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Abstract 

Storm-induced coastal extreme sea levels (ESLs) pose severe threats to infrastructure, 

economies, and ecosystems. However, projecting future ESL changes is hindered by the 

coarse resolution of climate models used in assessment reports, which fail to accurately 

capture tropical cyclones (TCs) and nor’easters. Here, we demonstrate that high-resolution 

Community Earth System Model (CESM) simulations realistically reproduce wind- and 

pressure-induced daily mean extreme dynamic sea levels (DSLs), including the most 

catastrophic events. Under a high-emission scenario, we show that 50-year return DSLs 

(DSL50) decrease on the U.S. Texas and Northeast coasts but increase on the U.S. Louisiana 

and Southeast coasts, creating substantial spatial discrepancies between total DSL50 

changes and mean DSL rise. On the Gulf and Southeast coasts, DSL50 trends are primarily 

driven by TC frequency changes, while nor’easter frequency changes tend to govern trends 

on the Northeast coast. These findings challenge the traditional assumption of stationarity 
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in storm-induced ESLs, underscore the importance of high-resolution climate models for 

regional coastal risk assessment, and represent a critical step toward more accurate 

projections of future ESLs in a warming climate. 

1. Introduction  

Storm-induced coastal extreme sea levels (ESLs) pose significant threats to infrastructure, 

including ports, power plants, and transportation networks, resulting in annual economic losses 

of tens of billions of dollars1–3. As mean sea levels continue to rise, more people will be exposed 

to coastal floods2,4, with potential damages ranging from US$21 to 210 trillion by 21004,5. 

Coastal ecosystems are also increasingly vulnerable to erosion and saltwater intrusion into 

groundwater6–12. These escalating risks highlight the urgent need for coastal communities to 

better understand and project ESLs to inform adaptation strategies and mitigate future socio-

economic losses.  

While mean sea level rise is widely recognized as the primary driver of ESL changes13,14, the 

influence of storm changes remains uncertain due to the challenges in projecting future 

storminess15–18. Although climate models are used to project mean sea level rise in the 

Intergovernmental Panel on Climate Change (IPCC) reports, their spatial resolutions are 

typically around 100 km, which limits their ability to accurately capture storm dynamics and 

detailed coastal geometry — both crucial for accurate ESL simulations19. As a result, two 

alternatives are often used: (i) probabilistic models, which assume that the statistical properties 

of storm-induced ESLs are stationary in time and offset the distribution with sea level rise20–25; 

and (ii) regional or global storm surge models, forced by synthetic tropical cyclones (TCs)26,27 or 

simulated atmospheric fields from coarse-resolution climate models28–30. However, these 



methods tend to neglect or underestimate storm characteristic changes, leaving the role of 

storminess changes in future ESL projections uncertain.   

Traditionally, ESLs have been treated as a stationary process and analyzed using return 

frequencies via extreme value theory (EVT)31. However, this assumption is invalidated by 

ongoing changes in mean sea level and storminess. Nonstationary EVT methods have been 

introduced to adjust the median and width of generalized extreme value (GEV) distributions 

using sea level statistics or other climate indicators20,32–36, but they still fail to fully account for 

storm changes. Observational studies show that storm-induced ESL trends in Europe have been 

comparable to mean sea level trends since 196037. Recent advances in modeling and computing 

now enable the assessment of storm change impacts on ESL nonstationarity using high-

resolution climate models. Increasing atmospheric resolution to 25-50 km improves the 

simulation of tropical and extra-tropical cyclone intensity and tracks38,39, making it possible to 

simulate storm-induced ESLs more realistically40 (Xu et al., 2024). However, global high-

resolution climate simulations remain computationally expensive, limiting ensemble sizes and 

making it difficult to separate natural variability from anthropogenic impacts on ESLs.  

In this study, we investigate future storm-induced ESLs on the U.S. Atlantic and Gulf of Mexico 

coasts using a 10-member ensemble of high-resolution Community Earth System Model (HR 

CESM) simulations41–45 (Chang et al., 2025, see Methods). We analyze daily mean dynamic sea 

level (DSL), which represents sea-level departures from the global mean, to assess ESLs without 

tidal influences. To isolate storm-induced changes from interannual variability and mean sea 

level rise, we remove the annual mean DSL for each individual year. Our analysis begins by 

validating the model against observational data, followed by an investigation of projected 

changes in the 50-year return DSL (DSL50) and its relationship with storm activity. 



2. Results  

2.1 Comparison with observations 

We first evaluate the ability of HR CESM to simulate catastrophic DSLs by comparing its output 

with tide gauge (TG) observations (see Methods) on the U.S. Atlantic and Gulf of Mexico 

coasts. After removing the annual mean sea level, the largest daily mean DSL event observed at 

each TG station exhibits a complex spatial pattern along the Atlantic and Gulf coasts (Figure 1a), 

with most amplitudes ranging from 100 to 160 cm (Figure 1b). The event with the largest 

amplitude occurred in Galveston, where the daily mean DSL reaches 222 cm. In contrast, 

stations at Portland, Wilmington, Charleston, and Key West recorded relatively weak DSL events 

with amplitudes below 100 cm. Among all the stations, Key West shows the lowest value of all 

the strongest DSL events at just 50 cm (Figure 1b, Extended Figure 1a).  

The largest DSLs from the 10-member HR CESM ensemble show good agreement with TG 

observations (Figure 1b), with a root-mean-square error (RMSE, see Methods) of 33 cm —

approximately 28% of the station-mean observed maximum DSL—and a spatial correlation 

coefficient of 0.85. The ensemble mean of the maximum DSLs in all realizations also performs 

well, with an RMSE of 23 cm (about 20% of the observed station mean) and a spatial correlation 

coefficient of 0.77. These results demonstrate that HR CESM ensemble effectively captures both 

the magnitude and spatial variability of the largest daily mean DSLs observed on the Atlantic and 

Gulf coasts. However, intra-ensemble variability is particularly large at Galveston, leading to a 

RMSE of 92 cm (Extended Figure 1b). While the observed maximum DSL (222 cm) is 

reasonably reproduced by 2 of the 10 ensemble members, the remaining 8 members 

underestimate it by 20-70% (Figure 1b). In contrast, at the other 14 TG stations, the intra-

ensemble variability is smaller, with an average RMSE of 14 cm on the Northeast coast (from 



Portland, Maine to Sewells Point, Virginia) and 23 cm on the Southeast and Gulf coasts 

(Extended Figure 1b). Additionally, on the Southeast and Gulf coasts, the observed events and 

majority of simulated events in HR CESM occur during the hurricane season, particularly 

between September and November (Figure 1c). In contrast, on the Northeast coast, the strongest 

events are predominantly linked to winter storms between November and April. However, at 

Baltimore and Wilmington, extreme events were caused by Hurricane Isabel (September 2003) 

and Hurricane Florence (September 2018), respectively. These September-October TC events are 

captured by only one or two HR CESM realizations at each station, while the remaining 

ensemble members attribute the extremes to winter storms.  

During storm events, both sea level pressure (SLP) and surface winds drive sea level surges. The 

former, known as the inverse barometer effect (IBE, see Methods), causes sea levels to rise by 

approximately 1 cm for every 1 hPa drop in SLP46. On the Atlantic and Gulf coasts, DSLs 

induced by wind and pressure forcing are nearly indistinguishable between HR CESM and TG 

observations (Figure 1d, e, f), indicating that the model realistically simulates not only the largest 

DSLs but also other storm-induced events and the relative contributions of surface winds and 

SLP to total DSL. Wind-driven DSLs exhibit a strong linear correlation with the total DSLs with 

R2 values ranging from 0.85 to 0.89, indicating that 85%-90% of the total DSL variability is 

explained by wind forcing (Figure 1d, e, f). In contrast, SLP-induced DSLs show a weaker 

correlation, with R² values below 0.3, indicating a smaller influence of IBE on overall DSL 

variability. The steeper slope of the wind-induced DSL fit further demonstrates that surface 

winds are the dominant driver of extreme DSLs, while SLP-induced effects play a secondary 

role. These results highlight the importance of accurately representing surface wind forcing in 

climate models, as it significantly outweighs pressure effects in driving extreme DSL events. 



 

Figure 1 Comparison of observed and simulated extreme DSLs from 1920 to 2020. (a) 

Spatial distribution of the largest DSLs in TG observations (circles) and the 10-member HR 

CESM ensemble (shading). (b) Amplitudes of the largest DSLs at TG stations (rose red), 

individual HR CESM ensemble members (green) and the ensemble mean (black). (c) Month of 

occurrence for the largest DSLs in TG observations (rose red) and 10 HR CESM ensemble 

members (green). The numbers indicate the year of the largest DSLs in TG observations. For 

each TG station, the largest DSL in HR CESM is defined as the largest value within a 1° radius 

of the station. Contributions of wind- and pressure-induced DSL surge to total DSL surges in TG 

observations and HR CESM on the (d) Northeast (from Portland to Sewells Point), (e) Southeast 

(from Wilmington to Fernandina Beach), and (f) Gulf (from Key West to Galveston) coasts. 

Orange dots represent TG wind surges, rose red dots show HR CESM wind surges, green dots 



indicate TG pressure surges, and blue dots depict HR CESM pressure surges. Regression is 

performed using both TG and HR CESM data. Data used in (d-f) is from 1940-2020 because 

SLP from ERA5 is only available to calculated observed IBE during this period. 

2.2 Changes in extreme sea level 

DSL50 represents the magnitude of a DSL event that has a 1-in-50 chance of being exceeded in 

any given year. A companion study (Xu et al., 2025) shows that HR CESM realistically captures 

DSL50 when compared to TG observations. Here, we use the GEV distribution to estimate 

DSL50 (see Methods) based on annual maximum of daily mean DSL and assess its future 

changes. DSL50 is generally higher on the Atlantic coast (100-120 cm) compared to the Gulf 

coast (~70 cm, Figure 2a), indicating a heavier right tail in the extreme DSL distribution on the 

Atlantic coast. This suggests that the Atlantic coast is more frequently impacted by storms than 

the Gulf coast. However, in each subregion, the spatial variability of DSL50 closely resembles 

that of the largest DSLs. For instance, on the Gulf coast, both metrics exhibit local peaks on the 

Texas, Louisiana, and Florida coasts. Our results show that DSL50 is primarily driven by wind 

forcing (Figure 2b), with a spatial correlation coefficient of 0.91, while contributions from SLP 

are relatively minor, accounting for less than 18% of total DSL50 (Figure 2c). Notably, SLP-

induced DSL50 is particularly large on the Louisiana, North Carolina, and Virginia coasts, 

suggesting a higher frequency of low-pressure weather systems in these regions47.  



 

Figure 2 DSL50 during 2006-2035 and its projected trend from 2006 to 2100. (a) Total, (b) 

wind-induced, (c) pressure-induced DSL50 in 2006-2035 in HR CESM. Note that the color bar 

scale for panel (c) is much smaller than those of panels (a) and (b). (d) Long-term trends in total 

DSL50 from 2006 to 2100. (e) R2 values of the linear trends in total DSL50. (f, g) Trends in (f) 

pressure-induced, and (g) wind-induced DSL50. (h) Multi-model ensemble mean trend in annual 

DSL. (i) Sum of the trends in total DSL50 in HR CESM and multi-model ensemble mean DSL. 

All trends are calculated over the period 2006-2100. Trends are all significant at 95% confidence 

level.  

The DSL50 trend from 2006 to 2100 exhibits a complex spatial pattern, with significant 

decreases on the Texas and Northeast coasts and increases on the Louisiana and Southeast coasts 



at the 95% confidence level (Figure 2d). The strongest decrease, −24.5 cm per century, occurs 

along the Texas coast, while the largest increase, +19.2 cm per century, is observed along the east 

coast of Florida. The R2 for these linear trends varies spatially, reaching 0.8–0.9 on the Texas 

coast, indicating a strong dominance of the linear trend. The Southeast coast follows with R2 

values of 0.7–0.8, while the Northeast and New Orleans coasts show values ≤0.4 (Figure 2e). 

The decomposition of the DSL50 trends reveals that SLP contributes less than 6 cm per century 

to the total change in most regions. This SLP-driven trend is negative along the Texas coast but 

positive along the Florida and Atlantic coasts (Figure 2f), indicating regionally contrasting 

changes in storm-related SLP. The negative (positive) trends suggest that storm-related SLP is 

projected to weaken (intensify), which is closely linked to changes in storm strength. However, 

the relationship between minimum storm-induced SLP and IBE requires further investigation, 

which is beyond the scope of this study. In contrast to SLP, wind forcing emerges as the primary 

driver of the overall DSL50 trend (Figure 2g). To verify the robustness of these trends, we 

perform a leave-one-out analysis by recalculating the wind-induced DSL50 trends using 9 out of 

10 ensemble members, resulting in 10 combinations. The mean of these combinations exhibits a 

similar spatial pattern of DSL50 trends to that directly obtained from the 10 ensemble members 

(Extended Figure 2, Figure 2e).  

The amplitude of DSL50 trends is comparable to that of projected mean sea level rise. Among 

the CMIP6 models, four include ocean simulations at approximately 25 km resolution spanning 

1850 to 2100 (CNRM-CM6-1-HR, EC-Earth3P-HR, HadGEM3-GC31-MM, and GFDL-CM4). 

However, these models only provide monthly DSL output, rather than daily data, which makes it 

impossible to directly calculate DSL50. Nevertheless, they can still be used to estimate the multi-

model ensemble mean of projected coastal mean DSL rise from 2006 to 2100, in combination 



with HR CESM (Figure 2h). The strongest mean DSL rise occurs on the Northeast coast, 

followed by the Southeast and Gulf coasts. Most previous studies assume mean DSL rise to be 

the dominant driver of future changes in extreme DSLs, with changes in storm statistics playing 

a minor role20–25. However, our results indicate that storm-induced DSL50 changes are 

comparable in magnitude to mean DSL rise. As a result, the total extreme DSL trend, defined as 

the sum of trends in DSL50 and mean DSL, reaches its maximum on the Southeast coast rather 

than the Northeast coast, particularly on the east Florida coast (Figure 2i). For example, 

overlooking the influence of storminess can lead to an underestimation of DSL50 trends by up to 

48% at Fernandina Beach. This may have profound implications for coastal adaptation strategies, 

especially at the national level, as it challenges the conventional assumption that mean DSL rise 

is the primary driver of future extreme DSL changes. Because wind forcing is the dominant 

driver of DSL50 trends, the following analysis focuses on wind-induced DSL50 changes. 



 

Figure 3 Contributions of GEV parameters to wind-induced DSL50 trends. (a, b) Time 

series of (a) shape and (b) scale parameters of GEV distributions. (c) Contributions of the shape 

parameter to the wind-induced DSL50 trend. (d) Same as (c) but for the scale parameter. 

Prior research has commonly attributed changes in extreme DSLs primarily to changes in mean 

DSL, with assumption that the width and shape of DSL GEV distribution remaining constant 

over time25,48,22,21 or being parameterized using climate indicators32. To evaluate this assumption, 

we analyze the time series of the shape and scale parameters from the GEV distribution at four 

representative tide gauge stations—Galveston (Texas coast), New Orleans (Louisiana coast), 

Fernandina Beach (Southeast coast), and The Battery (Northeast coast)—where DSL50 exhibits 

significant trends (Figure 3a, b). A positive (negative) shape parameter value indicates a right 

(left) tailed GEV distribution while the scale parameter measures the width of the distribution. 



Therefore, a larger shape parameter value corresponds to a longer right tail of the GEV 

distribution. Our results reveal that both parameters vary nonmonotonically over time, 

challenging the assumption of constant storm characteristics. The shape parameter is projected to 

decrease at Galveston and The Battery, suggesting a shorter right tail and thus weaker DSL 

extremes in the future. In contrast, the parameter value is projected to increase at New Orleans 

and Fernandina Beach, indicating a longer right tail and stronger DSL extremes. The scale 

parameter also exhibits regional contrasts. At The Battery, it is projected to decrease after 2040, 

indicating a narrower GEV distribution, which, combined with the decreasing shape parameter, 

weakens future DSL50. In contrast, at Fernandina Beach, the scale parameter is projected to 

increase, resulting in a wider GEV distribution that enhances DSL50, consistent with the 

increasing shape parameter. At Galveston and New Orleans, the scale parameter shows only a 

slight decrease, despite substantial internal variability. Results remain the same when using 9 of 

10 ensemble members (Extended Figure 3a, b), suggesting that our results are not sensitive to the 

sample size. Overall, DSL50 aligns more strongly with the shape parameter than the scale 

parameter at all four stations (Extended Figure 3c, d). The correlation between DSL50 and the 

shape parameter exceeds 0.85 at all locations, reaching a maximum of 0.95 at Fernandina Beach. 

In contrast, the maximum correlation between DSL50 and the scale parameter is only 0.65 at The 

Battery, with the lowest correlation of 0.28 at Galveston. To quantify the relative importance of 

the shape and scale parameter in driving DSL50 trends, we isolate the influence of each 

parameter when calculating DSL50 trends (see Methods, Figure 3c, d). The results indicate that: 

(i) on the Gulf coast, DSL50 trends are primarily driven by the change in the shape parameter; 

(ii) on the Northeast coast, the change in the scale parameter dominates the DSL50 trend; (iii) on 

the Southeast coast, changes in both parameters contribute, although the shape parameter change 



plays a larger role. Because the annual mean DSL is removed when calculating DSL50, the 

influence of the location parameter is negligible compared to the other two parameters (Extended 

Figure 3e). These findings highlight the importance of accounting for changes in both shape and 

scale parameters when using probabilistic methods to project future ESL changes. Additionally, 

accurately parameterizing these two parameters under a warming climate remains a challenge 

due to their nonlinear and spatially variable behavior. In the following section, we investigate the 

physical drivers of DSL50 changes.   

2.3 Role of storms in extreme sea level changes 

Since the seasonal cycle of DSL is retained in the DSL50 calculation, we next assess its role in 

DSL50 trends. At Galveston, New Orleans, and Fernandina Beach, the seasonal cycle of DSL50 

(see Methods) from 2006 to 2035 is well-aligned with the DSL seasonal cycle, both peaking in 

October (Extended Figure 4 a, c, e). In contrast, strong DSL50 events at The Battery primarily 

occur during winter season (i.e., nor’easter season), while the DSL seasonal cycle peaks in 

October (Extended Figure 4g). This timing mismatch reduces the seasonal influence on DSL50 

trends, a phenomenon also noted in a previous study49. However, the trends in DSL50 from 2006 

to 2100 exhibit substantial discrepancies compared to those of the DSL seasonal cycle at all four 

stations. At New Orleans and Fernandina Beach, DSL50 shows peak increases in November—10 

cm and 20 cm per century, respectively—exceeding trends in the DSL seasonal cycle (Extended 

Figure 4 d, f). Similarly, the strongest DSL50 decreases occur in September at Galveston and in 

April at The Battery, also outpacing corresponding DSL cycle trends (Extended Figure 4 b, h). 

These results suggest that changes in the DSL seasonal cycle have only a minor influence on 

DSL50 trends along the Atlantic and Gulf coasts.  



 

Figure 4 Relationship between storms and severe DSL. (a, d, g, j) Scatterplots of surface 

wind speed versus DSL at four TG station. Red numbers indicate the minimum SLP in the 

vicinity of TG stations. Observations, which have similar amplitudes of wind-induced DSL to 

HR CESM DSL50 during 2006-2035, are shown as open black circles, with event names and 

years labeled in brackets. Observations at New Orleans are taken from Grand Isle TG station. 

DSL50 during 2006-2035 is 73.29, 71.33, 99.20, and 89.05 cm at Galveston, New Orleans, 

Fernandina Beach, and The Battery TG stations, respectively. (b, e, h, k) Time series of wind-

induced DSL50 with (blue) and without (red) severe DSL events. Linear trends of DSL50 and 

their R2 values are labeled in each panel. (c, f, i, l) Occurrence time of severe DSL events with y-



axis representing DSL amplitudes. The first, second, third, and fourth rows correspond to results 

for Galveston, New Orleans, Fernandina Beach, and The Battery, respectively. 

A possible key driver of DSL50 trends is storm activity changes, including TCs and nor’easters. 

To address their impact, we focus on severe DSL events, defined as events where DSL exceeds 

the DSL50 of the 2006-2035 period. At Galveston, 12 severe events are identified between 2006 

and 2100 in 10 ensemble members of HR CESM. These events are linked to TCs with lowest 

daily mean SLP ranging from 974 hPa to 1004 hPa (Figure 4a and Extended Figure 5). 

Consistent with previous studies40,50,51,  daily-mean DSL exhibits a quadratic relationship with 6-

hourly-mean maximum surface wind speed (see Methods), with R2=0.56 and p=0.026. Notably, 

historical large DSL surges observed in 1942, 2003, and 2008 align well with the relationship 

obtained from HR CESM simulations. This relationship can be impacted by TC track, size, 

intensity, and translation speed19,52,53. After excluding these severe events, the DSL50 trend 

changes from -17 cm to 0 cm per century with R2 decreased from 0.82 to 0.004 (Figure 4b), 

suggesting the importance of severe events in DSL50 changes. However, the impact of TCs on 

DSL50 is stronger in 2006-2060 than in 2060-2100. This is due to a decline in TC occurrence 

near Galveston, with 9 events occurring from 2006 to 2060 (4 in 2006-2020 and 5 in 2020-2050), 

but only 3 from 2060 to 2100 (Figure 4c).  

24 simulated severe events occur at New Orleans from 2006 to 2100, with daily mean SLP 

ranging from 970 to 1013 hPa (Figure 4d). Of these, 20 are linked to TCs and 4 to frontal 

systems (Extended Figure 6). The quadratic regression between daily-mean DSL and 6-hourly 

surface wind speed yields a R2 value of 0.34 with a p-value of 0.012. Observed DSL responses to 

Hurricanes Juan, Rita, Isaac, and Ike are consistent with HR CESM results, though the first three 

exhibit weaker responses than model-simulated events with similar wind speeds. Excluding these 



severe events reduces the DSL50 trend from 14 cm to 4 cm per century. The strongest positive 

DSL50 trend occurs from 2020 to 2080, coinciding with 13 TCs and 3 frontal events (Extended 

Figure 6). Among these 16 events, 5 (4 TCs and 1 front event) occur between 2020 and 2050, 

while 11 (9 TCs and 2 front events) occur between 2050 and 2080, contributing to the increase in 

DSL50. Notably, there are 9 TC-driven severe events at both Galveston and New Orleans during 

these two periods. However, their distribution differs: from 2020 to 2050, 5 TCs impact 

Galveston and 4 affect New Orleans, whereas from 2050 to 2080, all 9 TCs occur in the vicinity 

of New Orleans. This shift suggests a possible change in TC tracks from Texas toward Louisiana. 

Further validating this result requires additional multi-model high-resolution climate simulations.  

Compared to New Orleans, Fernandina Beach is more frequently impacted by frontal systems, 

which are responsible for 8 severe DSL events from 2006 to 2100 (Extended Figure 7). Of the 

remaining severe events, 11 are TC-driven and 2 are linked to nor’easters. Excluding two outlier 

TC events with wind speeds exceeding 30 m/s, the quadratic correlation between daily-mean 

DSL and 6-hourly wind speed yields R2=0.3 and p=0.062, which is consistent with observed 

DSL response to surface wind (Figure 4g). The two outliers correspond to: a 2007 TC moved 

from the Gulf of Mexico to the North Atlantic and a 2061 TC moved from the subtropical North 

Atlantic to the U.S. east coast. Similar to New Orleans, excluding these 21 severe events reduces 

the DSL50 trend from 17 cm to 5 cm per century (Figure 4h). The strongest influence occurs 

from 2020 to 2080, during which 4 severe events occur from 2020 to 2050 (only 1 TC-driven) 

while 8 severe events occur from 2050 to 2080 (5 TC-driven) (Figure 4i). A recent study 

suggests increased TC activity may result from enhanced vertical wind shear and atmospheric 

stability54, highlighting the need for further TC analyses on the Gulf and Southeast coasts. Based 



on these findings, we conclude that TC frequency is the primary driver of DSL50 on the Gulf 

and Southeast coasts. 

At The Battery, all 16 severe DSL events are nor’easter-induced, characterized by strong 

temperature gradients within the low-pressure system at 500 hPa (Extended Figure 8), showing 

consistency with previous results55. Compared to TC-induced events, nor’easter winds are 

weaker, ranging from 21 to 28 m/s (Figure 4j), yet daily DSL still exhibits a quadratic 

relationship with 6-hourly wind speeds (R2=0.38 and p=0.046). Four observed strong DSL surge 

events scattered around this quadratic relationship, further confirming the realism of HR CESM 

simulations. Excluding these nor’easter-driven events reduces the DSL50 trend from -15 cm to -

3 cm per century, with most of this change occurring after 2040 (Figure 4k). As shown in Figure 

4l, there are 6 severe events from 2040 to 2070 but only 2 events from 2070 to 2100, suggesting 

a decrease in nor’easter frequency near The Battery. This decreasing nor’easter frequency is 

consistent across multiple climate models40,56–58 and it is likely driven by a weakened lower-

tropospheric meridional temperature gradient, a consequence of polar amplification58,59.  

3. Conclusions   

Projecting future changes in coastal ESLs remains challenging, largely due to the coarse 

resolution of models used in assessment reports, which struggle to accurately represent extreme 

weather events, such as TCs and nor’easters. However, recent studies have demonstrated that 

high-resolution climate models can improve simulations of TCs38, nor’easters39, and coastal daily 

mean ESLs (Xu et al., 2025). In this study, we further demonstrated the realism of HR CESM in 

simulating wind- and pressure-induced DSL events on the U.S. Atlantic and Gulf coasts. 

Additionally, the amplitudes of the largest DSL events observed at TG stations on the Atlantic 

and Gulf coasts fall within the ensemble spread of the simulated largest DSL events. We further 



investigated projected changes in storm-induced DSLs under a high-emission scenario (RCP8.5). 

Our results reveal a complex pattern in future DSL50 trends on the Atlantic and Gulf coasts. 

DSL50 decreases on the Texas and Northeast coasts but increases on the Louisiana and Southeast 

coasts. These changes are comparable to the projected mean DSL change, which shows a 

consistent rise along the entire coast, resulting in differences between the spatial patterns of 

future extreme and mean DSL changes. Furthermore, our findings challenge the stationarity 

assumption that is commonly used in future projections of future ESL changes using statistical 

methods. Our physics-based high-resolution model simulations show that the GEV parameters 

evolve nonlinearly over time, exhibiting significant spatial variability. Neglecting this 

nonstationarity can lead to an underestimation of DSL50 trends by up to 48% at Fernandina 

Beach. This underscores the importance of statistical methods that incorporate changes in both 

mean sea level and storminess when estimating future ESLs. Our analysis highlights that changes 

in TC frequency are the primary driver of DSL50 trends on the Gulf and Southeast coasts, 

suggesting an increase in TC frequency near Louisiana and the Southeast coast but a decrease 

near Texas. In contrast, on the Northeast coast, the decreasing frequency of nor’easters 

dominates the DSL50 trend.  

Despite these advancements, our study has several limitations. One key uncertainty lies in 

simulating extreme events in the Gulf of Mexico, particularly near Galveston, where the 

ensemble spread of the largest DSLs remains large, suggesting it is still challenging for HR 

CESM to project ESLs along Texas coast. Addressing this issue requires a multiple high-

resolution modeling approach to improve our understanding of projected storm-ESL interactions. 

However, current simulations from High-Resolution Model Intercomparison Project 

(HighResMIP)60 only extend to 2050. Future efforts could focus on extending high-resolution 



simulations to 2100 and incorporating daily mean DSL into HighResMIP261 to enhance our 

understanding of TC-induced DSL changes. Another limitation is that only daily mean DSL is 

evaluated because it is still challenging for high-resolution climate models to output hourly 

ocean variables. Additionally, tides’ contributions to ESLs are not represented in global climate 

models and must be diagnosed offline and added to the extreme DSLs simulated by these 

models. Despite these challenges, this study represents a critical step toward improving future 

ESL projections. Extreme events captured by high-resolution climate models can further inform 

machine learning approaches and drive regional models for more targeted ESL assessments. Our 

findings underscore the importance of region-specific analyses in coastal adaptation and 

mitigation strategies and highlight the continued need for advancing high-resolution modeling to 

better capture the risks of extreme coastal flooding. 

Methods 

HR CESM simulations: The high-resolution simulations are based on CESM version 1.342.  The 

atmospheric component is the Community Atmosphere Model version 5 (CAM5) with the 

Spectral Element dynamical core. The ocean component is the Parallel Ocean Program version 2 

(POP2). The sea-ice component is the Community Ice Code version 4 (CICE4), and the land 

component is the Community Land Model version 4 (CLM4). The model has a nominal 

horizontal resolution of 10 km for the ocean and sea ice components, and 25 km for the 

atmosphere and land components. The simulations include a 500-year preindustrial control (PI-

CNTL) and a historical-and-future transient (HF-TNST) climate simulation from 1850-2100. PI-

CNTL is forced by a perpetual climate forcing reflecting 1850 conditions, while HF-TNST is 

branched from PI-CNTL at year 250, using observed climate forcing until 2005, after which it 

follows the high emission scenario RCP 8.5. Nine additional HF-TNST simulations were 



performed, starting in 1920 with slightly different atmospheric initial conditions, resulting in a 

10-menber HR HF-TNST ensemble.  

Observed sea level by tide gauges: The observational sea levels from 15 TG stations on the 

U.S. Atlantic and Gulf of Mexico coasts (Figure 1) are obtained from Global Extreme Sea Level 

Analysis Version 3 dataset62–64. These stations were selected based on the availability of over 70 

years of data, with each year containing at least 320 days of valid observations. Tides are 

removed using Utide Matlab functions65, and corrections for the vertical land motion and 

barystatic Gravitation, Rotation, and Deformation fingerprints are applied based on estimates 

provided by Dangendorf et al. (2023)66. For a fair comparison with CESM, the global average 

sea level estimated by Dangendorf et al. (2024)67 is also removed to obtain DSL.  

Root-mean-square error: The root-mean-square error (RMSE) of the simulated strongest DSL 

(𝑥𝑖) at each TG station is defined as  𝑅𝑀𝑆𝐸 = √∑ (𝑥𝑖−𝑋)2
𝑁
𝑖=1

𝑁
, where 𝑋 is the observed strongest 

DSL at the corresponding TG station, and 𝑁 is the ensemble size of HR CESM (i.e., 𝑁 = 10). 

Inverse Barometer Effect (IBE): It is calculated based on 𝐼𝐵𝐸 = −
𝑆𝐿𝑃−𝑆𝐿𝑃̅̅ ̅̅ ̅

𝜌0𝑔
, where overbar 

represents long-term mean from 1940 to 2020, 𝜌0is the density of sea water taken as 1026 kg/m3, 

and 𝑔 is the acceleration of gravity taken as 9.8 m/s2. IBE in the observation is estimated using 

SLP from ERA568. 

Extreme value analysis: Extreme DSL simulated by CESM is defined as the yearly maximum 

after removing the annual mean, and is used to fit a Generalized Extreme Value (GEV) 

distribution31. The cumulative distribution function of GEV for a random and independent 

variable 𝑥 is given by  



𝐺(𝑥) = 𝑒𝑥𝑝 {− [1 + 𝜉 (
𝑥−𝜇

𝜎
)]

−1 𝜉⁄

}, 

where 𝜇, 𝜎, and 𝜉 are the location, scale, and shape parameters, representing the distribution 

mean, width, and tail behavior, respectively. The return period for a given DSL (𝑥𝑝) is calculated 

as 1/𝑝, where 𝑝 = 1 − 𝐺(𝑥 ≤ 𝑥𝑝) is the exceedance probability, i.e., the probability that 𝑥𝑝 is 

exceeded. The 50-year return level is obtained by setting 𝑝 = 0.02. A 30-year running window 

(advanced by 1 year) is used to compute time series for 𝜇, 𝜎, 𝜉, and DSL50 from 2006 to 2100. 

Then the linear DSL50 trend from 2006 to 2100 is calculated at each grid point. The DSL50 

seasonal cycle is calculated by fitting the maximum of DSL in each month to the GEV 

distribution. 

Relative importance of parameters in DSL50 changes: To quantify the importance of 𝜎 in 

DSL50 changes, we keep 𝜇 and 𝜉 constant at their 2006 values, only allowing 𝜎 to vary over 

time. A similar process is applied to quantify the impact of 𝜉 and 𝜇 on DSL50 changes.  

6-hourly surface wind index: Because DSL responds nonlinearly to surface wind, its daily 

mean amplitude is largely influenced by high-frequency extreme wind events. To capture this 

effect, we construct a high-frequency wind index by first identifying the maximum 6-hourly 

surface wind speed on the same day as the DSL within a 2.5° radius of each TG station. Among 

the four available wind speed indices, we select the time step when the wind location is closest to 

the Galveston, New Orleans, and Fernandina Beach stations. However, because nor’easters have 

larger spatial scales than TCs, for The Battery station, we instead select the time step when the 

wind location is farthest from the station. 

Data availability 



The CESM data used in this work are available from 

https://project.cgd.ucar.edu/projects/MESACLIP/. The tide gauge data can be downloaded from 

https://gesla787883612.wordpress.com/downloads/. The SLP from ERA5 can be downloaded 

from DOI:10.24381/cds.adbb2d47. 

Code availability 

The CESM codes are available on GitHub (https://github.com/ihesp/CESM_SW). 
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Extended Figures  

 



 

Extended Figure 1 Uncertainties in maximum DSL in HR CESM. (a) Comparison of 

maximum DSL from TG observations (red) with the ensemble minima (blue), maxima (yellow), 

and mean (gray) of maximum DSL values across 10 HR CESM ensemble members at 15 TG 

stations. (b) RMSE of the maximum DSL in HR CESM. 



 

Extended Figure 2 DSL50 trends in HR CESM. ensemble-mean DSL50 trends in leave-one-

out analysis from 2006 to 2100. 



 

Extended Figure 3 Relationship between GEV parameters and wind-induced DSL50 

trends. (a, b) Time series of (a) shape and (b) scale parameters of GEV distributions using 9 out 

of 10 ensemble members. (c, d) Scatterplot of wind-induced DSL50 versus (c) shape and (d) 

scale parameters using 10 ensemble members. The correlation coefficients between wind-



induced DSL50 and these two parameters are indicated in each panel. (e) Contributions of the 

location parameter to the wind-induced DSL50 trend using 10 ensemble members. 

 

Extended Figure 4 Seasonal trends in DSL50 and mean DSL from 2006 to 2100. (a, c, e, g) 

Seasonal cycles of DSL (blue) and DSL50 (black) averaged over 2006-2035. (b, d, f, h) Trends 

in seasonal cycles of DSL (blue) and DSL50 (black) from 2006 to 2100. 



 

Extended Figure 5 Severe events for Galveston in HR CESM. Each panel displays the time, 

DSL, and minimum SLP as indicated in the panel titles. Color shading represents the daily mean 

air temperature at 500 hPa, while contours indicate the daily mean SLP. The 6-hourly surface 

wind speeds are shown in the lower-left corner of each panel, with darker colors indicating later 

times. 



 



 

Extended Figure 6 Severe events for New Orleans in HR CESM. Each panel displays the 

time, DSL, and minimum SLP as indicated in the panel titles. Color shading represents the daily 

mean air temperature at 500 hPa, while contours indicate the daily mean SLP. The 6-hourly 

surface wind speeds are shown in the lower-left corner of each panel, with darker colors 

indicating later times. 



 



 

Extended Figure 7 Severe events for Fernandina Beach in HR CESM. Each panel displays 

the time, DSL, and minimum SLP as indicated in the panel titles. Color shading represents the 

daily mean air temperature at 500 hPa, while contours indicate the daily mean SLP. The 6-hourly 

surface wind speeds are shown in the lower-left corner of each panel, with darker colors 

indicating later times. 



 



Extended Figure 8 Severe events for The Battery in HR CESM. Each panel displays the time, 

DSL, and minimum SLP as indicated in the panel titles. Color shading represents the daily mean 

air temperature at 500 hPa, while contours indicate the daily mean SLP. The 6-hourly surface 

wind speeds are shown in the lower-left corner of each panel, with darker colors indicating later 

times. 


