations have a more significant impact on ESL than tides, seasonal cycles, and interannual-to-42 

decadal variability [13]. Weather-induced ESL is particularly pronounced because GoM is a 43 

hurricane intensification region due to its warm waters, especially within warm mesoscale ocean 44 

eddies [14–17]. Strong winds associated with hurricanes are the main driver of storm surge in 45 

GoM. Additionally, strong coast-parallel winds during hurricanes can drive large sea-level rise 46 

through shoreward Ekman transport [18].  47 

However, simulating hurricanes or tropical cyclones (TCs) remains a challenge for standard 48 

climate models with a 1º atmosphere resolution. Increasing atmosphere resolution to 0.25º 49 

improves simulations of TCs, including their frequency, intensity, and spatial distribution [19]. 50 

Coastal ocean geometry and continental shelf features also play an important role in determining 51 

the strength of extreme sea-level events [20]. Climate models used in IPCC reports typically 52 

feature a 1º ocean resolution and simplified coastline geometry, which limit their ability to 53 

simulate sea-level extremes. Increasing the ocean resolution to 0.1º significantly enhances the 54 

representation of ocean bathymetry (Figure S1) and western boundary currents, such as the Gulf 55 

Stream [21–24]. These improvements can be particularly important for accurately simulating sea 56 

levels in GoM.  57 

Here, we assess the impact of horizontal model resolutions on ESL simulations in GoM by 58 

comparing an unprecedented ensemble of high-resolution Community Earth System Model 59 

(CESM) simulations (Chang et al., 2020, 2023, 2025) with its low-resolution counterpart. The 60 

analysis focuses on daily mean extreme dynamic sea-level (EDSL) events, which exclude the 61 

effects of high tides and wave runup. These EDSL statistics are valuable for coastal flooding 62 

planning, especially in a warming climate, as they provide a baseline understanding of the 63 

broader processes driving extreme sea-level changes, even without accounting for tides and wave 64 

runup [18]. 65 

2. Data and methods 66 

2.1. CESM simulations 67 

Model simulations used in this study were performed with CESM version 1.3 [22,25–27], which 68 

consists of the Community Atmosphere Model version 5 (CAM5), the Parallel Ocean Program 69 

version 2 (POP2), the Community Land Model version 4 (CLM4), and the Community Ice Code 70 

version 4 (CICE4). In the high-resolution CESM (HR), the ocean and sea ice components have a 71 

horizontal resolution of 0.1º while the atmosphere and land have a horizontal resolution of 0.25º. 72 

In contrast, the low-resolution CESM (LR) has a nominal resolution of 1º for all components.  73 

We use an ensemble of 10 historical and future-transient (HF-TNST) climate simulations 74 

covering the period from 1920 to 2100, forced by observed radiative forcing from 1920 to 2005 75 

followed by RCP8.5 forcing from 2006 to 2100 (Chang et al., 2025). The data from 1993 to 76 
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2020, corresponding to the satellite data, will be used to compare with observations. Because the 77 

ocean model conserves volume, the daily mean DSL has a zero global mean. We note that 78 

CESM, even with its HR configuration, does not simulate tides and wave runup. Therefore, the 79 

ESL in this study is examined with daily mean DSL anomalies that exclude high tides and wave 80 

runup. In the following, the anomalies are referenced to the annual mean of DSL. 81 

2.2. Observations  82 

Two observational datasets are used to validate the CESM simulations. The first is the daily sea 83 

surface height above geoid derived from gridded satellite altimetry measurements during the 84 

period 1993-2020, known as the Archiving, Validation and Interpretation of Satellite 85 

Oceanographic (AVISO) dataset [28]. The second consists of hourly tide gauge (TG) sea level 86 

measurements from 13 TG stations along the U.S. GoM coasts (Figure S2) during the same 87 

period of 1993-2020, obtained from Global Extreme Sea Level Analysis Version 3 dataset [29–88 

31]. TG data processing steps include 1) removing tides based on Utide Matlab functions [32]; 2) 89 

removing contributions from vertical land motion, and barystatic Gravitation, Rotation, and 90 

deformation fingerprints estimated by Dangendorf et al. (2023); 3) averaging hourly data into 91 

daily means; 4) removing inverse barometer effect based on daily mean sea level pressure from 92 

JAR55 [34,35]; 5) conversion to DSL by removing global averaged sea level estimated by 93 

Dangendorf et al. (2024). The last two steps above are also applied to the AVISO data for 94 

converting to DSL. 95 

2.3. Extreme value theory 96 

EDSL is defined as the yearly maximum of daily mean DSL after removing the annual mean. 97 

Without significant sea level rise, EDSL can be treated as a random variable. We use the 98 

Generalized Extreme Value (GEV) distribution to estimate 50-year return sea levels, as extreme 99 

values converge to GEV under extreme value theory [37,38]. The cumulative probability 100 

function (CDF) of the GEV distribution for a random variable 𝑥 is given by  101 

𝐺(𝑥) = 𝑒𝑥𝑝 {− [1 + 𝜉 (
𝑥−𝜇

𝜎
)]

−1 𝜉⁄

}, 102 

where 𝜇, 𝜎, and 𝜉 are the location, scale, and shape parameters, respectively. The return period 103 

for a given EDSL (𝑥𝑝) can be estimated by 1/𝑝, where 𝑝 = 1 − 𝐺(𝑥 ≤ 𝑥𝑝) is the exceedance 104 

probability. Similarly, the return level can be obtained for a given return period. This study 105 

focuses on the 50-year return sea level, estimating DSLs expected to be equaled or exceeded 106 

once every 50 years. Figure S3 displays the well-matched empirical and GEV-fit CDF of EDSL 107 

from 13 TG locations, validating the GEV distribution for GoM. To fairly compare with TG, 108 

EDSL over 1993-2020 from each ensemble member in HR and LR is fitted to GEV distribution 109 

separately. 110 

3. Results 111 

3.1. Comparison of observed and simulated daily mean extreme sea level  112 

To evaluate CESM’s capability in simulating large EDSL, we select the ensemble member with 113 

the largest daily mean DSL anomalies from 1993 to 2020 (among 10 ensemble members) for 114 
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both HR and LR, comparing it with TG and AVISO at each TG station. This ensures consistent 115 

DSL data lengths for statistical analysis. The probability density functions (PDFs) of DSL show 116 

substantial discrepancies between the TG and AVISO datasets (Figure 1a), with altimetry 117 

showing a shorter right tail due to insufficient coastal resolution [39]. This discrepancy can be 118 

quantified by comparing the 99th percentile values, which are 28.01 cm in the TG dataset and 119 

20.58 cm in the AVISO dataset. Similarly, LR with 1º horizontal resolution fails to capture the 120 

long tail seen in the TG data. In contrast, HR better aligns with TG, with a 99th percentile value 121 

of 26.71 cm, suggesting the improved capability of HR to capture realistic EDSL compared to 122 

LR. Results remain similar when concatenating all 10 ensemble members to generate histograms 123 

(Figure S4a). 124 

We further demonstrate the improvements in HR by analyzing the 50-year return daily mean 125 

DSL (DSL50). DSL50 from TG varies spatially from Port Isabel to Key West (Figure 1b), and 126 

the 13-station mean is 70.06 cm. However, this is substantially underestimated in AVISO (28.78 127 

cm) and LR (37.51 cm) by 59% and 47%, respectively. In contrast, the mean DSL50 in HR is 128 

72.17 cm, more aligned with TG. The spatial correlation between DSL50 in TG and HR for 13 129 

stations is 0.75 although the TG DSL50 at Cedar Key and St. Petersburg is underestimated by 130 

60% in HR. For LR, the correlation with TG is only 0.63, showing DSL50 larger than 60 cm 131 

only at Freeport. Therefore, DSL50 in HR is more realistic than in LR in terms of both 132 

amplitudes and spatial variations. 133 

To quantify inter-ensemble variability, we calculate DSL50 spreads in HR and LR (Figure S4b). 134 

HR exhibits greater spread along the Texas coast than Florida. For example, at Galveston, the 135 

ensemble-mean DSL50 is 82.39 cm, with upper and lower bounds as 114.37 cm and 56.69 cm, 136 

respectively. In contrast, at Naples, the corresponding values are 38.14 cm, 47.45 cm, and 31.22 137 

cm, respectively. Except at Cedar Key and St. Petersburg, the TG DSL50 values fall within the 138 

HR ensemble spread. However, at most stations, the TG values are above the HR ensemble 139 

mean, indicating that HR underestimates observed DSL50. This discrepancy may be partly due 140 

to the model biases in TC frequency and intensity [25]. The LR ensemble spreads are 141 

considerably smaller than those in HR and are substantially lower than both the TG and HR 142 

DSL50 values at all stations. Additionally, DSL50 calculated from 1920-2005 in HR and LR 143 

aligns with results from 1993-2020 but exhibits smaller amplitudes (Figure S4c). The analysis 144 

including annual means over 1920–2005 shows only minor impacts on DSL50 (Figure S4d). 145 

Therefore, we will focus on the 1920–2005 period to further investigate the physical processes 146 

driving EDSL in HR and LR without annual means.  147 
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 148 

Figure 1 (a) Probability density function of DSL from 13 tide gauge stations along the U.S. GoM 149 

coasts (west to east). Numbers in brackets are the 99th percentile of DSL. (b) 50-year return level 150 

ESL at tide gauge stations. AVISO, HR, and LR data from 1993 to 2020 are used. Years with 151 

fewer than five days of missing data from 1920 to 2020 are used for TG to ensure a comparable 152 

sample size with other datasets. Only the ensemble member with the highest DSL from 1993 to 153 

2020 at each TG station is used for HR and LR. Annual mean is removed for all datasets.  154 

3.2. Relationship between Daily mean EDSL and TCs 155 

Because storms are the primary driver of strong EDSL events [20,40], we use self-organizing 156 

maps (SOM) [41,42], an unsupervised machine learning technique, to identify storm patterns 157 

linked to EDSL events in HR and LR historical ensembles. Specifically, SOM is applied to 158 

EDSL and the corresponding daily mean sea level pressure (SLP) data within a 10º×10º box 159 

centered on each TG station. A SOM size of 6×1, the dimensions of the neural grid determining 160 

how many clusters will be used to represent the input data, is used, and results remain consistent 161 

with larger SOM sizes. In contrast, smaller SOM sizes, such as 3×1 or 4×1, fail to sufficiently 162 

distinguish strong tropical storms from weaker ones (not shown here). 163 
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 164 

Figure 2 (a-f) Daily mean EDSL at TG station Grand Isle (asterisk) and SLP patterns 165 

(dimensionless) in each SOM node. (g-l) Composite SLP for each SOM node (unit: hPa). The 166 

percentage (number) of EDSL events identified by different nodes is labelled in a-f (g-l). 10 167 

ensemble members of HR simulations are used. 168 

As an example, the SOM nodes at Grand Isle are shown in Figure 2, revealing both TC and non-169 

TC SLP patterns (Figure 2a-f). Grand Isle is part of the Louisiana coasts, which is vulnerable to 170 

TCs. For each SLP snapshot associated with EDSL, the best matching unit (“winner” among the 171 

six SOM nodes) is identified based on the minimum Euclidean distance to the snapshot. This 172 

process categorizes EDSL events into six groups corresponding to the six SOM nodes. To 173 

characterize the SLP patterns in each group, composite SLP maps are presented in Figure 2g-l. 174 

Notably, only 18% of EDSL events (158 cases) are linked to TC patterns, as represented by Node 175 

1, while 14% (117 cases) correspond to weaker low-pressure systems captured by Node 2. At 176 

most stations, the composite SLP pattern for Node 1 exhibits a clear TC structure, similar to that 177 
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at Grand Isle, except at Key West, where a frontal structure dominates (Figure S5). Winter fronts, 178 

which occur in December and January, also contribute to EDSL at Grand Isle, especially in Node 179 

6 (Figure S6). At some stations, winter storms have a more pronounced impact on EDSL than at 180 

Grand Isle, with a higher frequency of events observed in January and February (Figure S7). 181 

Similar SOM results are seen in LR, although the TC-like SLP pattern represented by Node 1 is 182 

considerably weaker and broader, indictive of much weaker winds (Figure S8).  183 

 184 

Figure 3 (a) Percentage of severe daily mean EDSL event (larger than DSL50) explained by six 185 

SOM nodes in HR (H) and LR (L). (b) Most frequent (i.e. GEV parameter ‘location’) and (c) 186 

strongest daily mean EDSL associated with Node 1 in HR (red) and LR (blue). (d) GEV 187 

parameter ‘scale’ (PDF width) for EDSL events associated with Node 1 in HR (red) and LR 188 

(blue). 10 ensemble members of HR and LR simulations are used. 189 

Next, we investigate how severe daily mean EDSL events, defined as those exceeding DSL50, 190 

relate to Node 1. As illustrated in Figure 3a, most events align with TC events identified by Node 191 

1 in both LR and HR. In LR, TC contributions reach a maximum of ~85% at Rockport and a 192 

minimum of ~15% at Key West, with values at other stations ranging between 40% and 65%. In 193 

contrast, HR reveals more intricate spatial patterns, with Node 1 contributions reaching or 194 

exceeding 80% along the Texas coast as well as at Grand Isle (Louisiana), Dauphin Island 195 

(Alabama), Pensacola (Florida), Panama City (Florida), and St. Petersburg (Florida). Conversely, 196 

contributions at Naples and Key West (Florida) fall below 50%, indicating a reduced influence of 197 

TCs on EDSL at these stations compared to others.  198 
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Histograms and GEV-fit probability density function (PDF) of daily mean EDSL associated with 199 

Node 1 are presented in Figure S9, with key parameter information summarized in Figure 3b-d. 200 

The GEV parameter ‘location’ represents the magnitude of the most frequent events. In HR, this 201 

parameter is higher along the Texas coast (Port Isabel, Rockport, Freeport, and Galveston), 202 

ranging between 35 cm and 40 cm, compared to other regions. In contrast, along the Florida 203 

coast from Apalachicola to Key West, it decreases progressively from 33 cm to 14 cm (Figure 204 

3b). Overall, the 13-station mean (standard deviation) of the most frequent EDSL is 30 cm (7 205 

cm).  206 

In HR, daily mean EDSL events exceeding 100 cm occur more frequently west of Grand Isle 207 

than east of it. The highest recorded daily mean EDSL event has an amplitude of 211 cm at 208 

Freeport, followed by 179 cm at Galveston and 146 cm at Rockport, all situated along the Texas 209 

coast (Figure 3c). The strongest daily mean EDSL events at all stations are associated with TCs, 210 

with the lowest SLP ranging from 959 hPa to 986 hPa (Figure S10), corresponding to category 1 211 

to 3 hurricanes. Notably, a single hurricane can influence EDSL events at multiple stations 212 

simultaneously. For example, the strongest EDSL event at both Freeport and Galveston is driven 213 

by the same hurricane. In contrast, the strongest EDSL event at Key West, which has the smallest 214 

amplitude, is driven by a hurricane in the North Atlantic rather than GoM. Additionally, the 215 

strong spatial correlation (0.96) between GEV parameters ‘location’ and ‘scale’ (the width of 216 

GEV distribution) suggests that stations experiencing more frequent large EDSL also exhibit a 217 

wider range of EDSL (Figure 3d).  218 

In LR, the 13-station mean (standard deviation) of the most frequent daily mean EDSL is only 19 219 

cm (9 cm), making it 37% weaker and 29% more variable than in HR. However, at Rockport and 220 

Freeport, the most frequent daily mean EDSL events are comparable to those in HR, warranting 221 

further investigation into the underlying cause. Compared to HR, the strongest EDSL event in 222 

LR is weaker at most TG stations, except at Panama City and Apalachicola (Figure 3c). A TC 223 

with the lowest SLP of 970 hPa drives the strongest EDSL event from Dauphin Island to St. 224 

Petersburg, producing an amplitude of 150 cm at Panama City and 148 cm at Apalachicola 225 

(Figure S11). Similar to HR, the spatial patterns of the GEV width parameter ‘scale’ align with 226 

those of parameter ‘location’ in LR, but with a smaller magnitude of parameter ‘scale’, 227 

suggesting a narrower range of EDSL values in LR. 228 

In addition to weather events, low-frequency variability, including intraseasonal and seasonal 229 

fluctuations, can also contribute to daily mean EDSL events. To quantify the relative 230 

contributions of weather and low-frequency variability, we separated EDSL into a weather-231 

driven component and a low-frequency component. The weather component was extracted by 232 

first applying a 15-day high-pass filter to the daily mean DSL time series, then identifying EDSL 233 

events in the filtered data using the same timestamps as the original total EDSL events.  234 

The total EDSL associated with Node 1 shows a significant linear relationship with the weather-235 

driven EDSL (Figure S12). From Port Isabel to Pensacola, the slopes of the linear regressions of 236 

total EDSL on weather-driven EDSL are close to 1, with correlation coefficients exceeding 0.8 in 237 

HR, indicating that high-frequency weather events predominantly drive EDSL. Further east, 238 

from Panama City to St. Petersburg, the slopes range between 0.75 and 0.89, with correlation 239 
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coefficients between 0.7 and 0.8. At Naples and Key West, the correlations weakened to 0.59 and 240 

0.43, respectively. Overall, the impact of TCs on total EDSL increases from the east to the west 241 

across GoM. Compared to HR, LR shows weaker correlations and lower slopes, indicating a 242 

reduced influence of weather on EDSL. For example, at Dauphin Island, the correlation in LR is 243 

only 0.61, substantially lower than 0.83 in HR. Additionally, total EDSL associated with other 244 

nodes generally exhibits lower slopes and weaker correlations with weather-driven EDSL across 245 

most tide gauge stations (not shown here). 246 

 247 
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Figure 4 Scatterplots of nearby wind speed (maximum within 2.5º of TG stations) versus total 248 

EDSL for Node 1 at 13 TG stations in HR (orange) and LR (blue). Solid and dashed curves show 249 

quadratic regression for HR and LR, respectively. Each panel includes P-value and fit 250 

correlation. The quadratic fit is statistically significant at 95% confidence, except at Key West. 251 

10 ensemble members of HR and LR simulations are used. 252 

As TCs approach the coast, the sea level change is proportional to 𝑈2𝑊/ℎ in the first order, 253 

where U is wind speed, W is the shelf width, and h is the mean depth over the shelf region 254 

[20,43]. The surge is mainly generated in shallow regions and is expected to increase with the 255 

square of wind speed. Needham & Keim (2014) demonstrated a nonlinear relationship between 256 

observed storm surge heights and tropical cyclone wind speeds along the U.S. Gulf Coast. A 257 

subsequent numerical modeling study by Yin et al. (2020) revealed that this nonlinear 258 

relationship varies by location. Leveraging the 10 ensemble members of CESM simulations, we 259 

further investigate this nonlinear relationship in both HR and LR experiments. As shown in 260 

Figure 4, daily mean EDSL in HR is significantly correlated with the nearby wind speed (defined 261 

as the maximum wind speed within 2.5º to the TG stations) in a quadratic relationship. The fit 262 

correlation coefficients reach a maximum of 0.75 at Galveston, followed by Freeport and Grand 263 

Isle with values greater than 0.7. On the Florida coast from Cedar Key to Naples, the fit 264 

correlation is smaller than 0.5. Additionally, the quadratic relationship at Key West is not 265 

significant at 95% confidence level. Notably, this quadratic relationship is sensitive to the 266 

geometry of continental shelf, the size [20] and approach direction [46,47] of TCs, as well as the 267 

method to construct the wind index [44,46]. In contrast to HR, LR struggles to generate strong 268 

winds with amplitudes larger than 20 m/s at most stations (Figure 4). In the weak wind regime, 269 

results from LR are nearly indistinguishable from those in HR. However, in the strong wind 270 

regime, HR and LR exhibit distinct nonlinear relationships between EDSL and wind speed. 271 

Additionally, this relationship is sensitive to the rare severe EDSL events in LR at most stations 272 

(Figure S13). This divergence suggests that we cannot simply extrapolate the relationship 273 

derived from the weak wind regime to the strong wind regime. Therefore, it is crucial for climate 274 

models to permit or resolve strong TCs to better simulate large coastal EDSL in GoM. 275 

4. Conclusions 276 

Our study examines how climate model resolution affects daily mean EDSL simulations along 277 

the GoM coast by comparing HR and LR CESM ensembles with TG and altimetry data. TG 278 

observations show a higher daily mean DSL50 along the Texas and Louisiana coasts than west 279 

Florida, averaging 70.06 cm across 13 stations. HR better captures these spatial variations, 280 

underestimating DSL50 by 19%, whereas LR underestimates it by 54% with 10 ensemble 281 

member average. Using SOM, we classify daily mean EDSL into six groups, with the most 282 

intense events (Node 1) linked to TCs. Catastrophic EDSL events exceeding DSL50 are driven 283 

by strong TCs at all TG stations. Since LR simulates weaker TCs than HR, it significantly 284 

underestimates EDSL. Additionally, the EDSL PDF is narrower in LR, reflecting poor TC 285 

representation. 286 

This study focuses only on the daily mean EDSL because of the limitation of climate model 287 

outputs, which may underestimate the short-lived extreme events and wave impacts. In future 288 
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work, applying a regional model downscaling approach would be beneficial for investigating 289 

hourly EDSL variations associated with storm surges, wave runup, and tides. Nevertheless, our 290 

findings highlight the importance of incorporating high-resolution models into policy-making 291 

processes to better prepare for and mitigate the impacts of future sea-level rise and extreme 292 

weather events. Extending the analysis to future projections will further clarify the influence of 293 

tropical cyclone changes on EDSL variability and trends. 294 
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